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Abstract—In brain-computer interfaces, adapting a classifier
from one user to another is challenging but essential to reduce
training time for new users. Common Spatial Patterns (CSP)
is a widely used method for learning spatial filters for user
specific feature extraction but the performance is degraded when
applied to a different user. This paper proposes a novel Adaptive
Selective Common Spatial Pattern (ASCSP) method to update the
covariance matrix using selected candidates. Subspace alignment
is then applied to the extracted features before classification. The
proposed method outperforms the standard CSP and adaptive
CSP algorithms previously proposed. Visualization of extracted
features is provided to demonstrate how subspace alignment
contributes to reduce the domain variance between source and
target domains.

Keywords—BCI, motor imagery, transfer learning, CSP, sub-
space alignment

I. INTRODUCTION

A brain-computer interface (BCI) is a platform that can
interpret a user’s brain signals, such as those reflected in
electroencephalogram (EEG) signals, and send commands to
the external world. Performing real or imagined movements
will elicit different neural patterns which can be detected
by BCI. BCI-based user specific motor imagery has been
widely investigated and common spatial patterns (CSP) has
been successfully applied to this problem [1].

However, due to the distortion of temporal and local infor-
mation of brain signals and variance between subjects, it is
difficult to classify EEG patterns in one user using a classifier
trained in another user. To overcome these drawbacks, various
modified CSP methods have been proposed to obtain more ro-
bust filters (see e.g. [2]). There are two main ways to approach
the problem: One is to regularize the objective function by
adding a penalty term. Such regularization uses priors to guide
the optimization process toward robust spatial filters. The other
is to incorporate a weighted average of covariance matrices
from other subjects to regularize the current covariance matrix
[3], [4].

Inspired by adaptive learning, spatial filters learned by CSP
can be adapted recursively by new incoming unlabeled EEG
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signals [5], [6]. Previous adaptive CSP methods rarely check
the distribution of extracted features after updating the covari-
ance matrix. A subtle change in the covariance matrix may
lead to significant difference between source and target data
filtered by CSP. To reduce domain variance of output data, we
propose a novel Adaptive Selective Common Spatial Pattern
(ASCSP) method that selects the most appropriate candidates
to update the covariance matrix without resulting in a great
change to the distribution of extracted features. Subspace
alignment [7] is then applied to the extracted features before
final classification to further reduce the domain variance.

II. DATASET AND METHOD

A. Dataset

To test our methodology, we used data from 6 participants
from the study previously published in [8]. In this study, par-
ticipants were instructed to perform kinesthetic motor imagery
of their left or right hand to control a cursor to hit a target on
a screen in front of them. In each trial, a cursor was presented
at the center of the monitor and the target at either end - the
center was three cursor steps away from each end. After 1.5
seconds the target would vanish to reduce distraction and then
the cursor began to move at the speed of one step per second.
Participants were led to believe that they controlled the cursor;
however, the cursor moved based on a pre-determined order
for the purposes of the original study [8].

Data were collected using a 64-channel BrainAmp system
(Brain Products GmbH). The electrodes were distributed on
the cap based on the International 10-20 system. Data were
collected at 5000 Hz sampling rate but were downsampled
to 500 Hz for further analysis. Data were analyzed offline
in MATLAB and EEGLAB [9]. For further details on the
pre-processing of the data please refer to [8]. In this study,
we use data 150 ms to 950 ms after the cursor movements
towards the target and only consider the frequency band of
7-12 Hz as this covers the mu band for motor imagery. Since
in the pre-processing phase for each participant up to five
channels contaminated with muscle and other artifacts were
removed, the common channels shared by all participants were

IEEE Proceedings of the 6th International Winter Conference on Brain-Computer Interface  



selected, as the same channels are required for subject-to-
subject transfer.

B. Common Spatial Patterns
The common spatial pattern (CSP) algorithm was suggested

for motor imagery classification by Ramoser et al. [1]. CSP
learns optimal spatial filters that maximize filtered variance for
one class and simultaneously minimize filtered variance for
the other class. The ith trial of the pre-processed EEG data
for each class is denoted as an M × N matrix Xi(y) with
class label y ∈ {1, 2}, where M is the number of channels
and N is the number of samples. The averaged normalized
spatial covariance matrix Cy is computed for each class as:

Cy =
1

ny

ny∑
i=1

Xi(y)X
T
i (y)

trace(Xi(y)XT
i (y))

, (1)

where ny is the number of EEG trials in class y and T
represents the matrix transpose operator. The optimal set of
CSP filters can be found to maximize the following Rayleigh
quotient:

max
WCyW

T

W (C1 +C2)W T
. (2)

This problem can be solved by the generalized eigenvalue
problem in the form: WC1 = ΛWC2, where Λ is a
diagonal matrix containing eigenvalues of C−1

2 C1 sorted in
descending order and the matrix W consists of corresponding
eigenvectors. With the transformation matrix W , X(y) is
spatially filtered to obtain: Z = WX(y). First and last m
rows of Z are selected to discriminate the two classes. Feature
vector of rth spatial filter is constructed as:

fr = log
var(zr)∑2m
j=1 var(zj)

, (3)

where var() is the variance calculator and zr (r=1,..,2m) is
the rth row of Z. The logarithmic transformation makes the
distribution of fr more similar to Gaussian.

C. Subspace Alignment
Fernando et al. [7] proposed a domain adaptation algorithm

based on unsupervised subspace alignment (SA). This algo-
rithm is part of our proposed method to reduce the variance
between source and target domains. Given source data yS and
target data yT , source subspace XS and target subspace XT

are generated from the eigenvectors of these input data by
PCA. Then the given data are projected to the subspaces by
the operations ySXS and yTXT . A linear transformation M
is learned to map the source subspace to the target subspace
by minimizing a Bregman matrix divergence:

M∗ = argminM ||XSM −XT ||2F , (4)

where || · ||2F is the Frobenius norm. Because the Frobenius
norm is invariant to orthonormal operations, the objective
function can be rewritten as:

M∗ = argminM ||X
′

SXSM −X
′

SXT ||2F
= argminM ||M −X

′

SXT ||2F . (5)

Based on this equation, the optimal M∗ is obtained as
M∗ = X

′

SXT . This implies that the new coordinate system is
equivalent to Xa = XSX

′

SXT . Subspace alignment domain
adaptation algorithm [7] is presented in Algorithm 1.

Algorithm 1: Subspace Alignment [7]
Input: Source data S, target data T , reduced dimension d
Output: Subspace aligned data Sa, TT

1 XS ← PCA(S, d)
2 XT ← PCA(T, d)

3 Xa ← XSX
′

SXT

4 Sa = SXa

5 TT = TXT

6 return Sa, TT

D. Adaptive Selective CSP

With the help of CSP and SA, a novel adaptive selective
CSP (ASCSP) is proposed. Current adaptive CSP methods
ignore the change of the distribution of the CSP filtered fea-
tures extracted after updating the covariance matrices. ASCSP
checks the variance of CSP filtered data before updating the
covariance matrix and selects the probable candidate trials
from target data that maintain the similarity of source and
target distribution.

Given EEG trials Xs = {Xs1 ∪Xs2} from source subject
labeled with left (class 1) and right (class 2) respectively
and unlabeled trials Xt from target subject, C1 and C2 are
initialized as averaged normalized covariance matrices from
Xs1 and Xs2 using Eq. (1).

The first step of ASCSP is to select candidate trial xi from
Xt for class 1. CSP filters are trained from source labeled data
and applied to both source (Xs) and target (Xt) data to extract
logarithmic features. Subspace alignment is then applied to
the logarithmic features to reduce domain discrepancy. Linear
Discriminant Analysis (LDA) is trained upon the extracted
features in source aligned subspace and then predicts the
label in the target aligned subspace. If the prediction is class
1 then this trial is selected as the candidate to update the
covariance matrix later, otherwise another trial is picked and
tested sequentially until a label of class 1 is obtained.

After selecting the candidate xi for class 1, candidate xj for
class 2 is chosen from remaining Xt. New covariance matrices
C̃1 and C̃2 are obtained from:

Cnew
1 ← C1n1

n1 + 1
+

cov(xi)

trace(cov(xi))(n1 + 1)
,

Cnew
2 ← C2n2

n2 + 1
+

cov(xj)

trace(cov(xj))(n2 + 1)
, (6)

where cov() calculates the covariance matrix. CSP is trained
with C̃1 and C̃2 and applied to both source Xs and target
Xt data. The logarithmic features f̃s in source domain and
f̃t in target domain are obtained and the difference of their
means |mean(f̃s− f̃t)| is calculated. If this value is too large,



the selected trial for class 2 should be discarded, because the
extracted features differ too much between source and target
subjects and a classifier trained on the source domain is unable
to distinguish the patterns in target domain. The remaining
trials of the target subject that satisfy the previous condition
are all considered. Since CSP learns a projection matrix with
filters that maximize the projected variance of the signals from
each class [1], the trial that results in a modified covariance
matrix that leads to CSP extracted features with the highest
variance is chosen as the final candidate for class 2.

After selecting the trial for class 2 resulting in highest
filtered variance, covariance matrices C1 and C2 are updated
by Eq. (6) using the candidates for class 1 and class 2. Then
CSP is calculated to extract logarithmic features and a new
aligned subspace is constructed. LDA is then trained upon
these features. In the next iteration, LDA can be used to select
trials of class 1 and repeat previous steps. The whole algorithm
is shown in Algorithm 2.

Algorithm 2: ASCSP
Input: Source domain data set Xs = {Xs1 ∪Xs2} and

target domain data set Xt

Output: Transform matrix W
1 Initialize C1, C2 as the average covariance matrix of Xs1

and Xs2

2 Initialize both Xt1 and Xt2 with the value of Xt

3 W = CSP (C1, C2)
4 Calculate features fs and f t using Eq. (3)
5 Construct aligned subspace Xs

sa and Xt
sa

6 Train LDA on Xs
sa

7 while there exists a trial xi ∈ Xt1 whose subspace
aligned features are classified as class 1 by LDA do

8 xj = Empty
9 m = −INF

10 while pick x̃j in Xt2 and xi 6= x̃j do
11 Calculate C̃1, C̃2 using xi, x̃j based on Eq. (6)
12 W = CSP (C̃1, C̃2)

13 Calculate features f̃s and f̃ t using Eq. (3)
14 Construct aligned subspace X̃t

sa

15 if |mean(f̃s − f̃ t)| < Thresh and
var(WX̃t

sa) > m then
16 m← var(WX̃t

sa)
17 xj ← x̃j

18

19 if xj 6= Empty then
20 Update C1, C2 using xi, xj using Eq. (6)
21 Xt1 ← Xt1 − {xi, xj}
22 Xt2 ← Xt2 − {xi, xj}
23 W = CSP (C1, C2)
24 Calculate features fs and f t using Eq. (3)
25 Construct aligned subspace Xs

sa and Xt
sa

26 Train LDA on Xs
sa

27 return W

III. RESULTS

The classification accuracies on the 6 participants are re-
ported in Table I. Each pair of two participants is evaluated
twice with each of them used as the training data (source data)
and the other as testing data (target data). CSP is adopted
as baseline method. The previously proposed Adaptive CSP
method (ACSP) by Song et al. [5] using Frobenius norm is
evaluated for comparison. ASCSP is our proposed method for
feature extraction. The threshold is set to 6 after searching
values from 1 to 10 on subject 2 as source domain and
subject 5 as target domain (The ASCSP and ASCSP SA data
for this pair is marked by ∗ in Table I to indicate potential
overfitting on this pair only). The threshold is fixed for all
other source-target combinations. Subspace alignment is then
adopted for the features extracted by ASCSP. This method is
called ASCSP SA. The LDA algorithm is used to classify
the features extracted by these four methods. As Table I
presents, ASCSP outperforms the previous ACSP and baseline
method. ASCSP with subspace alignment further improves the
accuracy and performs best in nearly all cases.

TABLE I
ACCURACIES OF FOUR DIFFERENT METHODS. SEE TEXT FOR

DESCRIPTION OF ∗ .

Test Train Acc
Subj Subj CSP ACSP ASCSP ASCSP SA
S1 S2 0.5586 0.5154 0.5247 0.5370

S3 0.4938 0.5123 0.4877 0.5340
S4 0.4784 0.5093 0.5802 0.5556
S5 0.5000 0.4969 0.6019 0.5988
S6 0.4969 0.4969 0.5617 0.5648

Mean 0.5055 0.5062 0.5512 0.5580
S2 S1 0.5216 0.4846 0.4722 0.6790

S3 0.4938 0.4969 0.5278 0.6327
S4 0.4321 0.5031 0.5926 0.6975
S5 0.4969 0.5123 0.5340 0.6204
S6 0.5309 0.4815 0.5864 0.5710

Mean 0.4951 0.4957 0.5426 0.6401
S3 S1 0.4907 0.5278 0.5154 0.5525

S2 0.4938 0.5031 0.4815 0.5679
S4 0.4969 0.5093 0.5309 0.5710
S5 0.4969 0.5556 0.5617 0.5432
S6 0.5062 0.4938 0.5494 0.5926

Mean 0.4969 0.5179 0.5278 0.5654
S4 S1 0.4383 0.5000 0.6451 0.5957

S2 0.4691 0.4907 0.5154 0.6574
S3 0.4784 0.5093 0.5278 0.6327
S5 0.5000 0.5000 0.5154 0.6080
S6 0.4815 0.5031 0.5123 0.5864

Mean 0.4734 0.5006 0.5432 0.6160
S5 S1 0.4599 0.4722 0.5123 0.5802

S2 0.4815 0.5031 0.5216∗ 0.6080∗
S3 0.4753 0.5031 0.5000 0.5895
S4 0.4753 0.5062 0.5154 0.5895
S6 0.4599 0.5247 0.5741 0.6173

Mean 0.4704 0.5019 0.5247 0.5969
S6 S1 0.5000 0.5000 0.5957 0.6358

S2 0.5309 0.5093 0.5093 0.6574
S3 0.5000 0.5000 0.6019 0.6080
S4 0.4907 0.5000 0.5556 0.6852
S5 0.5000 0.5000 0.5988 0.6944

Mean 0.5043 0.5019 0.5722 0.6562

Fig. 1 demonstrates the reason why our proposed methods



outperform previous ACSP. Previous Adaptive CSP ignores
the domain variance after updating the covariance matrix. In
Fig. 1(a), source and target domain features differ from each
other and thus the decision boundary learned in the source
domain cannot successfully be applied in the target domain.
ASCSP reduces the domain variance according to Fig. 1(b) but
still the features are not adaptive enough for the target domain.
By adding subspace alignment to the ASCSP filtered features,
domain variance can be further reduced and the classifier
learned in the source domain can be applied directly in the
target domain. In Fig. 1(c), the two decision boundaries are
close enough and the source domain classifier can discern most
of the labels in the target domain better than the methods
without subspace alignment.

IV. CONCLUSION

Small perturbations of the covariance matrix will lead to
large discrepancy in features extracted by CSP between source
and target domain. Thus the classifier trained on data from
the source subject is unable to classify the target subject data
reliably. The proposed ASCSP can reduce domain variance
by selecting trials to update the covariance matrix; moreover,
applying subspace alignment before classification can further
reduce the difference in the distributions between source and
target domain. Visualization of features filtered by three meth-
ods (ACSP, ASCSP and ASCSP SA) is shown to demonstrate
how ASCSP together with subspace alignment reduces the
domain variance.
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Fig. 1. Visualization of domain variance and the effect of subspace alignment.
The black lines represent optimal linear decision boundaries for the training
and testing data set. First and second rows of the extracted features are plotted
in the above figures. Subject 4 and 6 are the source and target subjects
respectively. Fig. 1(a), 1(b), 1(c) are ACSP, proposed ASCSP and ASCSP
with subspace alignment respectively.




