Human Development

Cogs 184 * UCSD

Ontogeny Recapitulates Phylogeny

- Does development duplicate the stages of evolution?
 - Some changes fit
 - e.g. Human fetus has, loses tail

Ontogeny Recapitulates Phylogeny

- Does development duplicate the stages of evolution?
 - Some changes fit
 - e.g. Human fetus has, loses tail
 - Some don't
 - e.g. Brain-body ratio decreases w/age, but increased over our phylo-history

Ontogeny Recapitulates Phylogeny

- Does development duplicate the stages of evolution?
 - Some changes fit
 - e.g. Human fetus has, loses tail
 - Some don't
 - e.g. Brain-body ratio decreases w/age, but increased over our phylo-history

- Still, ontogeny and phylogeny <u>are</u> related in important ways
 - e.g. Cross-species homologies are often defined per common embryology
 - e.g. Behaviors that appear *earlier* in devel are often of special significance
 - e.g. Some behaviors are <u>necessary prerequisites</u> for later ones

Hand & Mouth

The Babkin Reflex

Grasp and deliver

Tool Use

Initially coupled. Increasingly, but never fully, separate.

Hand & Mouth

May develop in concert and co-influence

Neo-Natal Imitation

From just days after birth

Eyes & Mouth: Critical components of emotional expression

Neo-Natal Imitation

Also seen in some nonhuman primates

Pointing

Even newborn hands will form "pointing" shape

www.shutterstock.com · 20375872

Of course, this is not really "pointing", but does indicate early independent finger control

Pointing

But by as early as three months, finger is used for pointing

Hand Control

3 months Begin visually-mediated grasp

6 months Improved, but still whole hand grasp

Using <u>fewer fingers</u> requires **MORE** premotor activity than whole hand

9 months Individual finger control

Hand Control

By 1 year, more refined control than other primates, involving additional active inhibition, and differential timing

Bimanual Coordination

~ 9 months, hands begin to differentiate in roles

Left hand – Support

Right hand – Fine motor control

Prehistoric tools appear to have involved a similar division of labor for left and right hand

Infants use their heads - to reach! Shen et al. (2010)

Infants use their heads - to reach! Shen et al. (2010)

i.e. <u>Hand-eye</u> coordination essential

METHODS:

- Motion sensors on Head & Hands
- <u>Bird's Eye</u> view and <u>Face-on</u> cameras
- Subjects presented with pairs of objects
 - Free to reach

Infants use their heads - to reach! Shen et al. (2010)

i.e. <u>Hand-eye</u> coordination essential

RESULTS:

- All showed <u>Head-stabilization</u> before reach
- Also <u>co-orientation</u> of Head and reaching Hand
- Older looked longer before reach, younger just at reach

IMPLICATIONS:

- Reaching is not just about the hands!
- Instead, about cross-modal sensory-motor coordination

e.g. Nested Cups

PAIRING

Simple, repetitive object pairings

"Bang, bang, bang"

PAIRING

Simple, repetitive object pairings

<u>POT</u>

Putting multiple objects into same "pot"

i.e. Whatever new action you develop, do same to any object

PAIRING

Simple, repetitive object pairings

<u>POT</u>

Putting multiple objects into same "pot"

SUBASSEMBLY

Put A in B, then put AB in C

PAIRING

Simple, repetitive object pairings

<u>POT</u>

Putting multiple objects into same "pot"

SUBASSEMBLY

Put A in B, then put AB in C

SUBASSEMBLY

i.e. Whatever new action you develop

e.g. "* a" do same to with any phoneme.

PAIRING

Simple object pairings

POT

Putting multiple objects Into same pot

SUBASSEMBLY

Put A in B, then put AB in C

Vocal control lags behind Hand control

Babbling

Babbling

Action routines that "tool up" the vocal system

- 6 months
 - <u>Preceded</u> by increase of <u>rhythmic, repetitious hand</u> movements
 - Thereafter, repeat syllable (Ba, Ba, Ba, Ba)
 - At this stage, produce all phonemes of all languages
- 9 months
 - Shaped by heard language (use more heard sounds)
 - Shows influenced of affect (intonation)
 - First embedded combinatorics
- I year
 - Use words in appropriate contexts
 - Only babble sounds of own language

Human infants are motorically retarded

i.e. We are

- helpless – (vs. Precocial) at birth

Human infants are motorically retarded

i.e. We are ALTRICIAL - helpless – (vs. Precocial) at birth

Probably an adaptation for fitting increasingly large head out of increasingly small pelvic opening

Human infants are motorically retarded

Compared to nonhuman primates

Humans require up to a year to become independently mobile

Compensate for motoric retardation with SOCIAL precociality

e.g. We can vocally communicate before we walk

e.g. Before we can walk or use objects as tools, we can use SOCIAL TOOLS

Attentional Interactions

Infants have (relatively) **BIG** eyes

Adult size at birth in little face.

Very attractive to us primates

White (high contrast) Sclera

Attentional Interactions

Gaze Games - Universal

e.g. Peek-a-boo, Loom & recede, etc.

Usually accompanied by POSITIVE affect from <u>both</u> parties

Helps "tool up" social attention system.

Humans develop gaze-following

This will be an <u>essential prerequisite</u> for LANGUAGE DEVELOPMENT and other cultural learning.

Nonhuman Primates also show Gaze Following

But they <u>do not</u> point or show unless human-enculturated

All (and only) Humans Point and Show

Human infants are "enculturated" to point and show

Different cultures "point" in different ways (e.g. with whole hand, finger, eyes, chin, etc.)

Point & Show Coordination with others = "**You, Me, It**" required for language development

Coordinating Word Learning Yu, Smith & Pereira (2008)

Vocalizations contingent with sustained hand/eye engagement >> Learning names of objects

Coordinating Word Learning

Yu, Smith & Pereira (2008)

METHODS:

- Subjects 17-20 months with Mom
- Head camera & Head Motion tracker on Infant & Mom
- Plus Bird's Eye camera & Computer Vision analysis of video
- Free play with sets of 3 toys,
- Mom teach names (nonsense words) for novel toys
- Tested later by requesting Infant to give toy

Coordinating Word Learning

Yu, Smith & Pereira (2008)

RESULTS:

- Names learned were NOT those most frequently heard!
- Instead, they were names for toys that were grasped &/or loomed, w/head-stabilized look at time named
- <u>Attentive mom directs and/or awaits child's attention to object</u>
- So <u>language learning</u> depends on the <u>social coordination</u> of <u>multiple modalities of attention</u>