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Abstract
People detect painful expressions more easily in members of
their racial ingroup than outgroup. Here, we wanted to inves-
tigate this racial bias with a machine learning model trained
to detect activations of different action units of painful facial
expressions. We examined whether the model detected higher
action unit activation for European than African faces when
trained on datasets with mostly White faces. To control for
confounding variables, pictures of faces were generated with
the FaceGen Modeller. Results revealed that there exist differ-
ences in the visual detectability of some facial muscle activa-
tions due to skin color or other race-dependent facial features.
Despite the bias towards European looking faces in the training
data, some activations were more easily detectable in African
faces. Thus, neither the perceptual detectability, nor the larger
exposure to own-race faces seems to solely explain the racial
bias in pain detection.
Keywords: racial bias; pain recognition; FACS; automated
pain recognition; action units; facial expression recognition

Introduction
Pain is often underestimated in people of color, leading
to race-based physical health disparities (Kissi, Van Ryck-
eghem, Mende-Siedlecki, Hirsh, & Vervoort, 2022; Mays,
Cochran, & Barnes, 2007). When experiencing others in pain,
people show more behavioral and neural empathic responses
if the others are members of their racial ingroup compared
to members of an outgroup (Fabi & Leuthold, 2018; Sessa,
Meconi, Castelli, & Dell’Acqua, 2014; Xu, Zuo, Wang, &
Han, 2009). Understanding this racial bias in empathy for
pain and finding preventive measures is crucial to prevent
the aforementioned outcomes. The aim of this work is to
investigate such differences in pain perception using a ma-
chine learning model. We were interested in the question of
whether there exist differences in the visual detectability of
some facial muscle activations that can explain the difficul-
ties in detecting pain in outgroup members. Therefore, a ML
model, which is trained on detecting facial action units asso-
ciated with painful expressions rated the activation of facial
action units from generated faces. The stimuli were pictures
of artificially generated avatar faces with the software Face-
Gen Modeller that allows to not only keep everything con-
stant except for one feature (e.g. skin color) but also to ma-
nipulate the different action units individually. With this, we
can investigate whether the computer vision (CV) model is
judging the same faces differently if they vary a) just in skin
color or b) in racial features like shape of eyes, nose etc. and
make more detailed tests for specific action units.

Theoretical Background

Facial expressions allow probabilistic inference of emotional
state, for instance how much pain, surprise, disgust, etc. a
particular person is experiencing. In order to classify facial
expressions, researchers developed a comprehensive as well
as psychometrically rigorous taxonomy for muscle move-
ments called the “Facial Action Coding System” (FACS)
(Hjortsjö, 1970; Cohen, Ambadar, & Ekman, 2007). This
system, which was updated three times between 1978 and
2002, defines a variety of “Action Units” (AUs), which can be
identified by decomposing facial expressions into the small-
est discriminable facial movements. Since nearly all humans
share the same facial muscles (Schmidt & Cohn, 2001) and
hence the same anatomical basis for facial movements, FACS
associates the movement of one of more facial muscles with
discrete AUs. The list of AUs starts with the upper face,
meaning brow actions, eye region actions, etc. Further AUs
are located in the lower face, coding mouth and chin move-
ments.

The FACS taxonomy in and of itself does not include any
instructions on how to infer mental states. Here, other psy-
chometric frameworks containing combination rules for AUs
must be put to use or learned (Xu & de Sa, 2020). The
Prkachin and Solomon Pain Intensity (PSPI) (Prkachin &
Solomon, 2008) describes the amount of pain detected in
a facial expression by calculating a sum of different AUs:
PSPI = AU4+max(AU6,AU7)+max(AU9,AU10)+AU43.
All AUs range between 0 and 5, except for AU43, which can
either be 0 or 1 (eyes open vs. closed), leading to a maxi-
mal PSPI value of 16. Apart from the PSPI, the following
AUs are known to be non-exclusively related to painful fa-
cial expressions: AU4: brow lowering, AU6: cheek raising,
AU7: eyelid tightening, AU9: nose wrinkling, AU10: upper
lip raising, AU12: oblique lip raising, AU20: horizontal lip
stretching, AU25: lips parting, AU26: jaw dropping, AU43:
eye closing.

Until a few years ago, video-recorded facial expressions
had to be coded manually in a labor-intensive process. But in
light of recent progress in machine learning, facial recogni-
tion algorithms can be utilized to automatically classify AUs
with promising results in accuracy. In this context, machine
learning methods for automatic pain detection and estima-
tion pose an increasingly important tool for smart health-



care applications. They are applied on humans (Xu et al.,
2018; Tavakolian & Hadid, 2018, 2019; Kaltwang, Rudovic,
& Pantic, 2012; Martinez, Rudovic, & Picard, 2017; Zhou,
Hong, Su, & Zhao, 2016; Xin, Lin, Yang, & Zheng, 2020;
Zafar & Khan, 2014; Soar, Bargshady, Zhou, & Whittaker,
2018; Bargshady et al., 2020a; Lopez-Martinez & Picard,
2018; Guo, Wang, Xiao, & Lin, 2021; Bargshady et al.,
2020b; Tavakolian & Hadid, 2018; Tavakolian, Bordallo
Lopez, & Liu, 2020; Thuseethan, Rajasegarar, & Yearwood,
2019; Xu & de Sa, 2021; Susam et al., 2021) as well as an-
imals (Andresen et al., 2020; Lencioni, de Sousa, de Souza
Sardinha, Corrêa, & Zanella, 2021; Noor et al., 2020). Not all
of the approaches for automatic pain estimation use facial ex-
pressions as input (Susam et al., 2018; Pouromran, Radhakr-
ishnan, & Kamarthi, 2021), but many do. Most of those act-
ing on facial expressions use convolutional neural networks
or, to be more precise, fine-tuned VGG-Face (Parkhi, Vedaldi,
& Zisserman, 2015) since these models prove to be well-
adjusted to feature identification in (facial) images.

In humans, the racial bias in empathy for pain might in
part be attributable to difficulties in detecting the correct AU
activations in painful faces belonging to the racial outgroup.
Mende-Siedlecki, Qu-Lee, Backer, and Van Bavel (2019) in-
vestigated pain detection in White participants, when being
confronted with painful facial expression of the racial in- and
outgroup. Across seven experiments, they came to the con-
clusion that White participants show consistent difficulties in
detecting the pain in Black faces, even if the exact same facial
expression was shown on in- and outgroup targets. This also
held true for people who did not have an explicit racial bias
(assessed as the difference of feeling warmth for White and
Black persons, embedded into eight other social groups).

There exist several competing explanations for the emer-
gence of this racial bias in pain perception. Two of them shall
be examined more closely in this work. First, the racial bias
in pain perception could be due to perceptual properties in
Black faces like the shape, color, or contrast of specific fa-
cial features which make it harder to detect the activation of
pain-related AUs. Or, second, White subjects are more of-
ten exposed to facial expressions of their ingroup members,
meaning that they have more data on which they can train
their pain recognition skills in ingroup faces. With human
subjects, it is hard to investigate these mechanisms in detail,
since the subjects’ previous exposure to members of different
races is hard to measure. Therefore, we wanted to investi-
gate these questions with one of the machine learning models
that was specialised on detecting pain in faces (Xu, Huang, &
de Sa, 2020) and for which we knew the training dataset and
thus how much proportional exposure it had to different races.
Here, we will not focus on biases in machine learning models
(Barocas & Selbst, 2016) – which are not necessarily a short-
coming (Fabi & Hagendorff, 2022) – but on investigating the
human racial bias in pain recognition with a machine learning
model. Furthermore, with pictures of real persons in pain as
stimuli, the perceptual properties cannot be examined in de-

tail because of confounding variables like different manners
to express pain, differences in natural faces etc.. Therefore,
we chose to apply pictures of avatar faces, for which we could
keep everything constant except for the features we wanted to
investigate. Additionally, we were able to determine an ob-
jective label for the AU activations, since we manipulated the
AUs ourselves.

Method
Computer Vision Model
We performed our experiments with the first stage of the CV
model in (Xu et al., 2020) which was specifically trained to
detect AUs related to pain, the PSPI values, and the values of
the Visual Analog Scale (VAS). The whole model consisted
of three stages: The first stage was a neural network trained
to predict frame-level PSPI and AUs. The second stage was
a fully connected neural network to predict sequence-level
pain scores from the PSPI predictions of stage 1. The third
stage combined these pain scores in an optimal linear man-
ner to output a final VAS value. In more detail, the first
stage is based on VGGFace (Parkhi et al., 2015) which was
pre-trained to classify 2622 faces of famous individuals, of
which the majority are White. Xu et al. (2020) replaced
the last layer with a linear fully-connected regression layer
and trained the whole network additionally on the UNBC-
McMaster Shoulder Pain Dataset (Lucey, Cohn, Prkachin,
Solomon, & Matthews, 2011) to detect the PSPI value for
each frame of the videos, as well as the following nine AUs,
which were present in at least 500 frames in the training
dataset: AU 4, 6, 7, 10, 12, 20, 25, 26, 43. The AUs were orig-
inally predicted together with the PSPI to improve the PSPI
prediction. In our case, we are mainly interested in the AUs.
No training on our avatar dataset was done.

Stimuli
Most of the automatic pain detection research work draws
upon the UNBC-McMaster Shoulder Pain Dataset (Lucey et
al., 2011) for training and testing classification models. The
dataset consists of 200 videos of 25 shoulder pain patients
performing various active and passive range-of-motion tests
to their affected and unaffected limbs. Subjects are mostly
White, representing more or less a cross-section through the
Canadian population. In our experiments, though, we do
not utilize real-world, but synthetic images, that allows us to
eliminate confounds. FaceGen Modeller is a tool to gener-
ate random faces that can be manipulated in various ways,
including by race, gender, and age. Furthermore, each AU
can be activated within a scale between 0 and 10, eliminating
influences of human raters who do not always agree on AU
activations (De la Torre, Simon, Ambadar, & Cohn, 2011).

The pictures of the avatar faces were generated in the Face-
Gen Modeller following a protocol. Per randomly generated
male face (with random texture and features belonging ran-
domly to different races), we created one light and one dark
skin color version by setting the skin shade to 2.5 and -3.0,



(a) Dark and light skin color condition of a random face.

(b) African and European condition of the same face.

Figure 1: Example stimuli of the same randomly generated
face in the four conditions.

respectively. Next, color was set to zero and the facial fea-
tures and color were changed to more European- or African-
looking. Then, painful expressions were created by manipu-
lating the activation of the nine AUs the CV model can pre-
dict. The exact same facial expression was then applied to
all four different conditions of the randomly generated face
(cf. Figure 1). We applied this procedure to 25 different base
faces, leading to 100 face pictures in total. For image pre-
processing, we used the cascade DPM Face Detector (40; 41)
to detect the face and then extended the bounding box by a
factor of 0.1 when cropping the face. We then resized the im-
age to 224 × 224 and normalized each channel with the mean
and standard deviation of the data the model was pre-trained
on.

Experiments
In the first experiment, we wanted to investigate whether
the skin color change on random faces alone led to higher
or lower predictions of AU activations. Therefore, we fed
the CV model with the 50 faces of the light and dark skin
shade condition and analysed the results with paired t-tests.
In the second experiment, the CV model got the European
and African faces as inputs to detect additional differences
based on facial features. In both experiments we started with
the sum over all AU activations and continued with tests for
the nine different AUs with a Bonferroni corrected alpha of
.0056. In follow-up tests, we looked into specific AUs of spe-
cific faces to determine the reason underlying the differences
between the conditions.

Results
Across 25 faces, the sum of all predicted AU activations was
not significantly different for the dark vs. light skin shade
condition (t =−0.62, p= .54), nor between the European and
African condition (t = 0.12, p= .91). This means that over all
AUs, the CV model did not detect more activation for the dark
than light skin color or for one of the two races. If all AUs
were equally relevant for pain, the CV model would not detect

more pain in one race than the other. But since different AUs
vary in their importance for painful expressions, we wanted
to look into specific AUs.

For the light versus dark skin shade conditions, we found
larger values for dark skin in AU 6 (p < .0001) and 10 (p <
.0001). The predictions were higher for the light skin color in
AU 25, 26, and 43 (all ps < .005).

In line, predictions for AU 6 and 10 were higher in the
African vs. European condition and 25 was higher in the
European condition (all ps < .0001). AU 43 was not sig-
nificantly different between races (p = .12). AU 26 was
even higher for the African than the European condition (p <
.0001). For the latter two AUs, the morphological feature ef-
fects seem to outweigh the difference of skin shade. Further-
more, AU 4, 7 and AU 20 were now significantly higher in the
European than the African condition (all ps < .0001). In sum,
the results of the tests for skin shade and racial features indi-
cate that for AU 6, 10, and 25 the differences between races
might be mostly due to skin shade and contrast, whereas the
differences for AU 4, 7, 20, and 43 are not (solely) attributable
to skin color. The racial features seem to play a bigger role
here. Since our dark and light faces had not the exact same
color as the African and European faces, respectively, these
interpretations have to be taken with caution. Therefore and
in order to investigate the specific racial features in more de-
tail, we decided to look at some AUs in more detail.

Investigating specific AUs

Based on previous results of the CV model of Xu and de Sa
(2021), we selected two AUs that the model could detect with
high accuracy and for which the range of predicted values
was high: AU 25 and 7. We intentionally selected AUs, which
were better detected for the light or European condition to get
insights regarding the racial bias in pain detection in White
humans. The specific AUs were examined with the help of
one avatar face of the stimuli set that had the specific AU
maximally activated and showed strong differences between
the two conditions. First, we wanted to investigate whether
the AUs were correctly identified for our avatar faces, since
the CV model had previously seen only real human faces.
Therefore, we hold every AU in the specific face constant,
except for the AU that should be examined: This was acti-
vated at 0, 25, 50, 75 or 100%. Such morphs were created
for the African and European face. Second, we investigated
the influence of the skin color on our results by giving the
African face a European skin color and the European face an
African skin color. If the skin color could not solely explain
the differences between the two races, the African face with
the European skin color was incrementally made more Eu-
ropean looking in order to determine whether specific facial
features were responsible for the differences in the detection
of the AUs.

AU 25: Lips parting AU25 describes how far the lips are
parted due to action of depressor labii, relaxation of mentalis,
and orbicularis oris. As described above, over all 25 faces,



Figure 2: The CV model detects the increase in AU25 acti-
vation in African faces. The full faces were shown, but we
show insets of just the mouth to better allow comparison for
the reader.

Figure 3: The CV model detects the increase in AU25 acti-
vation in European faces. The full faces were shown, but we
show insets of just the mouth to better allow comparison for
the reader.

the CV model detected higher AU25 activations for dark than
light and for African than European faces. For the specific
test, we show face 21 with an AU25 activation of 100% (see
Figure 4a), though the results are consistent across other faces
as well. The CV model detected AU25 activation of 97% for
the European and of 40% for the African face. The model de-
tected increasing AU activations for the morphs of both races,
ranging between 74 and 97% and between 28 and 40% for
the European and African faces, respectively. Even though
the variance between the values is not very high, the results
in Figures 2 and 3 show that the CV model did a very good
job in detecting the relative AU activation. This is even more
astonishing when looking at how subtle the differences of the
AU25 activation were. The results allow the conclusion that
FaceGen Modeller manipulated the AU activations in a rea-
sonable manner.

Next, we investigated our hypothesis that most of the AU25
differences between the two races was due to the skin color
since the differences of the dark and light skin shade stimuli
was also significant. Since the dark and light faces had not
the same skin color as the European and African faces, we

(a) CV model’s prediction: 40 vs. 97% AU25 activation

(b) CV model’s prediction: 103 vs. 32% AU25 activation

Figure 4: (a) African and European face with several AU ac-
tivations, including AU25 at 100%. (b) Same faces with skin
color of the opposite race. Skin color seems to explain most
of the AU25 differences.

Figure 5: The CV model’s AU25 prediction for the African
face increases when changing the skin color.

now gave the European and African face the skin color of the
opposite race (cf. Figure 4b). The face with African features
but European skin color led to a detection of 103% AU25 ac-
tivation, whereas the face with European features but African
skin color led to a detection of 32%. These values are very
similar to the original detection of 97 and 40%, supporting
our hypothesis that skin color and in this case possibly the
contrast between skin, lips, and teeth was responsible for the
higher detection of AU25 in European vs. African faces. For
a more incremental change of the African face’s skin color,
see Figure 5.

AU7: Eyelid tightening Next, we examined the lid tight-
ener (AU7) which was more highly detected over the 25 Eu-
ropean versus African faces. However, the CV model did not
detect significant higher activation for our light than dark skin
shade condition. This led to the hypothesis that, unlike AU25,
the difference in AU7 was not solely due to the skin color. To
investigate this hypothesis and examine the importance of dif-



Figure 6: The CV model detects the increase in AU7 acti-
vation in African faces. The full faces were shown, but we
depict insets of just the eye region to better allow comparison
for the reader.

Figure 7: The CV model detects the increase in AU7 activa-
tion in European faces. The full faces were shown, but we
depict insets of just the eye region to better allow comparison
for the reader.

ferent racial features, we selected face 14, for which the CV
model rated the AU7 activation (which was originally 100) as
-7 and +33% for the African vs. European face, respectively
(see Figure 8a). The results for this face reported below are
not cherry-picked but hold true across different faces.

Again, we tested the overall ability of the CV model to de-
tect the differences in AU7 activation in the morphs of one
race. The model detected the increase in AU7 activation at
every step for both races, ranging from 7 to 33% and from
-25 to -7% for the European and African face, respectively
(see Figures 6 and 7). The color test revealed that the CV
model detected 15% of AU7 activation for the African face
with European-like skin color and 17% for the European face
with African-like skin color (cf. Figure 8b). This means that
the light skin color led to slightly higher AU7 detection than
the dark skin color in African faces, but the CV model’s pre-
diction was not close to the 33% for the light European face.
Making the European face dark led to a decrease in the detec-
tion but it was still much higher than for the dark African face
(-7%). This speaks to the fact that regarding the AU7 differ-
ence, skin color is important, but is not the only factor. For a
more incremental change of the African face’s skin color, see
Figure 9.

(a) CV model’s prediction: -7 vs. 33% AU7 activation

(b) CV model’s prediction: 15 vs. 17% AU7 activation

Figure 8: (a) African and European face with several AU ac-
tivations, including AU7 at 100%. (b) Same faces with skin
color of the opposite race. AU7 differences are not only due
to skin color.

Next, we wanted to determine whether, next to the skin
color, specific racial features of the face were responsible for
the higher values for African than European faces. There-
fore, we changed the light African face incrementally to a
European-looking face and recorded the CV model’s outputs.
According to our hypothesis about which features might be
more or less important for the AU7, we selected the follow-
ing order: color, facial shape, eyes, forehead and brows, nose,
cheeks, temples, chin, jaw, mouth. The results can be seen
in Figure 10. Changing the overall shape of the face led
to an important increase in detected AU activation. Chang-
ing further parts of the upper half of the face led to further
but smaller increases. Changing the lower parts of the face
around the mouth region did not improve the AU detection.
(The small decrease is probably due to the fact that when
changing one part of the face in FaceGen Modeller, the rest
is not held constant but also changes slightly. Thus, previ-
ously helpful changes might change back the more regions
are changed.) This means that changing the regions around
the eyes to look more European lead to an increase in the de-
tection of the lid tightening AU, while changing the regions
around the mouth was not beneficial. In sum, there was not
one specific feature that was responsible for the differences
between races but a whole region.

Influences of perceptual characteristics and
exposure to training data on the racial bias in pain
detection
The next very interesting question is whether the CV model
makes these differences due to a biased exposure to White
European-Americans in the training stimuli or whether the
differences can be attributed to purely perceptual character-
istics, that is specific contrasts make specific AUs more or
less easily detectable. For example, the European eye re-
gion might show some characteristics that make the detec-
tion of eye tightening easier. The fact that the CV model



Figure 9: The CV model’s AU7 prediction for the African
face increases when changing the skin color.

Figure 10: The CV model’s prediction to African face 14 with
incremental changes to make various features look more Eu-
ropean. The white region represents changes to the whole
face, the light grey region represents changes to the upper
part of the face, and the darker grey region to the lower part
of the face.

detected some AUs more easily in African faces and others
in European faces hints that it is not the previous exposure to
European-American faces that makes the detection of AUs in
general easier for European faces.

Furthermore, we observed another interesting fact. AU6,
the cheek raiser, and AU7, the lid tightener, share the move-
ment of the lower lid rising upwards. Overall, the CV model’s
detection of AU6 was higher for African, while that of AU7
was higher in European faces. To test whether the detection
of AU6 is counteracting the detection of AU7, we looked at
the AU6 values of the African face 14 turning into a Euro-
pean face (see Figure 10). And indeed, while AU7 detection
profited from making the upper part of the face look more Eu-
ropean, AU6 detection seemed to be worsened by this. There-
fore, it might be the case that the CV model detects the result
of those AUs similarly well, but it attributes it differently to
the specific AUs. In other words, some features in the face
lead the model to interpret the facial movement either as AU6
or AU7, but it is not the case that the CV model can detect the

tightened eyes per se better in one race or the other.

Conclusion
To sum up, we investigated the racial bias in pain detec-
tion with a machine learning model and artificially generated
painful expressions in avatar faces. The first contribution of
this work is that such generated faces are a valid method to
test machine learning models. Since, most research so far has
focused on real-world stimuli which contain lots of confound-
ing variables, these datasets should be expanded by avatar
faces, for which the AU activations can be controlled (and
do not have to be rated by experts with varying opinions),
as well as race, gender, and specific facial features. With
this, one could also control the percentage of faces of dif-
ferent races in the training data easily. Second, and more
importantly, our results show that there exist differences in
the ability of our CV model to detect AUs in European vs.
African faces. For some AUs, we found that this was due
to the skin color difference, whereas for others the difficulty
in detecting their activation was due to the characteristics of
special race-dependent features in the face. This means that
skin color and the characteristics of specific facial features
(for example, the upper part of the face for AU7) allow for
better detectability of some AUs in one race than the other.
But the CV model was not consistently better to detect the
activation over all AUs in one race. In some cases, like the
tightness of the eyes, the outcome of specific AU activations
can be detected equally well in both races, just the attribution
to the specific AUs is different. All in all, our CV model does
not show a strong racial bias in pain-related AU detection,
even though it was mostly trained on one race. Human racial
bias in pain detection can therefore not solely be explained by
the visual detectability of some facial muscle activations, nor
by the previous more frequent exposure to own-race faces.
Other factors that are affecting humans but not pain recog-
nition models should be investigated more closely in future
research, like racially biased beliefs about pain experience
(Kissi et al., 2022). Another possible explanation could be
that persons with different racial and cultural backgrounds
facially express pain differently. This could be investigated
by using real-world pictures of painful expressions instead of
artificially created ones as inputs. Furthermore, it is impor-
tant to examine specific AUs in further detail, which are less
easily detectable in African versus European avatar faces in
order to train caretakers on which parts of the face to focus
to overcome their racial bias in pain detection. To conclude,
this CV approach to pain recognition and empathy is novel
and enriches earlier ones that were mostly focused on its be-
havioral (Fabi, Weber, & Leuthold, 2019; Mende-Siedlecki
et al., 2019) and neural correlates (Fabi & Leuthold, 2017;
Singer et al., 2004). Future research could combine these ap-
proaches and compare the model and human performance.
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