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Abstract—In this study, we perform single-trial EEG classifica-
tion in memory retrieval predictions using classifiers trained on
a leave-one-subject-out (LOSO) cross-validation basis. We also
compare the performance to that of classification using leave-
one-trial-out (LOTO) when trained on data for an individual
subject. Unlike traditional single-trial EEG analysis performed
within an individual subject, we show that it is possible to
perform single-trial EEG classification using classifiers trained
on different subjects leading the way to more general classifiers
for brain-computer interface (BCI) applicable to first-time BCI
users.

Index Terms—single-trial EEG, memory prediction, leave-one-
subject-out, EEG classification, subject-independent classifier

I. INTRODUCTION

Currently, brain-computer interfaces (BCI), which allow
users to interact with devices using brain signals, are facing
the challenge that a classifier for one individual might not be
usable by another subject due to individual differences in brain
anatomy and physiology [1]. For application to different users,
the classifier usually requires either re-training or calibration.
This problem could be solved with a subject-independent
classifier trained without using the data for the new user.

In our previous study [2], we trained individual classifiers
for each subject tested using leave-one-trial-out (LOTO) cross-
validation for single-trial EEG classification in memory re-
trieval prediction. The analysis of the activation patterns across
classifiers trained on different subjects suggested that there was
some consistency in the classifiers for the different subjects
on the same classification problem. The authors in [3], [4],
proposed creating subject-independent EEG-based BCIs for
motor-imagery and emotional imagery tasks and demonstrated
the potential of designing EEG-based leave-one-subject-out
(LOSO) classifiers for these tasks. Also, in [5], a universal
memory classifier was trained with cross-validation with data
across all subjects and was able to distinguish remembered
trials from forgotten trials across subjects. As this study did
not perform LOSO, it is not clear how important the training
data from the same subject was for good performance, but
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Fig. 1. The experimental paradigms for experiments with (a) location source
information and (b) color source information from [14]

it did create one classifier that worked for all subjects. In
another study [6], data from other subjects was used to
predict auditory attentional selection. These studies motivated
our present approach to train a subject-independent memory
classifier using LOSO cross-validation.

The ‘parietal old/new effect’ in electroencephalography
(EEG) is a positive-going event-related potential (ERP) typ-
ically observed over parietal scalp and often left lateralized
between 500 and 800 ms after stimulus presentation. It is
thought to correlate with the amount of information retrieved
from the study episode (recollection) [7], [8], [9], [10],
[11]. It carries greater amplitude when episodic information
is correctly recollected compared to the new item (correct
rejections). Another recognition process, familiarity, is thought
to be correlated with a frontally distributed and negative-going
ERP that peaks around 400 ms, called the frontal old/new
effect (or the FN400). The FN400 shows a more negative
peak for less familiar items but does not seem to distinguish
between different amounts of recollected context information
[8], [9], [10], [11]. Another memory-related potential, the late
posterior negativity (or LPN), is larger (more negative) for
correct old than new responses, irrespective of source accuracy
[12], [13]. The LPN is observed later than the other two poten-
tials and also thought to index another memory reconstruction
process, modulated by the amount of information actually used
to reconstruct prior episodes.



In this study, we aim to create LOSO classifiers to dis-
criminate between correctly identified old/new trials from a
new subject during the recognition phase of episodic memory
experiments on a single trial basis. We utilized the temporal
information between 300 and 1500 ms, longer than used
in [2], in order to allow for the inclusion of all the above
mentioned recognition processes for old/new effects. We used
pattern classifiers as multivariate analysis tools to reduce the
dimensionality [15] and analyze the brain activity during the
recognition phase in memory experiments using the spatio-
temporal information of the EEG data.

II. THE DATASET

EEG for the current study was previously recorded in three
separate visual memory task experiments in [14] and is the
same dataset used in [2]. Each experiment consisted of study
phases and recognition (test) phases. In each study phase,
subjects were given a list of study items and instructed to
memorize the study items with the information associated.
In each recognition phase, the subjects were instructed to
distinguish the studied items from the foil items in the first
response and give more information in a second response.

A. Experimental paradigm

In the experiments, the study items were color images of
physical objects, animals and people. For each study item,
one of two types of source/context information was to be
remembered with the item. In Experiment 1, study items were
presented on either the left or right side of the fixation cross,
and the spatial location of the item was considered the source
information. In Experiment 2, the study items were presented
with a color frame of eight possible colors, and the color of
the frame was considered the source information. Experiment
3 was conducted in two separate sessions occurring on separate
days where both source conditions were given on both days.
The experimental paradigms for location and color source
conditions are given in Figure 1 (a) and (b) respectively.

During each study phase, the subjects learned the items and
the associated source information. In each recognition phase,
the subjects had to distinguish the studied items with their
corresponding location or color frame from the foil items using
two consecutive responses. The subjects were asked to make
a source/new judgment in the first response and a subjective
rating of the decision in the second response. Below shows
the flow in recognition for a given test item:
First response

• If the test item is recognized as an old/study item:
The source information (location/color frame) associated
with the item is selected.

• Otherwise if the item is recognized as new/foil item:
The new response (N) is selected.

Second response
• If the test item is recognized as an old/study item:

A subjective rating of the source judgment among the
following three options is selected:

Fig. 2. Trials can be categorized into 13 types based on the subjects’ source
judgments and subjective ratings. SC, SI, FA, CR, and M are the source
judgments; RS, RO, F, MN, and SN are the subjective ratings.

– Remember side/color (RS/RC): The subject believes
he/she remembers the source information (side in
location condition and color of frame in color con-
dition) corresponding to the item.

– Remember other (RO): The subject remembers other
contextual information other than the side/frame
color.

– Familiar (F): The item looks familiar but the subject
does not remember any details about the previous
viewing.

• If the test item is recognized as new:
A subjective rating of the confidence of the new judgment
is given with either:

– Sure new (S).
– Maybe new (M).

Based on the subject’s source/new judgment (1st response),
the trials were divided into 5 categories (SC: source correct,
SI: source incorrect, CR: correct rejection, M: miss, FA: false
alarm) as illustrated in Figure 2. Combining the subjective
judgment (2nd response), the trials were further divided into
13 behavioral conditions. Note that in Figure 2 and for the rest
of the paper, RS refers to remember source which includes
both remember side and remember color.

B. EEG acquisition and pre-processing
EEG was recorded with a 128-channel Geodesic Sensor

NetTM (HydroCel GSN 200, v.2.1; [16]) at 250 Hz sam-
pling rate for Experiment 1 and 2, 500 Hz sampling rate
for Experiment 3, using an AC-coupled 128-channel, high-
input impedance amplifier (300 M, Net AmpsTM; Electrical
Geodesics Inc., Eugene, OR, United States) with a 0.1-100
Hz bandpass filter. Initial common reference was the vertex
channel (Cz) and the individual electrodes were adjusted
until impedance measurements were lower than 40 kΩ. The
electrode locations are shown in Figure 3.

Data from Experiment 3 were down-sampled to 250 Hz to
match the sampling rate of Experiments 1 and 2. As in [2],
each epoch was filtered between 0.1 and 50 Hz using a 40 tap
FIR filter and baseline corrected using data from -200-0 ms.

III. CLASSIFICATION

Classification analysis was conducted separately on each
experiment (Exp 1, Exp 2, Exp 3-location, Exp 3-color). Note



Fig. 3. The 128-channel GSN electrode locations used to record the EEG and
the six channel groups where classification analysis was conducted. LAS: left
anterior superior, RAS: right anterior superior, CM: central medial, LPS: left
posterior superior, RPS: right posterior superior, and PM: posterior medial.

that the data recorded in Experiment 3 were divided into
two sets by source conditions in order to reveal any possible
differences between the location and color conditions that may
correspond to the ERP differences observed in [14].

The behavioral conditions of correct item retrieval (SC and
SI) and correct item rejection (CR) were used for training
classifiers. Three different two-class binary classifiers (SC-
CR, SI-CR, and SC-SI) with real-valued outputs were trained
to discriminate between pairs of behavioral conditions. After
training, each classifier was used to project the data onto a
1-dimensional vector that is perpendicular to the classification
hyperplane. These projected outputs were then transformed
to probability estimates by modeling the two classes as 1-
Dimensional Gaussians (Equation 1). The probability scores
are then computed as the estimated probabilities of belonging
to class 1 (Equation 2).

Ni ∼ N (µi, σ
2
i ) (1)

score =
P [v ∈ N1]

P [v ∈ N1] + P [v ∈ N0]
(2)

where µi and σ2
i are the mean and covariance of projected

training data in class i=1 or 0 respectively.
• SC-CR classifier

The SC-CR classifier was expected to find a projection
which maximizes the difference in the amount of infor-
mation retrieved from the study phase.

• SI-CR classifier
This classifier was designed to discriminate between cor-
rectly retrieved old items with incorrect source judgment
and the correctly rejected new items.

• SC-SI classifier
The SC-SI classifier was designed to extract the infor-
mation about correctness of source memory retrieval for
correctly remembered item judgments.

The spatio-temporal structure of the ERPs was extracted
based on previous research on the old/new effect in [14] and

late posterior negativity in [12], [13]. Six channel groups were
selected for evaluation (LAS, RAS, CM, LPS, RPS, and PM).
The average voltage for each channel group was computed and
the data between 300 and 1500 ms after test item presentation
were extracted. The dimensionality of these subsequences
was reduced to 12 by averaging over 100 ms length non-
overlapping windows. The features from all six channel groups
were concatenated to build a 72-dimensional feature vector
for each trial. A binary classifier using linear discriminant
analysis (LDA) with automatic shrinkage regularization [17]
was trained to classify these feature vectors. To investigate the
universal ERPs across subjects and to avoid any overfitting to
the training data, the projections of the training conditions
were computed using leave-one-subject-out (LOSO) cross-
validation. To train with balanced classes, trials from the
majority class for each subject were first randomly discarded
from training to have equal numbers of trials in each class for
each subject in the training data. These trials from each non-
test subject were combined as the LOSO training data. All the
trials in all conditions in the test subject were projected onto
the discriminant vector perpendicular to the classification hy-
perplane of the LOSO classifier and transformed into classifier
scores for interpretative analysis.

It is advantageous to visualize EEG features utilized by the
classifiers for interpreting any effects identified from the multi-
variate analysis and look at the consistency across training data
[18]. We decided to look at the consistency of the data between
subjects instead of the consistency between LOSO classifiers
as the classifiers share a large portion of the data (each uses
data from all other subjects). We examined the consistency
between subjects of the mean difference between the two
classes. A cluster-based analysis [19] was performed for
correction for multiple comparisons. In this method, features
significantly different from zero (p < 0.05) were identified
by a one-tail t-test. Then the t-statistics of all thus considered
significant neighboring features having the same sign were
summed as the cluster values. The maximum absolute value
over all cluster values was compared to the distribution of
max absolute cluster values obtained from a permutation
distribution resulting from 10,000 random permutations of
class labels. Features were considered to be neighbors if they
were from the same spatial group and adjacent time bins or
the same time bin and spatial groups that contain adjacent
electrodes (see Figure 3. (LAS, CM, and RAS are all mutual
spatial neighbors; CM is also a neighbor with LPS and RPS;
LPS and RPS are also neighbors with PM).

IV. RESULTS

A. Classifier Performance

.
Figure 4 gives the ROC (receiver operating characteristic)

curves for choosing different thresholds (between 0 and 1)
for classification between the two selected classes for all 3
classification problems. Table I shows the area under these
ROC curves and also compares them to the results of training
individual classifiers for each subject using only their own



(a) SC-CR Classifier (b) SI-CR Classifier (c) SC-SI Classifier

Fig. 4. The ROC curves for the four individual datasets are given in the three different classification problems (a) SC-CR, (b) SI-CR, and (c) SC-SI.

TABLE I
AREAS UNDER THE ROC CURVES ARE GIVEN SEPARATELY FOR

DIFFERENT EXPERIMENTS AND CLASSIFICATION PROBLEMS USING
DIFFERENT TRAINING PARADIGMS. THE LOTO METHODS TRAINED

SEPARATE CLASSIFIERS FOR EACH SUBJECT USING ONLY THE SUBJECT’S
OWN DATA. THE LOTO IN [2] USED 300-800 MS AND THE OTHERS USED

300-1500 MS AS THE TEMPORAL INTERVAL.

Classifiers LOSO LOTO LOTO in [2]

SC-CR Exp 1 0.6436 0.7034 0.6555
Exp 2 0.6409 0.6727 0.6160
Exp 3-loc 0.6141 0.6386 0.5916
Exp 3-col 0.6355 0.6396 0.5726

SI-CR Exp 1 0.5523 0.5377 0.5586
Exp 2 0.5798 0.5896 0.5779
Exp 3-loc 0.5272 0.5470 0.5264
Exp 3-col 0.5587 0.5546 0.5376

SC-SI Exp 1 0.6250 0.5970 0.5434
Exp 2 0.5200 0.5151 0.5357
Exp 3-loc 0.5707 0.5632 0.5375
Exp 3-col 0.5322 0.5260 0.5108

data with LOTO cross-validation. The performance of LOSO
classifiers showed similar results to those obtained by training
classifiers for each subject individually in [2]. The larger
discrepancy in Exp 1 SC-CR is likely due to the higher
average number of trials per subject for that condition leading
to even better LOTO results. The SC-CR classifier had the
best performance of the three types of classifiers. The SI-CR
classifier worked better in the experiments with color source
information (Exp 2 and Exp 3-col), while the SC-SI classifier
had better performance in the experiments having location as
source information (Exp 1 and Exp 3-loc). We also tested LDA
classifiers without regularization by shrinkage which yielded
similar performance to the ones with automated shrinkage.

B. Analysis of Classifier Scores

As discussed, each trial of EEG data can be projected onto a
discriminative vector and transformed to a probability estimate
of belonging to class 1 as its classifier score. The average
classifier scores for different behavioral conditions show how
the classifiers separate the different behaviors.

TABLE II
P-VALUES FOR THE MOST SIGNIFICANT CLUSTER IN FIGURES 6/7

Indiv Class Diff SC-CR SI-CR SC-SI

Exp 1 0.0005 0.0081 0.0007
Exp 2 <0.0001 0.0002 0.0092
Exp 3-loc <0.0001 0.0750 0.0004
Exp 3-col 0.0002 0.0011 0.1738

The correct item memory conditions (SC, SI, and CR)
showed similar patterns across experiments (1,2,3-loc,3-col)
in SC-CR classifiers where the SC trials gave the highest
scores and the CR trials showed the lowest scores in Figure
5. Noticeable in Figure 5 (b) SI-CR classifiers, the SI trials
were more separable from the CR trials in the color source
conditions than in the location source conditions. Conversely,
in Figure 5 (c) SC-SI classifiers, the SC trials were more
different from the SI trials in the location source conditions
than in the color source conditions. The patterns of these two
classifiers were in accordance with the performance of the SI-
CR and the SC-SI classifiers shown in Table I and [2].

C. Activation Patterns

In order to investigate the consistency between subjects, the
mean differences between the two classes for each subject for
the three different classification problems in each experiment
were calculated. The mean differences for each subject were
L2-normalized, and the average of normalized values across
subjects is shown in Figure 6. The significant clusters with p
< .05 are shown in in Figure 7, and the p-values of the most
significant clusters are shown in Table II. The p-values in the
mean differences are in accordance with the performance of
the classifiers (area under ROC curves).

V. DISCUSSION

In our spatio-temporal feature selection, we specifically
extended (relative to [2]) the temporal window to 1500 ms in
order to capture the possible late posterior negativity (LPN)
in the recorded data. In Table I, the three different classifiers
trained on LOTO basis using features from 300 to 1500 ms
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Fig. 5. The scores of projected trials in different behaviors using projection functions from (a) SC-CR classifiers, (b) SI-CR classifiers, and (c) SC-SI classifiers
are given separately for four individual datasets.

outperformed the ones using features from 300 to 800 ms
suggesting that the features between 800 ms and 1500 ms
are informative for our memory classification problems. The
subjects were not allowed to respond until 1500 ms after
stimulus presentation, and response assignments for the keys
were counterbalanced across participants, so response related
effects in LOSO are minimized. In Figure 7 (a), the late
posterior effect was consistent in the SC-CR classification
problem in all experiments except for Exp 3-loc (where the
tendency is visible in Figure 6 but does not rise to significance

using our cluster test). In the SC-SI classification problem
in Figure 7 (c), the consistent wide-spread patterns in the
location source conditions after 800 ms could explain why the
extension of the temporal window leads to better performance
in SC-SI classifiers in Experiments 1 and 3-loc.

In this paper, we showed that it is possible to predict
memory retrieval based on single-trial EEG on new subjects
not in the training data. The LOSO classifiers had similar
performance to LOTO classifiers in Table I trained on indi-
vidual subjects. Except for Exp 1 SC-CR, the results were
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Fig. 6. The patterns are the average of normalized mean difference between two classes for each subject.

TABLE III
AREAS UNDER ROC CURVES CALCULATED BASED ON THE SCORES

COMPUTED FROM PROJECTIONS OF BEHAVIORS WITH DIFFERENT
CLASSIFIERS

`````````Behaviors
Classifiers SC-CR SI-CR SC-SI

SC vs CR Exp1 0.6436 0.5228 0.6065
Exp2 0.6409 0.5722 0.5498
Exp 3-loc 0.6141 0.5311 0.5826
Exp 3-col 0.6355 0.5523 0.5765

SI vs CR Exp1 0.5446 0.5523 0.4828
Exp2 0.6174 0.5798 0.5303
Exp 3-loc 0.5465 0.5272 0.5122
Exp 3-col 0.5964 0.5587 0.5451

SC vs SI Exp1 0.5987 0.4713 0.6250
Exp2 0.5260 0.4927 0.5200
Exp 3-loc 0.5700 0.5042 0.5707
Exp 3-col 0.5410 0.4940 0.5322

within a few percent of the analogous LOTO results. For
the SC-SI and SI-CR classifications the LOSO classifications
were often slightly better than LOTO results while for the
SC-CR classifier the individualized classifiers were better.

The successful prediction of memory retrieval by the LOSO
method implies that single-trial EEG classification could be
applied to subjects without recording their EEG data and
training personalized classifiers.

In our previous work using LOTO training for each subject,
only the classification problems with enough trials (≥25 in
each class) could be investigated due to the limited numbers
of trials of certain behaviors for some subjects. Sufficient
trials are necessary to fit the covariance matrices used in
linear discriminant analysis. Although the issue could be
mitigated somewhat by using a higher shrinkage parameter
during training, over regularization will also lead to decreased
accuracy. In contrast, the trials of a behavior in the LOSO clas-
sification were concatenated across training subjects. (Tables
IV through VII show the number of trials for each experiment
and classification task for our LOSO and LOTO classifiers).
Therefore, the training data has many more trials in each
class compared to LOTO training. LOSO training provides an
opportunity to investigate the relationships between behaviors
with few trials and consistent features across subjects.

In order to reveal the latent relationships between the 3
selected classification problems, we investigated how well



TABLE IV
NUMBER OF TRIALS IN EACH CLASS USED BY 3 CLASSIFIERS IN EXPERIMENT 1. DASH REPRESENTS THE CLASSIFIER WASN’T TRAINED DUE TO

NUMBER OF TRIALS LESS THAN 25 IN EITHER CLASS.

LOSO/Sub 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

SC-CR 2447 2517 2417 2551 2445 2438 2459 2497 2530 2479 2467 2472 2462 2438 2412 2478 2471 2456 2515 2475 2515 2480 2441 2470 2429 2414
SI-CR 1121 1153 1118 1154 1093 1114 1148 1135 1153 1132 1095 1097 1119 1129 1135 1086 1126 1106 1123 1120 1144 1116 1123 1134 1130 1121
SC-SI 1121 1153 1118 1154 1093 1114 1148 1135 1153 1132 1095 1097 1119 1129 1135 1086 1126 1106 1123 1120 1144 1116 1123 1134 1130 1121

LOTO/Sub 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

SC-CR 120 50 150 - 122 129 108 70 37 88 100 95 105 129 155 89 96 111 52 92 52 87 126 97 138 153
SI-CR 48 - 51 - 76 55 - 34 - 37 74 72 50 40 34 83 43 63 46 49 25 53 46 35 39 48
SC-SI 48 - 51 - 76 55 - 34 - 37 74 72 50 40 34 83 43 63 46 49 25 53 46 35 39 48

TABLE V
NUMBER OF TRIALS IN EACH CLASS USED BY 3 CLASSIFIERS IN EXPERIMENT 2. DASH REPRESENTS THE CLASSIFIER WASN’T TRAINED DUE TO

NUMBER OF TRIALS LESS THAN 25 IN EITHER CLASS.

LOSO/Sub 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

SC-CR 2387 2399 2399 2360 2340 2384 2383 2308 2386 2272 2285 2396 2334 2332 2296 2373 2332 2332 2375 2324 2377 2327 2312 2372 2288 2395 2342 2308
SI-CR 1815 1827 1827 1836 1791 1814 1834 1792 1814 1785 1776 1824 1762 1782 1733 1812 1778 1822 1803 1771 1810 1793 1759 1800 1768 1823 1771 1752
SC-SI 1948 1994 1988 2004 1959 1982 2002 1960 1973 1953 1944 1965 1924 1950 1901 1980 1946 1990 1914 1939 1978 1961 1927 1966 1936 1967 1939 1920

LOTO/Sub 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

SC-CR 47 35 35 74 94 50 51 126 48 162 149 38 100 102 138 61 102 102 59 110 57 107 122 62 146 39 92 126
SI-CR 47 35 35 26 71 48 28 70 48 77 86 38 100 80 129 50 84 40 59 91 52 69 103 62 94 39 91 110
SC-SI 82 36 42 26 71 48 28 70 57 77 86 65 106 80 129 50 84 40 116 91 52 69 103 64 94 63 91 110

TABLE VI
NUMBER OF TRIALS IN EACH CLASS USED BY 3 CLASSIFIERS IN EXPERIMENT 3-LOC. DASH REPRESENTS THE CLASSIFIER WASN’T TRAINED DUE TO

NUMBER OF TRIALS LESS THAN 25 IN EITHER CLASS.

LOSO/Sub 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

SC-CR 2253 2186 2218 2224 2235 2300 2279 2274 2288 2261 2267 2201 2254 2238 2204 2224 2249 2294 2279 2170 2205 2311 2214 2284 2280 2233
SI-CR 1150 1163 1173 1106 1135 1159 1138 1133 1147 1153 1131 1125 1179 1159 1134 1172 1173 1153 1177 1165 1099 1170 1164 1143 1139 1160
SC-SI 1359 1372 1382 1315 1344 1364 1308 1331 1348 1362 1340 1334 1388 1368 1343 1381 1382 1347 1386 1374 1308 1330 1373 1297 1320 1369

LOTO/Sub 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

SC-CR 84 151 119 113 102 37 58 63 49 76 70 136 83 99 133 113 88 43 58 167 132 26 123 53 57 104
SI-CR 46 33 - 90 61 37 58 63 49 43 65 71 - 37 62 - - 43 - 31 97 26 32 53 57 36
SC-SI 46 33 - 90 61 41 97 74 57 43 65 71 - 37 62 - - 58 - 31 97 75 32 108 85 36

TABLE VII
NUMBER OF TRIALS IN EACH CLASS USED BY 3 CLASSIFIERS IN EXPERIMENT 3-COL. DASH REPRESENTS THE CLASSIFIER WASN’T TRAINED DUE TO

NUMBER OF TRIALS LESS THAN 25 IN EITHER CLASS.

LOSO/Sub 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

SC-CR 2339 2263 2287 2292 2283 2358 2353 2329 2358 2291 2325 2261 2312 2327 2251 2271 2307 2350 2313 2247 2262 2348 2306 2377 2342 2298
SI-CR 1748 1717 1759 1703 1724 1774 1762 1738 1767 1724 1734 1692 1756 1761 1691 1752 1755 1759 1766 1723 1679 1757 1754 1786 1751 1743
SC-SI 2062 2043 2085 2029 2050 2100 2023 2061 2049 2050 2034 2018 2082 2087 2017 2078 2081 2062 2092 2049 2005 2048 2080 2024 2047 2069

LOTO/Sub 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

SC-CR 63 139 115 110 119 44 49 73 44 111 77 141 90 75 151 131 95 52 89 155 140 54 96 25 60 104
SI-CR 63 94 52 108 87 37 49 73 44 87 77 119 55 50 120 59 56 52 45 88 132 54 57 25 60 68
SC-SI 75 94 52 108 87 37 114 76 88 87 103 119 55 50 120 59 56 75 45 88 132 89 57 113 90 68

classifiers trained on each classification problem were able
to solve all 3 classification problems. For instance, we have
already examined how well the SC-CR classifier is able to
separate the SC vs CR trials, but we can also see if it can
separate the SC from the SI trials and the SI from the CR
trials. Likewise we can ask similar questions using the SI-CR
and SC-SI classifiers. The areas under the ROC curves were
calculated for the scores from the projections of each pair
of classes onto vectors perpendicular to each classification
problem as shown in Table III. In the table, the different
projection functions/directions appear as different columns and
the classification problems (data) appear as rows. The first
four rows (SC-CR) show that the SC vs CR trials are best
separated by the SC-CR classifiers but are somewhat separable
by the SI-CR and SC-SI classifiers/projections. In particular
the experiments with spatial source (Exp1 and Exp3-loc) have
their SC and CR trials well separated by the SC-SI classifiers.

The SI vs CR trials were actually better separated by the SC-
CR classifiers (except for Exp1 which is close). The SC vs SI
trials were fairly similarly separated by the SC-CR classifiers
and the SC-SI classifiers. These findings are in accordance
with the ERP differences observed in [14] and the distribution
of scores for each behavior when projected onto the different
discriminant directions for each classifier in Figure 5. We
conclude that an SC-CR classifier trained on other subjects is
able to well separate SC, SI, and CR trials in another subject.
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Fig. 7. The significant clusters of features (p < .05) in the patterns of the average of normalized mean difference between two classes for each subject.
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