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2Principal Components Analysis

Principal Components Analysis (PCA) finds a linear subspace that contains most
of the variance of the data. (PCA finds the linear subspace with the greatest
projected variance.)

It is commonly used for dimensionality reduction – project to a reduced subspace
that contains most of the variance.

Once the desired dimensionality subspace is found, the data are represented as the
projected point in that subspace.
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9Random Vectors

Consider asking a “random” person for her height and weight.

H and W are two random variables.

We can ask about their expected value (mean) and variance

We can also ask about how we expect them to covary.

We expect height and weight to be positively correlated.

Jochen Triesch, UC San Diego, http://cogsci.ucsd.edu/~triesch 7

Review: Multiple Random VariablesReview: Multiple Random Variables

Consider asking a “random” person for their height and weight.
Two random variables H, W with joint pdf (unknown):

),(),( whpwWhHp !""

scatter plot of observations reveals 
structure: if height big, weight tends 
to be big, height and weight are 
positively correlated

1  ),( """## dwdhwWhHpNeeds to be normalized:



10Random Vectors

An n-dimensional random vector consists of n random variables associated with
the same event (e.g. height and weight of individuals or height and wake-up time
of individuals)

V =
[
X
Y

]

sample n times from V

v1 v2 ... vn[
x1 x2 ... xn

y1 y2 ... yn

]



11Random Vectors

What will the scatter plot (plot of samples) of V look like (plotting x dimension
along x axis and y dimension along y axis)

Jochen Triesch, UC San Diego, http://cogsci.ucsd.edu/~triesch 10

Height/Wake up time exampleHeight/Wake up time example
• What will the scatter plot of V look like?

• What is the expected value of V ?   E(V)=?   We can’t say!
• Mean of samples of X is 67
• Mean of samples of Y is 8  !

"

#
$
%

&
'

8
67

m

Note: sample mean is a good way to estimate the expected value, i.e.
if you have many samples, the sample mean will be close to E(V).

What do we expect the sample mean to be (this is a good estimate of the
expected value of the random vector)?

What do we expect the sample variance in each dimension to be?



12Covariance Matrices

These slides are from Jochen Triesch (my former co-teacher of a precursor course)
based on slides created by Tim Marks (our TA of that course).



13PCA

Principal Components Analysis (PCA) first finds the direction of greatest
projected variance

We want to work in a space where the data have zero mean. This can easily be
done by setting z = x−m

Consider a projection vector (direction) w If y is the length of the projection of x
onto the vector w

Let’s take w to have unit length (||w|| = 1)

y = w · z

=
n∑

i=1

wizi

= ||w||||z||cosθ

PCA finds the direction w for which the variance of the projection of the data
points is maximal



14E(y) = E(
∑

iwizi) =
∑

iE(wizi) =
∑

iwiE(zi) = 0

V ar(y) = E((y − E(y))2)

= E(y2)

= E((wTz)2)

= E((wTz)(zTw))

= wTE(zzT )w

= wTCzw

where Cz is the covariance matrix of z (and the covariance matrix of x)

Cz = 1/N
N∑

n=1

(xn − x̄)(xn − x̄)′

The unit length vector w that maximizes V ar(y) is the eigenvector of Cz

corresponding to the largest eigenvalue.



15PCA

The unit length vector w that maximizes V ar(y) is the eigenvector of Cz

corresponding to the largest eigenvalue.

This can be proved using Lagrange multipliers (which we do in 118B) but we can
also see more intuitively why this is true

First note that if w is a unit length eigenvector of Cz with eigenvalue λ then

V ar(y) = wTCzw = wTλw = λ



16Clicker Question

V ar(y) = wTCzw = wTλw = λ

What assumption was necessary to go from the red to the blue above

• A : w is an eigenvector of Cz

• B : w is unit length

• C : w has eigenvalue λ

• D : B and C

• E : A and C



17Clicker Question

V ar(y) = wTCzw = wTλw = λ

What assumption was necessary to go from the blue to the magenta above

• A : w is an eigenvector of Cz

• B : w is unit length

• C : w has eigenvalue λ

• D : B and C

• E : A and C



18PCA

We are trying to show that: The unit length vector w that maximizes V ar(y) is
the eigenvector of Cz corresponding to the largest eigenvalue.

We have showed that if w is a unit length eigenvector of Cz with eigenvalue λ
then

V ar(y) = λ

To continue, we need to remember that Covariance matrices are symmetric
(Why?) and that real-valued symmetric matrices have a set of perpendicular
eigenvectors (which can be normalized to unit length).



19PCA

If w is not an eigenvector then it can be written as a linear combination of the
perpendicular unit length eigenvectors. That is

w = a1w1 + a2w2 + ...anwn

where wi are the eigenvectors of Cz and w1 has the largest eigenvalue λ1.

Since w has unit length, we know that

wTw = 1



20PCA

Since w has unit length, we know that

wTw = 1

which means

(a1w1 + a2w2 + ...anwn)T (a1w1 + a2w2 + ...anwn) = 1]

a2
1w1

Tw1 + a1a2w1
Tw2 + .... = 1

a2
1 + a2

2 + a2
3 + ...a2

n = 1

Note we have used the fact that wi is orthogonal to wj for all i 6= j to get the last
equation from the previous one.



21PCA

Now

V ar(y) = wTCzw

= (a1w1 + a2w2 + ...)TCz(a1w1 + a2w2 + ...)

= (a1w1 + a2w2 + ...)T (a1λ1w1 + a2λ2w2 + ...anλnwn)

= a2
1λ1w1

Tw1 + a1a2λ2w1
Tw2 + ...+ a2

2λ2w2
Tw2 + ...

= a2
1λ1 + a2

2λ2 + ...+ a2
nλn

≤ a2
1λ1 + a2

2λ1 + ....a2
nλ1

= λ1

So the unit length vector w that maximizes the projected variance (V ar(y) is the
eigenvector with the largest eigenvalue λ1.



22PCA overview

1-D PCA projects the data onto the eigenvector with the largest eigenvalue.

In general PCA projects the data onto the subspace spanned by the n eigenvectors
with the largest eigenvalues.



23Fun things you can do with PCA

file:/Users/desa/classes/108c/siggraph99.mpg

http://gravis.cs.unibas.ch/Sigg99.html

file:/Users/desa/classes/108c/siggraph99.mpg
http://gravis.cs.unibas.ch/Sigg99.html


24PCA overview

• Zero mean the data (compute mean and subtract from all the data) z(i) =
x(i) −m

• Compute the covariance matrix and find (and normalize) it’s eigenvectors

• Sort the eigenvectors in order of decreasing eigenvalue (and put as columns in
V)

• Compute principal components c(i) = V ′z(i) (c
(i)
j = vj · z(i))

• Reconstruct zero-meaned pattern using ẑ(i) = Vreducedc(i)
reduced

• x̂(i) = ẑ(i) + m (add back in the mean)



25PCA step by step

Zero mean the data (compute mean and subtract from all the data)
z(i) = x(i) −m

(X is matrix of column vectors x(i), Z is matrix of mean subtracted data) assume
we have n data vectors

>>m =1/n*sum(X,2);
>>Z=X-repmat(m,1,n);



26PCA step by step

Compute the covariance matrix and find (and normalize) it’s eigenvectors

>>C = 1/n* Z* Z’;
>>[Vp,Dp]=eig(C);
>>[V,D]=eigsort(Vp,Dp); (we will provide you with eigsort)

Remember Z is the matrix consisting of columns of mean-subtracted data



27PCA step by step

Compute principal components c(i) = V ′z(i) (c
(i)
j = vj · z(i))

– –

– –4

Tim Marks,  Cognitive Science Department

Transformation matrix for PCA

• Let V be the matrix whose columns are the

eigenvectors of the covariance matrix, !.

– The eigenvectors v
i
 are all normalized to have length 1

• The rotation transformation is given by V T
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Tim Marks,  Cognitive Science Department

Transformation matrix for PCA
– PCA transforms the point x (original coordinates)

into the point c (new coordinates).

• by subtracting the mean:   z = x – m

• and multiplying

the result by V T

• Can think of as rotation because V T is an orthonormal matrix

• Can think of as projection of z onto PC axes, because v1 • z is

projection of z onto PC1 axis, v2 • z is projection onto PC2 axis, etc.
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v2

c1
c2

z1

z2

(PC1)
(PC2)

v1

• Can think of as a rotation because V T is an orthogonal matrix

• Can think of as projection of z(i) onto PC axes, because v1 · z(i) is projection of
z(i) onto PC1 axis, v2 · z(i) is projection onto PC2 axis etc...

>>z=Z(:,i)
>>c=V’*z;



28Clicker question

v2

c1
c2

z1

z2

(PC1)
(PC2)

v1

What does the c vector represent?

A) The covariance matrix

B) The top eigenvector of the Covariance matrix

C) The coordinates of the zero-meaned data point in the Principal components
space



29PCA step by step

Reconstruct zero-meaned pattern using ẑ(i) = Vreducedc(i)
reduced

– –

– –5

Tim Marks,  Cognitive Science Department

Point is a weighted sum of eigenvectors

• To both sides of the equation, multiply on the left by V:
VV Tz = Vc.       Because V is orthonormal, VV T = I :
      Iz = Vc

• PCA expresses the mean-subtracted point, z = x – m, as a weighted
sum of the eigenvectors vi :
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Tim Marks,  Cognitive Science Department

Eigenvalues and variance
– The eigenvectors v1, v2, …, vn of the covariance matrix

have corresponding eigenvalues λ1, λ1, …, λn .
• It turns out that λ1 is the variance of the distribution in the v1

direction, λ2 is the variance of the distribution in the v2
direction, and so on.

– The largest eigenvalue corresponds to the principal component in the
direction of greatest variance, the next largest eigenvalue corresponds
to the principal component in the perpendicular direction of next
greatest variance, etc.

– Which eigenvector
(green or red) corresponds
to the smaller eigenvalue?

v2

c1
c2

z1

z2

(PC1)
(PC2)

v1



30Aside

– –

– –5

Tim Marks,  Cognitive Science Department

Point is a weighted sum of eigenvectors

• To both sides of the equation, multiply on the left by V:
VV Tz = Vc.       Because V is orthonormal, VV T = I :
      Iz = Vc

• PCA expresses the mean-subtracted point, z = x – m, as a weighted
sum of the eigenvectors vi :
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Tim Marks,  Cognitive Science Department

Eigenvalues and variance
– The eigenvectors v1, v2, …, vn of the covariance matrix

have corresponding eigenvalues λ1, λ1, …, λn .
• It turns out that λ1 is the variance of the distribution in the v1

direction, λ2 is the variance of the distribution in the v2
direction, and so on.

– The largest eigenvalue corresponds to the principal component in the
direction of greatest variance, the next largest eigenvalue corresponds
to the principal component in the perpendicular direction of next
greatest variance, etc.

– Which eigenvector
(green or red) corresponds
to the smaller eigenvalue?



31Aside
– –

– –6

Tim Marks,  Cognitive Science Department

x

y
PC
1

PC
2

c 2 c 1

height

weight

– What if you wanted to transmit someone’s height and
weight, but you could only give a single number?
• Could give only height, x

— = (uncertainty when height is known)

• Could give only weight, y
— = (uncertainty when weight is known)

• Could give only c1,
the value of first PC
— = (uncertainty when first PC is known)
– Giving the first PC minimizes

the squared error of the result.

– To compress D-dimensional data into k dimensions, order
the principal components in order of largest-to-smallest
eigenvalue, and only save the first k components.

PCA for data compression

Tim Marks,  Cognitive Science Department

PCA for data compression
• Equivalent view: To compress D-dimensional data into k

dimensions, order the eigenvectors in order of largest-to-smallest
eigenvalue, and only use the first k eigenvectors.

• PCA approximates the mean-subtracted point, z = x – m, as a
weighted sum of the first k eigenvectors:
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32PCA step by step

Reconstruct zero-meaned pattern using ẑ(i) = Vreducedc(i)
reduced
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Tim Marks,  Cognitive Science Department

x

y
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2

c 2 c 1

height

weight

– What if you wanted to transmit someone’s height and
weight, but you could only give a single number?
• Could give only height, x

— = (uncertainty when height is known)

• Could give only weight, y
— = (uncertainty when weight is known)

• Could give only c1,
the value of first PC
— = (uncertainty when first PC is known)
– Giving the first PC minimizes

the squared error of the result.

– To compress D-dimensional data into k dimensions, order
the principal components in order of largest-to-smallest
eigenvalue, and only save the first k components.

PCA for data compression

Tim Marks,  Cognitive Science Department

PCA for data compression
• Equivalent view: To compress D-dimensional data into k

dimensions, order the eigenvectors in order of largest-to-smallest
eigenvalue, and only use the first k eigenvectors.

• PCA approximates the mean-subtracted point, z = x – m, as a
weighted sum of the first k eigenvectors:
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>> zhat= V(:,1:k)*c(1:k)



33Clicker question

Reconstruct zero-meaned pattern using ẑ(i) = Vreducedc(i)
reduced

– –

– –6
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weight

– What if you wanted to transmit someone’s height and
weight, but you could only give a single number?
• Could give only height, x

— = (uncertainty when height is known)

• Could give only weight, y
— = (uncertainty when weight is known)

• Could give only c1,
the value of first PC
— = (uncertainty when first PC is known)
– Giving the first PC minimizes

the squared error of the result.

– To compress D-dimensional data into k dimensions, order
the principal components in order of largest-to-smallest
eigenvalue, and only save the first k components.

PCA for data compression

Tim Marks,  Cognitive Science Department

PCA for data compression
• Equivalent view: To compress D-dimensional data into k

dimensions, order the eigenvectors in order of largest-to-smallest
eigenvalue, and only use the first k eigenvectors.

• PCA approximates the mean-subtracted point, z = x – m, as a
weighted sum of the first k eigenvectors:





















=
















↓

↑





















→←

→←

→←

→←

D

k

D

k

c

c

c
c

V

M

M

M

M

2

1

2

T

z

v

v

v
v

cz
1

















↓

↑

++
















↓

↑

+
















↓

↑

=



































↓↓↓

↑↑↑

=
















↓

↑

=

kk

k

k ccc

c

c
c

V

vvvvvvz

cz

11 L
M

L 221
2

1

2

















=
















↓

↑

















→←

→←

→←

MM

kk c

c
c

V

2

1

2

T

z
v
v
v

cz

1

What would happen if you used all D eigenvectors ?

A) You would get an approximation to the zero-meaned pattern

B) You would perfectly reconstruct the zero-meaned pattern



34PCA step by step

x̂(i) = ẑ(i) + m (add back in the mean)

>>xhat=zhat + m;



35PCA overview

• Zero mean the data (compute mean and subtract from all the data) z(i) =
x(i) −m

• Compute the covariance matrix and find (and normalize) it’s eigenvectors

• Sort the eigenvectors in order of decreasing eigenvalue (and put as columns in
V)

• Compute principal components c(i) = V ′z(i) (c
(i)
j = vj · z(i))

• Reconstruct zero-meaned pattern using ẑ(i) = Vreducedc(i)
reduced

• x̂(i) = ẑ(i) + m (add back in the mean)



36Notes on PCA

In the previous slides we went through the steps of PCA for reducing the
dimensionality for one of our datapoints (x ∗ (i)) We can actually do the same
thing for all data points at once using matrix operations.

• Zero mean the data (compute mean and subtract from all the data) Z =
X − repmat(m, 1, n)

• Compute the covariance matrix and find (and normalize) it’s eigenvectors

• Sort the eigenvectors in order of decreasing eigenvalue (and put as columns in
V)

• Compute principal components C = V ′ ∗ Z

• Reconstruct zero-meaned pattern using Ẑ = VreducedCreduced

Ẑ = V (:, 1 : k) ∗ C(1 : k, :)

• X̂ = Ẑ + repmat(m, 1, n) (add back in the mean)



37Notes on PCA

Note that the V matrix is orthogonal (as the eigenvectors are orthogonal and unit
length)

 ↑ ↑ ↑
v(1) v(2) · · · v(D)

↓ ↓ ↓





38PCA minimizes square reconstruction cost

We have derived PCA as finding the subspace of maximal projected variance.

It can also be derived as finding the subspace for which there is minimal squared
error (between data before and after projection)

∑
i

||x(i) − (x(i)Tw)w||2



39Properties of Covariance Matrices

• Covariance matrices are positive semidefinite

vTAv ≥ 0∀v

• all the eigenvalues are real and non-negative

• the eigenvectors can be chosen to be mutually orthonormal



40PCA on faces

We have 120 by 100 pixel grayscale images of 97 faces.

Each image is a 12000 dimensional vector



41Example Faces



42Mean Face



43PCA on face images

• subtract mean face

• construct Data matrix Z where columns are mean-subtracted faces

• construct Covariance matrix 1
nZZ

T

• find eigenvectors of 1
nZZ

T (or equivalently the eigenvectors of ZZT since
dropping the 1

n does not change the eigenvectors but just changes the eigenvalues
(which are not used) by a factor of n)

ZZT is 12000 by 12000 dimensions (very large) so we use a trick to compute the
eigenvectors



44The transpose trick

on board



45The transpose trick

The eigenvectors of the covariance matrix of face space are called eigenfaces
(eigenvectors of ZZT )

When the dimensionality of the input space (12000 in our case) is much larger
than the number of patterns (97 in our case) then ZZT is much larger
(12000x12000 for us) than ZTZ (97x97 for us) and we can get the eigenvectors of
ZZT by computing them from ZTZ and then multiplying the resultant
eigenvectors by Z.

Since if v is an eigenvector of ZTZ with eigenvalue λ then

ZTZv = λv

ZZTZv = λZv

ZZT (Zv) = λ(Zv)

and thus Zv is an eigenvector of ZZT with eigenvalue λ (the same eigenvalue).



46Thus Z times the top (ones associated with the largest eigenvalues) eigenvectors
of ZTZ give the top eigenvectors of ZZT .



47The first eight eigenfaces



48Reconstructing a face (with the mean face)



49Reconstructing a face (with first 10 eigenfaces)



50Reconstructing a face (with first 20 eigenfaces)



51Reconstructing a face (with first 40 eigenfaces)



52Reconstructing a face (with all 97 eigenfaces)



53Remember Matrix Transformation - A rotation matrix is
orthogonal

Multiplying a vector x by a matrix y = Ax transforms x to a new vector y (which
may have a different number of dimensions if A is not square). We can talk about
different properties that the transformation given by A represents.

rotation matrix is given by

A =
[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]

So to rotate vector (
1
0

)
by 30 deg we multiply

[
.8660 −.5
.5 .8660

](
1
0

)
=
(
.8660
.5

)



54
.8660
.5

0
1

30

Rotation matrices are orthogonal

[
.8660 −.5
.5 .8660

]T [
.8660 −.5
.5 .8660

]
=
[

1 0
0 1

]

This makes sense because to invert a rotation of angle α we want to rotate by −α
and since cos(−θ) = cos(θ) and sin(−θ) = − sin(θ), the inverse of a rotation
matrix is the transpose (try it!).



55Remember Eigenvalues and Eigenvectors

When a Matrix multiplies a vector in general the direction and magnitude of the
vector will change.

BUT there are special vectors where only the magnitude changes (on
multiplication by the Matrix). These are called eigenvectors The value by which
the length changes is the associated eigenvalue

We say that x is an eigenvector of A iff

Ax = λx

In other words, x is an eigenvector if when you multiply it by A it returns a
multiple of itself. λ is called the associated eigenvalue.

on-line demo

http://www.math.ubc.ca/~cass/courses/m309-8a/java/m309gfx/eigen.html

