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Abstract— Common spatial patterns (CSPs) are a way of spa-
tially filtering EEG signals to increase the discriminability be-
tween the filtered variance/power between the two classes. The
proposed canonical correlation approach to CSP (CCACSP)
utilizes temporal information in the time series, in addition to
exploiting the covariance structure of the different classes, to
find filters which maximize the bandpower difference between
the classes. We show with simulated data, that the unsupervised
canonical correlation analysis (CCA) algorithm is better able to
extract the original class-discriminative sources than the CSP
algorithm in the presence of large amounts of additive Gaussian
noise (while the CSP algorithm is better at very low noise
levels) and that our CCACSP algorithm is a hybrid, yielding
good performance at all noise levels. Finally, experiments on
data from the BCI competitions confirm the effectiveness of
the CCACSP algorithm and a merged CSP/CCACSP algorithm
(mCCACSP).

I. INTRODUCTION

Brain computer interfaces (BCIs) are devices that allow

interaction between humans and computers using the brain

signals of the user. One commonly used method to extract

meaningful information in EEG (electroencephalography)-

based BCI is to detect event-related desynchronization result-

ing from motor imagery (MI) of different limbs of the body.

One of the most commonly used and effective spatial filtering

methods used for feature extraction in MI tasks is common

spatial patterns (CSPs) [2]. CSP gives filters which maximize

the variance/power for one class while minimizing it for the

other which increases the discriminability of the two classes

when using bandpower features for classification. However,

CSP does not take into account the dependence between time

samples. CSP is also sensitive to noise and artifacts which

are common in EEG signals [10].

Many variants of CSP have been developed to improve

the performance of CSP. Various regularization methods

for CSPs (RCSP) have been proposed as reviewed in

[9]. Common spatio-spectral patterns (CSSP)[7] uses the

temporal structure information to improve CSP. Spectrally

weighted common spatial patterns (Spec-CSP)[13] learns

the spectral weights as well as the spatial weights in an

iterative way. Invariant CSP (iCSP)[3] minimizes variations

in the EEG signal caused by various artifacts using a pre-

calculated covariance matrix characterizing these modula-

tions. Stationary CSP (sCSP) [11] regularizes CSP filter

into stationary subspaces. Local temporal common spatial

patterns (LTCSP)[14], [15] uses temporally local variances

to compute the spatial filters.
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In this paper, we propose a method called canonical

correlation approach to common spatial patterns (CCACSP)

which incorporates the temporal structure of the data to

extract discriminative and uncorrelated sources. The method

was applied to a simulated dataset as well as two BCI

competition datasets to compare our approach to the standard

CSP algorithm.

II. METHODS

A. CSP algorithm

CSP finds spatial filters that maximize the variance/power

of spatially filtered signals under one condition while min-

imizing it for the other condition. Let a column vector

xt ∈ R
C be the bandpassed EEG signal for time t where

C is the number of EEG channels on the scalp and X =
(x1, ..., xL) ∈ R

C×L be a length L sequence of these EEG

signals. The estimate of the normalized covariance matrix

Σy ∈ R
C×C can be calculated as follows:

Σy =
1

|Υy|

∑

i∈Υy

XiX
⊤
i

tr(XiX
⊤
i )

(1)

where y ∈ {1, 2}. The optimal set of CSP filters can be

found by optimizing the following Rayleigh quotient

R(w) =
w⊤Σ1w

w⊤(Σ1 +Σ2)w
. (2)

The solution can be found by solving the generalized

eigenvalue problem given in the form Σ1w = λ(Σ1 +Σ2)w
[2]. The generalized eigenvector w∗

1 corresponding to the

largest eigenvalue maximizes the variance for class 1 while

minimizing for class 2. The generalized eigenvector w∗
C

corresponding to the smallest eigenvalue maximizes the

variance for class 2 while minimizing for class 1.

B. CCA algorithm for separating uncorrelated sources

The goal of the CCA algorithm is to find a pair of

projection vectors v, w ∈ R
C that maximize the correlation

between two signal spaces (in general, the two signal spaces

may have different dimensionality) [1]. Let Σ12 and Σ21 be

the cross-covariance matrices of data matrices X1 and X2,

then the pair of optimal vectors v and w can be found by

solving the following eigenvalue problems

Σ−1
1 Σ12Σ

−1
2 Σ21v = λ2v (3)

Σ−1
2 Σ21Σ

−1
1 Σ12w = ρ2w. (4)
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In a source separation setting, the two signals chosen for

CCA are the original signal X and a time shifted version

of the original signal X∆. This would be equivalent to

maximizing the autocorrelation of each of the projections,

hence recovering the original uncorrelated sources [5], [8].

For simplicity, we assume that the two data matrices have

the same covariance Σ and that their cross-covariance (shift

covariance matrix) is ΣS . In the source separation setting, v

and w are the same. We can find w∗ with the highest auto-

correlation by maximizing the following Rayleigh quotient

R(w) =
w⊤ΣSw

w⊤Σw
. (5)

This problem can be solved with the generalized eigen-

value problem given in the form ΣSw = λΣw [8]. The

generalized eigenvector w∗ corresponding to the largest

eigenvalue gives the projection with the highest autocorrela-

tion. Note that the amount of shift given to X∆ may prevent

sources with the same autocorrelation for the given shift to

be separated [5], [8]. For our analysis, the shift was fixed to

one sample but multiple shifts or different length shifts can

be used. CCA for blind source separation has been used to

remove muscle artifacts from EEG data [6].

C. CCACSP algorithm

The CCA algorithm is good at separating independent

sources, even in the presence of noise, but has the disad-

vantage that the separated sources are not weighted towards

class discriminability for classification. In order to maintain

the source separation properties of CCA while prioritizing

separation for class discriminative sources, we search for a

projection w ∈ R
C which maximizes the shifted variance of

signals for one condition and at the same time minimizes

the overall variance of the signals. Since this is a supervised

method, the shift covariance matrices are calculated for each

class. We denote the shift covariance matrix for class y as

ΣSy where y ∈ {1, 2}. We define two Rayleigh quotients

R1(w) =
w⊤ΣS1w

w⊤(Σ1 +Σ2)w
(6)

R2(w) =
w⊤ΣS2w

w⊤(Σ2 +Σ1)w
. (7)

As done for CSP, w∗
S1 (w∗

S2) which maximizes the shifted

variance for class 1 (class 2) while minimizing for the overall

variance can be found by maximizing the Rayleigh quotient

R1(w) (R2(w)) using the generalized eigenvalue problem

ΣS1w = λ(Σ1 +Σ2)w ( ΣS2w = λ(Σ2 +Σ1)w).

III. ANALYSIS ON SIMULATED DATASET

A. Simulated dataset

Artificial datasets were generated by mixing signals from

four sinusoidal sources of varying frequency (12, 10, 11.5,

and 13 Hz). The artificial data were designed to simulate

power differences between two “classes”. Sinusoid 1 was

set to have a higher magnitude for class 1 than for class

2 (1.3 vs 1). Sinusoids 2 and 3 were set to have a higher

magnitude for class 1 (magnitudes of 1.3 vs 1 and 1 vs

.7 respectively). Sinusoid 4 was set to have magnitude 4

for both classes. Gaussian noise was added to each of the

sinusoidal signals. Finally, the noisy versions of the four

sinusoids were mixed according to a linear mixing matrix to

generate four electrode signals. Training data were generated

using a sampling rate of 200 Hz with 5 seconds of data

per class. Test data were generated in a similar manner but

without the added noise. Multiple datasets were generated

with different noise magnitudes ranging from 0.1 to 10.

B. Results

The three methods (CCA, CSP, and CCACSP) were

trained and tested 10,000 times (at each of the additive noise

magnitudes). In each training/test run, we used a randomly

generated mixing matrix with entries drawn uniformly from

[0, 1]. In each test run, we computed the correlation coeffi-

cients between the separated test sources with the original

test sources (before mixing). The average correlations for

each of the three discriminative sinusoidal sources (in each

class condition) are shown in Figure 1 for different noise

magnitudes. In order to distinguish the classes, the algo-

rithm should give a high correlation between the separated

sources and the three original discriminable sources. Notice

that when the noise magnitude is smaller than the signal

magnitude, the CSP algorithm is able to separate the sources

well. As the noise magnitude increases, the output of the CSP

algorithm shows a rapid decrease in the ability to separate

the original sources. The CCA algorithm has a more gentle

fall off in performance with noise magnitude but is often

not as good at the lowest noise magnitudes. The CCACSP

algorithm presents a nice compromise with performance as

good or better than CSP at the lowest noise levels and

comparable to CCA at the higher noise magnitudes.

The CCA algorithm tries to uncover independent sources

while the CSP algorithm does not explicitly try to uncover

independent sources. It tries to find mixtures that are discrim-

inative. As the raw signals are discriminative, it has pressure

to recover the original discriminative sources.

IV. ANALYSIS ON EEG DATASETS

Evaluation of the CCACSP algorithm was conducted us-

ing two publicly available EEG datasets. Analysis on the

simulated dataset revealed that while CCACSP was better at

recovering the sources in the presence of noise, CSP some-

times gave better results when SNR (signal-to-noise ratio)

was high. Hence for evaluation, we included an integration

of the CSP and CCACSP methods, namely merged CCACSP

(mCCACSP). The two methods were integrated by merging

the filters learned from the two algorithms using merging

parameter 0 ≤ α ≤ M where M = # of filters

2
. We selected

α pair of filters from CSP (filters corresponding to the α

largest and α smallest eigenvalues) and M − α pairs from

CCACSP (M − α filter pairs corresponding to the largest

eigenvalues from the class specific Rayleigh quotients). As

is commonly used in MI tasks, M = 3 was used [2].
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Fig. 1: Average correlation coefficients between the original

and recovered discriminative sinusoidal sources as a function

of noise magnitude.

A. EEG datasets

The two datasets contain EEG data from 14 subjects while

they performed MI tasks. These datasets have been used

in previous studies to assess classification performance of

various algorithms [9], [11]. Note that the purpose of this

analysis is to verify the effectiveness of the proposed feature

extraction methods compared to the base case methods.

1) Dataset IVa, BCI competition III: This dataset [4] con-

tains EEG signals from 5 subjects where they were instructed

to perform right hand and foot MI without feedback. EEG

data were recorded from 118 Ag/AgCl electrodes. A subset

of 68 channels1 as given in [11] were selected for further

analysis. The size of the training and test sets varied across

subjects. The number of training examples available for each

class was (80, 88), (112, 112), (42, 42), (30, 26), (18, 10) for

subject A1, A2, A3, A4, and A5 respectively. The number

of test examples available for each class was (60, 52), (28,

28), (98, 98), (110, 114), (122, 130) for subject A1, A2, A3,

A4, and A5 respectively.

2) Dataset IIa, BCI competition IV: This dataset [12]

contains EEG signals from 9 subjects where they were

instructed to perform left hand, right hand, foot, and tongue

MI with feedback. Only trials corresponding to left and right

hand MI were used for evaluation. EEG data were recorded

from 22 Ag/AgCl electrodes. The training and test sets each

contained 72 trials per class for all 9 subjects.

1Electrodes F, FFC, FC, CFC, C, CCP, CP, PCP, P,PPO, and PO with
numbers smaller than 7 according to the International 10-20 system are
used [11].

B. Preprocessing and classification

The preprocessing procedure used in [9] and [11] was

applied to both datasets. Time segments between 0.5-2.5 s

after cue presentation were extracted and bandpass filtered

between 8-30 Hz using a fifth order Butterworth filter. No

trial rejection was performed.

For CSP, 3 filters were selected from each class (each

corresponding to the largest and smallest eigenvalues) for

feature extraction [2]. For CCA, 6 filters corresponding to

the largest eigenvalues were selected2. For CCACSP, 3 filters

corresponding to the largest eigenvalues were selected from

the two Rayleigh quotients (equations 6 and 7) resulting

in a total of 6 filters. For mCCACSP, α filter pairs were

selected from the CCACSP results and 3−α filter pairs were

selected from the CSP results (all of which corresponded to

the largest and smallest eigenvalues). Hence the filters were

equivalent to CSP and CCACSP when α = 0 and α = 3
respectively. The merging parameter α was determined by

cross-validation on the training data. Finally, log bandpower

of the filtered EEG signals were used as inputs to the LDA

(linear discriminant analysis) classifier.

C. Results

Table I gives the classification errors obtained by classify-

ing the test sets of the two datasets. In order to verify whether

the proposed algorithms showed significant improvement

from the base case results, paired t-tests were conducted

between the error rates given by the different methods. The

base case classification results using CSP were slightly dif-

ferent from those given in [9] and [11]. However, the average

error rate was significantly lower than [9] (p = 0.039) and

comparable to [11] which verified that our base case results

agreed with previous results. The CCACSP results were

not significantly better than the CSP results (p = 0.061).

However, the mCCACSP results were significantly better

than both CSP (p = 0.015) and CCACSP (p = 0.023) results.

mCCACSP provides flexibility to choose between the

CSP and CCACSP algorithms. For each of the 14 subjects,

mCCACSP performance on the test data is never worse than

the best performance of the CSP and CCACSP algorithms.

In the 5 subjects where CCACSP and CSP give identical test

set performance, mCCACSP only used the CSP filters. In the

5 subjects where mCCACSP selected filters from both CSP

and CCACSP, the final test performance was always better

than the test performance of the two algorithms (except in the

one case where the CSP algorithm had ceiling performance).

In order to verify whether the improvement of mCCACSP

was related to individual performance in the base case, the

dataset was divided into two groups. The first group (group

1) consisted of half of the subjects with low base case error

rate (average error rate of 8 %) and the second group (group

2Since CCA is an unsupervised procedure, filters corresponding to the
largest eigenvalues may not give the most discriminative features. Hence,
an alternate method was examined where 6 filters with the lowest error
on classification of training data were selected. However, the results were
similar to the previous analysis suggesting that the sources separated by
CCA do not effectively distinguish the two classes.
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TABLE I: Comparison of classification error rates (%) for datasets IVa (A1-A5) and IIa (B1-B9) from BCI competitions

III and IV, respectively. Smallest values in each column are given in bold.

Subject A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B6 B7 B8 B9 Mean STD Median

CCA 53.6 23.2 30.6 37.9 25.0 20.6 44.4 29.9 53.4 47.4 38.0 47.1 3.7 12.3 33.4 15.3 34.3

CSP 28.6 0.0 41.8 10.7 26.6 9.9 46.5 2.9 28.4 45.9 35.2 19.3 4.5 8.5 22.1 16.3 22.9

CCACSP 18.8 3.6 32.1 7.6 21.8 9.9 44.4 2.9 28.4 48.1 35.2 18.6 4.5 8.5 20.3 15.3 18.7

mCCACSP 18.8 0.0 27.6 7.6 11.5 9.9 44.4 2.9 25.9 44.4 35.2 18.6 4.5 8.5 18.5 15.0 15.1

α (merging param) 3 2 2 3 2 0 3 0 2 2 0 3 0 0 - - -

Fig. 2: Mappings of the spatial patterns produced by CSP and

CCACSP for subject A1 in dataset IVa from BCI competition

III. The patterns corresponding to the most discriminative

filters for each class are illustrated.

2) consisted of half of the subjects with high base case error

rate (average error rate of 36.1 %). The paired t-test was

conducted separately for the two groups. It was found that the

improvements for group 2 were significant (p = 0.019) while

the improvements for group 1 were not (p = 0.13). Since a

couple of subjects in group 1 already had ceiling performance

in the base case, this result may not be surprising. However,

it is in accordance with the results found in Section III.

It was revealed that the filters learned by CSP and

CCACSP showed similar patterns. However, in cases where

CCACSP outperformed CSP, the CCACSP produced patterns

which had sharper lateralized contrasts between the two

classes. Figure 2 illustrates the patterns corresponding to the

filters produced by the two methods for subject A1. The most

discriminative filters for class 1 and 2 were selected from

each method for illustration. We can observe that while both

methods give patterns with lateral differences, the difference

is more distinctive for the CCACSP algorithm.

V. CONCLUSIONS

Unlike some variations of CSP where separate recording

sessions are needed (iCSP) or optimization is performed in

multiple steps (Spec-CSP), CCACSP can be represented in a

single objective function which can be formulated as a gen-

eralized eigenvalue problem. CCACSP incorporates the class

labels to design spatial filters to increase discriminability but

also uses more information from the temporal signal to help

reduce noise sensitivity. Even though CCACSP results were

not significantly better than the base case results, they were

marginally significant (p = 0.061). mCCACSP outperformed

both the CSP and CCACSP methods. The advantage of

mCCACSP comes from the fact that it is able to select

the most discriminative filters from the CSP and CCACSP

results. This procedure provides the classifier with useful

features while discarding less discriminative ones.
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