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Abstract

We explore the separation of decision confidence and familiar-
ity components in EEG data from recognition memory experi-
ments. We first develop and test a classifier designed to classify
decision confidence on new trials. We then use this classifier
to control for confidence in the selection of trials of familiar-
ity and correct rejection. This allows us to reveal a familiarity
component that is of similar magnitude for recollection and fa-
miliarity judgements. This familiarity component reveals more
of a frontal extent than obtained without confidence matching.
We believe that this preliminary result can serve as a guide
for designing future electrophysiological experiments to better
separate the different components of recognition memory and
that the technique of using classifiers to control for response-
related covariates can be used for early exploration of these
components in existing data.
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Introduction
Electroencephalography (EEG) has been widely used to iden-
tify neural substrates and cognitive processes in recognition
memory studies for its noninvasive temporal sensitivity. The
event-related potential (ERP) method that takes time-locked
averages of multiple trials in EEG data is most commonly
used. The frontal old/new effect (also called the FN400) is
a negative-going ERP observed in the frontal electrodes that
peaks around 400 ms post stimulus. The FN400 goes more
negative for less familiar items (Curran, 2000; Curran & Han-
cock, 2007) but disassociates from the amount of recollected
episodic information (Curran & Cleary, 2003; Rugg & Cur-
ran, 2007). Hence, the FN400 is considered as a familiarity-
related ERP. The parietal old/new effect, also called the late
positive component (LPC), is another ERP that is positive-
going and peaks over the parietal scalp between 500 and 800
ms. The LPC shows greater amplitude for correctly iden-
tified old items (hits) as opposed to new items (correct re-
jections) (Rugg et al., 1998; Curran, 2000; Wilding, 2000)
and positively correlates with the amount of information re-
trieved from the study episode (Wilding & Rugg, 1996; Vil-
berg, Moosavi, & Rugg, 2006). Therefore, the LPC is thought
to reflect recollection. Another memory-related ERP is the
late posterior negativity (LPN). The LPN emerges at approx-
imately 800 ms post stimulus and goes more negative for
correct old than new responses, irrespective of the accuracy

of the retrieved information (Johansson & Mecklinger, 2003;
Friedman et al., 2005; Herron, 2007).

In the remember-know (RK) paradigm, it is difficult to sep-
arate the effects of memory from those of any decision confi-
dence component because the difference between remember
and know judgements could be derived from both effects si-
multaneously (Tulving, 1985; Donaldson, 1996; Yonelinas
et al., 2002). Likewise the difference between responses to
Know and New items may reflect both differences in familiar-
ity and confidence. ERP studies have revealed differences be-
tween high and low confidence in both old and new memory
judgements around 600-800 ms over parietal scalp (Addante
et al., 2012; Wynn et al., 2019), but decision confidence
as a similar process for both old and new items has rarely
been studied in ERP studies. However, in a single-neuron
recording study of posterior parietal cortex (Rutishauser et
al., 2018), confidence-selective cells encoding retrieval con-
fidence for both old and new stimuli were identified.

Recently, multivariate pattern classification (MVPC) meth-
ods applied to EEG data recorded in episodic memory tasks
have helped elucidate brain activity during encoding (Noh et
al., 2014; Anderson et al., 2016) and decoding (Noh et al.,
2018; Liao et al., 2018). Our goal was to separate, as much
as possible, the familiarity/memory based component from
any confidence based component in familiarity judgements.

Experimental Paradigm

The Dataset
EEG data for the current study were recorded in three sep-
arate visual memory task experiments by Mollison and Cur-
ran (2012); this dataset was used in previous single-trial EEG
classification studies (Noh et al., 2018; Liao et al., 2018).
Each experiment consisted of study phases and recognition
phases. In each study phase, subjects had to memorize a
list of study items given sequentially and source or contex-
tual information associated with the items. In each recogni-
tion phase, subjects were instructed to distinguish the studied
items from the foil items in the first response and provide
source information in the second response.

The study items in the experiments were color images of
physical objects, animals, and people. For Experiment 1, the
source/contextual information associated with the study item
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Figure 1: The experimental paradigms for experiments with (a) location source information and (b) color source information
from Mollison and Curran (2012).

was the spatial location where the study item was presented,
either to the left or right of the fixation cross. For Experi-
ment 2, the source/contextual information was the color of
the frame surrounding the study item.

The experimental paradigms for location source and color
source conditions are shown in Figure 1 (a) and (b), respec-
tively. In the recognition phase, the subjects were asked two
consecutive questions with inter-stimulus intervals of varying
length (uniformly distributed within 625 ± 125 ms). For the
location source condition, subjects had to choose from three
options: left (given as L), right (given as R), and new (given
as N) based on the source information they remembered or
the recognition of a new/foil item. If the source information
was chosen in the first question, the subject had to give their
subjective rating as remember side (given as RS), remember
other (given as RO), or familiar (given as F). If the new re-
sponse was made in the first question, then the subject had to
give the confidence of their judgement as sure new (given as
SN) or maybe new (given as MN). For the color source con-
dition, the two questions were identical to the questions for
the location source condition except that the two options for
source information in the first question were replaced with
two possible colors (given as solid squares), and remember
side in the second question was changed to remember color
(given as RC).

Based on subjects’ source/new judgements in the first re-
sponse, the trials were divided into five categories (SC: source
correct, SI: source incorrect, FA: false alarm, CR: correct re-
jection, M: miss). For SC, SI, and FA, each category were fur-
ther divided into three sub-categories depending on the sec-
ond response (RS: remember source, RO: remember other,
F: familiar). Each of CR and M could be divided into two
sub-categories (SN: sure new, MN: maybe new). As a re-
sult, each trial was categorized into one of thirteen behavioral

conditions as shown in Figure 2. Note that in Figure 2 and
for the rest of the paper, RS refers to remember source which
includes both remember side and remember color.
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Figure 2: Trials could be categorized into 13 different behav-
iors based on the source/new judgements (SC, SI, FA, CR,
and M) and the subjective ratings (RS, RO, F, MN, and SN).

EEG Acquisition and Preprocessing
EEG data were recorded with a 128-channel Geodesic Sen-
sor NetTM (HydroCel GSN 200, v.2.1; (Tucker, 1993)) at 250
Hz sampling rate for both Experiment 1 and 2, using an AC-
coupled 128-channel, high-input impedance amplifier (300
MΩ, Net AmpsTM; Electrical Geodesics Inc., Eugene, OR,
United States) with a 0.1-100 Hz bandpass filter. The vertex
channel (Cz) was selected as the initial common reference,
and the individual electrodes were adjusted until impedance
measurements were lower than 40 kΩ. Electrode locations
are shown in Figure 3. Each epoch was filtered between 0.1
and 50 Hz using a 40 tap FIR filter and baseline corrected
using data from -200-0 ms.

Methods
Classification Classification analysis was conducted sepa-
rately for Exp 1 and Exp 2 in order to reveal any possible
difference between the location source and color source ex-
periment responses that may correspond to the differences in
ERPs observed by Mollison and Curran (2012).



Figure 3: The GSN electrode layout and the six channels
groups on which classification analysis was conducted.

Two binary classifiers were trained to discriminate between
pairs of behavioral conditions:

• SN vs. MN classifier
The SN and MN class included both new responses (see
Figure 4). This classifier was designed to distinguish dif-
ferent levels of confidence when we excluded the time win-
dow related to the familiarity-related ERP FN400.
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Figure 4: Green and red box outlines indicate the positive and
negative behaviors for training the SN vs. MN classifier.

• F vs. CR classifier
The F class included SC-F and SI-F, and the CR class con-
sisted of CR-SN and CR-MN (see Figure 5). This classifier
was trained to identify the familiarity process in the mem-
ory retrieval task.
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Figure 5: Green and red box outlines indicate the positive and
negative behaviors for training the F vs. CR classifier.

Training Classifiers
Spatio-temporal features of the ERPs were extracted based
on prior studies in memory-related potentials. Six channel
groups (LAS: left anterior superior, RAS: right anterior supe-
rior, CM central medial, LPS: left posterior superior, RPS:

right posterior superior, PM: posterior medial as shown in
Figure 3) were selected, and the voltages of the channels
within each group were averaged for evaluation. The pe-
riod of 600 to 1500 ms after probe item presentation in the
recognition phase was considered for the SN vs. MN clas-
sifier in order to avoid the familiarity effect (FN400). For
the F vs. CR classifier, the post-item interval of 300 to 1500
ms was considered in order to cover all discussed memory-
related ERPs. By averaging over 100 ms non-overlapping
windows, overall spatio-temporal features extracted were 54-
and 72-dimensional feature vectors for each trial for the SN
vs. MN and F vs. CR classifier, respectively.

The type of classifier trained to classify the feature vec-
tors was the linear discriminant analysis (LDA) classifier with
automatic shrinkage regularization as presented by Schafer
and Strimmer (2005) based on the approach of Ledoit and
Wolf (2004). Leave-one-subject-out (LOSO) cross-validation
(Liao et al., 2018) was utilized for training the classifier to
avoid over-fitting and exploit the consistent spatio-temporal
features across subjects. The trials from the non-test sub-
jects were combined as the LOSO training data. The data
were centered for each class and merged to obtain a more re-
liable shared covariance matrix for determining the classifier.
A linear classifier learns a hyperplane to best separate the two
classes. We refer to the vector perpendicular to the separating
hyperplane and pointing in the direction of the first-named (or
positive trained) class as the discriminant vector. After train-
ing, all the data from the test subject, including conditions
not in the two training classes, were projected (using the dot
product) onto the discriminant vector to determine a signed
distance, or projection, from the classification hyperplane.

Differentiate Conditions not Trained
After training the classifiers, the performance of each classi-
fier can be evaluated using metrics computed on the projec-
tion of trials of the trained conditions from the test subjects.
Similarly, trials from untrained classes can be projected and
compared (Noh & de Sa, 2014). In this paper, we show that in
addition, how closely aligned the difference between any two
selected conditions is with the classifier determined by the
training conditions could also be assessed using metrics on
the projections of the selected conditions onto the discrimi-
nant vector of the classifier. In this study, we used area under
the ROC curve (AUROC) as our metric to avoid bias due to
imbalance of conditions. For example, if for paired condi-
tions X and Y, the AUROC of the classification of their pro-
jections onto the SN vs. MN classifier are significantly above
0.5, this would indicate that X and Y are somewhat aligned
with the classification boundary for SN and MN, with X more
like SN, and Y more like MN.

Condition-Controlled Classifier Training
The AUROC of F vs. CR projections on the SN vs. MN clas-
sifier was significantly below 0.5 as shown in the Results sec-
tion, which meant the F vs. CR classifier trained could have
been trained based on both the confidence difference and the



familiarity process (see Discussion). In order to control the
confidence level of F and CR and because there were more
CR trials than F trials in general, we sorted the CR trials in
the training data based on their projections onto the trained
SN vs. MN confidence classifier, selected the CR trials with
the smallest values, and accumulated CR trials in a bottom-up
manner until their average was the same as the average of the
projections of the F trials in the training data. Then the F and
selected CR trials were used as the new training data for train-
ing a F vs. CR classifier with decision confidence (as defined
by projections from the SN vs MN classifier) controlled.

Visualization of Consistent EEG Features
We also examined the consistent (across subjects) and impor-
tant EEG features for both classification problems by calcu-
lating the mean difference between the two classes for each
subject. The activation pattern A of the LDA classifier (Haufe
et al., 2014) could be expressed as,

A ∝ ΣxW = µ̂1 − µ̂0

where Σx was the covariance of the training data, W was the
discriminant vector of the LDA classifier, and µ̂ was the es-
timated mean of each class. The activation pattern for each
subject was then normalized by its power.

A cluster-based analysis (Maris & Oostenveld, 2007) for
multiple comparisons was utilized to find significant features
that are consistent across subjects. Features over all subjects
significantly different from zero (p<.05) were first pinpointed
by two-tail t-tests. The t-statistics of all significant neighbor-
ing features with the same sign were summed together as the
cluster values. The maximum absolute value over all clus-
ters was then compared to the distribution of max absolute
cluster values obtained from a permutation distribution result-
ing from 10,000 random permutations of class labels. Fea-
tures from the same channel group and adjacent time bins or
the same time bin and adjacent channel group (see Figure 3
(LAS, CM, and RAS are all mutual adjacent; CM is also next
to LPS and RPS; LPS and RPS are adjacent to PM)) were
considered as neighbors.

Results
Classifier Performance
For this analysis, only subjects having at least 10 trials in both
test classes were included. Table 1 shows the numbers of sub-
jects in the analysis and the AUROC of the SN vs. MN and
F vs. CR classifiers in Experiments 1 and 2. The accuracy
of the classifiers were calculated on balanced test data. We
calculated the average AUROC and accuracy for each sub-
ject. The non-parametric two-sided Wilcoxon Signed Rank
Test was applied to the subject AUROC and accuracy data to
determine significance relative to chance performance. While
the SN vs. MN classifier performs significantly above chance,
it does better in Exp 2 than in Exp 1. This reflects the dif-
ference between the two source conditions and indicates the
confidence gap could be larger for new responses for the color

condition. Performance of the F vs. CR classifiers are signif-
icantly above chance and approximately the same for both
Exp 1 and 2.

Projections from the Classifiers
Figure 6 (a) and (b) show the projections of all the behaviors
from the SN vs. MN classifier in Experiment 1 and 2, re-
spectively. In Exp 1, SC-RS receives the highest value when
projected on the SN vs. MN classifier, implying that this clas-
sifier classifies largely on decision confidence, with high de-
cision confidence common to SC-RS and SN. (It also appears
that any possible negative memory or familiarity component
that might be more present in MN than SN is minimal). In
Exp 2, SC-RS and SC-RO are also projected to high values
on the SN vs. MN classifier while the projections of SC-F and
SI-F are both low in both experiments. The same relationship
between SC-RS and SC&SI-F could also be found in the last
two rows in Table 1.

In Figure 6 (c) and (d), the F vs. CR classifier projects
SC-RS to a lower value that of SC-F and SI-F, especially in
Exp 1. Table 1 shows the significant difference between the
projected SC-RS and the projected SC&SI-F from the F vs.
CR classifier in Exp 1.

Activation Patterns
The spatio-temporal features that are consistent across sub-
jects in each classification problem for Exp 1 and 2 calcu-
lated using the cluster-based multiple comparison method are
shown in Figure 7. Note that the significance test for SN
vs. MN was only performed for the features after 600 ms
to match the time frame used for training the SN vs. MN
classifier. The peak of the positive clusters in SN vs. MN (in
Figure 7 (a) and (b)) is around 700-800 ms in both experi-
ments. Note that the positive cluster in SN vs. MN is highly
overlapped with the significant cluster in F vs. CR in Exp 1
(Figure 7 (c)). The wide overlap and opposite sign also re-
flect the AUROCs that are significantly below 0.5 when using
F vs. CR and SN vs. MN to classify each other in Exp 1 in
Table 1.

Discussion
In this study, we first trained an SN vs. MN classifier to distin-
guish SN from MN based on their decision confidence level
difference and an F vs. CR classifier hoping to reveal the
familiarity process. Observing the projections of all behav-
iors from the SN vs. MN classifier and from the F vs. CR
classifier, we found that the F vs. CR classifier reflected clas-
sification based not only on familiarity but also confidence.
Hence, we further trained an F vs. CR classifier with confi-
dence control.

Difference between SN and MN
There are two potential factors that the SN vs. MN classifier
utilized to differentiate SN and MN: one is the confidence
difference, and the other is familiarity or memory strength as
in the dual-process models (Wixted, 2007; Wixted & Mickes,



Table 1: AUROCs and accuracies calculated based on the scores computed from projections of behaviors from different classi-
fiers. RS and ConfMatched refer to SC-RS and confidence matched, respectively. The number of subjects with at least 10 trials
in both test classes and the number of total subjects are given as the numerator and the denominator, respectively.

Behaviors
Classifiers SN vs. MN F vs. CR F vs. CR (ConfMatched)

AUROC Acc. AUROC Acc. AUROC Acc.
SN vs. MN Exp 1 (24/26) 0.5564∗∗ 0.5421∗∗ 0.4456∗∗ 0.4575∗∗ 0.4796 0.4884

Exp 2 (26/28) 0.5997∗∗ 0.5653∗∗ 0.4146∗∗ 0.4537∗∗ 0.4528∗∗ 0.4639∗∗

F vs. CR Exp 1 (25/26) 0.4434∗ 0.4637∗ 0.5793∗∗ 0.5465∗∗ 0.5615∗∗ 0.5429∗∗
Exp 2 (24/28) 0.4400∗ 0.4576∗ 0.5782∗∗ 0.5405∗ 0.5585∗∗ 0.5455∗∗

RS vs. F Exp 1 (25/26) 0.6552∗∗ 0.6126∗∗ 0.4298∗∗ 0.4606∗∗ 0.5045 0.5002
Exp 2 (24/28) 0.6277∗∗ 0.5829∗∗ 0.4797 0.4909 0.5305 0.5027

** p < 0.01,* p < 0.05

Exp 1

F vs. CR

(a) (b)

(c) (d)

(e)

F vs. CR 
(ConfMatched)

(f)

Exp 2

SN vs. MN

Figure 6: The average projection and the 95% CI of behaviors from the trained classifiers in Exp 1 and 2. The positive and
negative trained classes are plotted in green and red, respectively. The classes shown in black were not trained.

2010). If it was simply familiarity or memory strength that
the SN vs. MN classifier classified on, F and RS should
have been projected lower (beyond MN). Nevertheless, what
is shown in Table 1 is that the AUROCs of RS vs. F are signif-
icantly above 0.5 on the SN vs. MN classifier in both location

and color conditions. Moreover, SN vs. MN was deliberately
trained on features excluding those in the time period of the
FN400. These support the idea that SN vs. MN is primarily
classifying based on confidence rather than memory, and is
consistent with Remember responses having high confidence,
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and Know responses lower confidence (Tulving, 1985).

Confidence Component Revealed in F vs. CR

In Figure 6 (c) and (d), SN receives lower projected values
than MN on the F vs. CR classifier in both Exps 1 and 2.
This is reasonable if the classification was performed based
on familiarity. However, in Figure 6 (c), the projection of
SC-RS is the lowest among all the old judgements. In fact,
the shape of the projections of the behaviors in Figure 6 (c)
is like the vertically mirrored version of the shape in Figure 6
(a). Moreover, the peak of the negative cluster in the acti-
vation pattern of F vs. CR (Figure 7 (c)) overlaps with the
peak of the positive cluster in the pattern of SN vs. MN (Fig-
ure 7 (a)) at around 700 to 800 ms for the location condi-
tion. Based on these observations and because F is gener-
ally associated with low confidence, the F vs. CR classifier
in the location condition could have incorporated some (neg-
ative) confidence component and thus give higher scores to
the responses with less confidence (more like F). To over-
come the confidence effect in the familiarity classifier, we
controlled the confidence of the F and CR classes and trained
a new confidence-matched F vs. CR classifier (see Methods:
Condition-Controlled Classifier Training).

Confidence Matched F vs. CR

The average of the projections of MN responses from the F
vs. CR classifier becomes negative when confidence is con-
trolled for, which better matches the desired output of a F vs.
CR classifier. Also, with confidence matching, the new F vs.
CR classifier for both conditions now projects RS responses
above 0 and at the same level as F responses as shown in
Figure 6. The RS trials do not have higher projections than
the F trials on the confidence matched F vs. CR classifier ei-
ther because the recollection and familiarity trials have sim-
ilar familiarity once confidence is controlled for, or possibly
due to some remnant of the confidence effect. Future experi-
ments could further investigate and compare the “familiarity”
strength of familiar and recollected items.

The activation patterns of the original F vs. CR without
confidence match show significant negative clusters which
peak around 700 to 800 ms for both location and color condi-
tions in Figure 7 (c) and (d). With confidence matching of F
and CR, the peaks are now later (around 900 to 1000 ms) and
farther from the peaks in the SN vs. MN classifier. This late
negative component also appears to consistently (across sub-
jects) extend more frontally, once we match for confidence.
Exploring this finding would be an interesting area for future
careful experimental design.
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Schäfer, J., & Strimmer, K. (2005). A shrinkage approach to
large-scale covariance matrix estimation and implications
for functional genomics. Statistical applications in genetics
and molecular biology, 4(1).

Tucker, D. M. (1993). Spatial sampling of head electrical
fields: the geodesic sensor net. Electroencephalography
and Clinical Neurophysiology, 87(3), 154–163.

Tulving, E. (1985). Memory and consciousness. Canadian
Psychology/Psychologie canadienne, 26(1), 1.

Vilberg, K. L., Moosavi, R. F., & Rugg, M. D. (2006). The
relationship between electrophysiological correlates of rec-
ollection and amount of information retrieved. Brain re-
search, 1122(1), 161–170.

Wilding, E. L. (2000). In what way does the parietal ERP
old/new effect index recollection? International Journal of
Psychophysiology, 35(1), 81–87.

Wilding, E. L., & Rugg, M. D. (1996). An event-related po-
tential study of recognition memory with and without re-
trieval of source. Brain, 119(3), 889–905.

Wixted, J. T. (2007). Dual-process theory and signal-
detection theory of recognition memory. Psychological re-
view, 114(1), 152.

Wixted, J. T., & Mickes, L. (2010). A continuous dual-
process model of remember/know judgments. Psychologi-
cal review, 117(4), 1025.

Wynn, S. C., Daselaar, S. M., Kessels, R. P., & Schutter, D. J.
(2019). The electrophysiology of subjectively perceived
memory confidence in relation to recollection and familiar-
ity. Brain and cognition, 130, 20–27.

Yonelinas, A. P., Kroll, N. E., Quamme, J. R., Lazzara,
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