
A Mathematical Appendix

Proposition 1. The first part of the claim is easy to see: since nobody is expected to
contribute toward the action, no individual supporter has an incentive to contribute x > 0
because doing so would not cause the action to occur, and would thus be merely a cost.
Since the action is not going to take place, no individual opponent has an incentive to spend
y > 0 to block it. For the second claim, suppose ! D 1 in equilibrium. If Y > 0, then any
opponent who spends y > 0 could profit by deviating to y D 0 because the action will still
be implemented, and he will consume more privately. Thus, no opponent can be spending,
so Y D 0 in that equilibrium. This implies that X D " or else any supporter could profit
by spending x0 < x as long as X ! " holds. But if X D " , then any opponent could profit
by spending some y > 0, no matter how small, and derail the action.

Proposition 2. FixQ and consider the ex ante per-period equilibrium payoff for some
player i :

ui .#/ D

Q!2X

kD0

.1/f .k/

„ ƒ‚ …
no action regardless of i’s vote

C Œp.1 C a " x.Q// C .1 " p/.1/$ f .Q " 1/„ ƒ‚ …
action occurs only if i votes in favor

C
N !1X

kDQ

Œp.1 C a " x.k C 1// C .1 " p/.1 " a/$ f .k/

„ ƒ‚ …
action occurs regardless of i’s vote

;

which simplifies to ui .#/ D 1 C %w.Q/, where %w.Q/ < a is defined in the proposition.
The equilibrium payoff from this strategy is ui .#/=.1 " ı/.
Consider first the implementation stage. Suppose first that q ! Q so the action should

take place. Any supporter who deviates from x.q/ will cause the action to fail, making this
unprofitable. Furthermore, there is no need to contribute more than the minimum necessary
to implement it. Since this is an at-cost implementation, any opponent who invests against
the action some y arbitrarily close to zero can derail it but then the game will revert to the
unconditional SPE. Doing so would not be profitable if

1 " y C
ı.1/

1 " ı
# 1 " a C

ıui .#/

1 " ı

for y ! 0. We can rewrite this as .1 " ı/a # ı%w.Q/. The necessary condition for this
inequality to work is %w.Q/ > 0. This condition is also sufficient to ensure that there exists
ı high enough to satisfy the inequality. In that case any ı ! ıw.Q/, where the latter is
defined in (1), will work. Note in particular that a C %w.Q/ > 0, and that %w.Q/ > 0
ensures that ı w.Q/ < 1, so solutions exist.
Suppose now that q < Q so the action is not supposed to take place. If q < " then

the action cannot be imposed because the supporters do not have enough resources to do
so. Any attempt to do so would fail and would be unprofitable. If, on the other hand,
q ! " , then the (self-declared) supporters can implement the action if they wish to (because
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opponents are not spending anything against it) but doing so would result in the reversion
to the unconditional SPE. This deviation will not be profitable if:

1 C a " x.q/ C
ı.1/

1 " ı
# 1 C

ıui .#/

1 " ı
;

which we can rewrite as .1 " ı/.a " x.q// # ı%w.q/. Recall now that the condition that
prevents the deviation of an opponent is .1 " ı/a # ı%w.q/. Thus, if an opponent will not
deviate, then supporters certainly would not do so in the implementation phase.
We now turn to the voting stage. Consider now a player who learns that he opposes the

action. If he votes sincerely, then his expected payoff in this period will be:

uo.#/ D

Q!2X

kD0

.1/f .k/ C .1/f .Q " 1/ C
N !1X

kDQ

.1 " a/f .k/ D 1 " a.1 " F.Q " 1//:

If he votes, falsely, in support of the action and then behaves as a supporter (so the action
gets implemented), his payoff in this current period will be

Q!2X

kD0

.1/f .k/ C .1 " a " x.Q//f .Q " 1/ C
N !1X

kDQ

.1 " a " x.k C 1//f .k/ < uo.#/:

Since this deviation will not be detected (and would not have been punished if it had), the
game will continue as before. Thus, this deviation cannot be profitable. Suppose he votes
for the action but then derails it. The optimal way of doing so would be to just consume
privately — the other supporters, incorrectly expecting him to contribute x.q/ toward the
“at cost” implementation would end up with X < " . Thus, his best possible payoff from
a deviation for the current period will be 1. However, this deviation is observable and will
be punished. This deviation will not be profitable if 1 C ı=.1 " ı/ # 1 " a.1 " F.Q "
1// C ıui .#/=.1 " ı/. This reduces to .1 " ı/a.1 " F.Q " 1// # ı%w.Q/. However, since
.1 " F.Q " 1//a < a, this condition will be satisfied whenever the condition that prevents
an opponent (who has voted sincerely) from derailing the implementation. (This makes
sense: an insincere vote will increase the probability of having to derail the action, and thus
the probability of the sanction relative to a sincere vote against it followed by derailing.)
Finally, consider a player who learns that he supports the action. If he votes sincerely,

then his expected payoff will be:

us.#/ D

Q!2X

kD0

.1/f .k/ C .1 C a " x.Q//f .Q " 1/ C
N !1X

kDQ

.1 C a " x.k C 1//f .k/:

If he deviates and votes insincerely and then does not derail the action (he has no incentive
to vote insincerely and derail it), his payoff would be

us.# 0/ D

Q!2X

kD0

.1/f .k/ C .1/f .Q " 1/ C
N !1X

kDQ

.1 C a/f .k/:
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Since this deviation will go undetected, the game continues as before. Thus, the necessary
and sufficient condition for this deviation to be unprofitable is us.#/ " us.# 0/ ! 0, or

.a " x.Q//f .Q " 1/ !
N !1X

kDQ

x.k C 1/f .k/;

which we can rewrite as (SC). This exhausts the possible deviations and completes the
proof.

Lemma 1. We begin by showing that unconstrained maximization selects the complete
information social optimum; that is Qu D Q". The payoff function will be increasing at
Q if, and only if, U.Q C 1/ " U.Q/ D %u.Q C 1/ " %u.Q/ > 0, and decreasing if the
difference is negative. We now obtain:

%u.Q C 1/ " %u.Q/

D p

!
a "

"

Q C 1

"
f .Q/ " p

!
a "

"

Q

"
f .Q " 1/ "

#
.2p " 1/a "

p"

Q C 1

$
f .Q/

D .1 " p/af .Q/ " p

!
a "

"

Q

"
f .Q " 1/:

Thus, %u.Q C 1/ " %u.Q/ > 0 , .1 " p/af .Q/ > p
%
a " !

Q

&
f .Q " 1/. The latter

inequality is:

.1 " p/a

 
N " 1

Q

!

pQ.1 " p/N !Q!1 > p

!
a "

"

Q

" 
N " 1

Q " 1

!

pQ!1.1 " p/N !Q

a

 
N " 1

Q

!

>

!
a "

"

Q

" 
N " 1

Q " 1

!

a

Q
>

a " "=Q

N " Q
;

which yields

Q <
N C "=a

2
$ eQ:

Thus, the payoff is strictly increasing for allQ < eQ, and strictly decreasing for allQ > eQ,
which implies that the unconstrained optimum is atQu D

˙ eQ
'

D Q". Clearly, if " # Q",
then the first constraint will not be binding; otherwise, Qu D " as long as the second
constraint is not binding. We now turn to investigating the conditions under which it will.
We can rewrite (SC) as

a

"
!

N !QX

kD0

#
.N " Q/Š.Q " 1/Š

.Q C k/Š.N " Q " k/Š

$ !
p

1 " p

"k

$ T .p; Q/: (3)

Note that a=" > 0, but since

@T

@p
D

N !QX

kD0

#
.N " Q/Š.Q " 1/Š

.Q C k/Š.N " Q " k/Š

$"
kpk!1

.1 " p/kC1

#

> 0;
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the inequality must be violated for p sufficiently high (limp!1 T .p; Q/ D 1 for any
Q < N ). On the other hand, limp!0 T .p; Q/ D 0, and the inequality is satisfied for any
Q.
Take now Qu D maxfQ"; "g so that the first constraint is satisfied. For p sufficiently

low condition (SC) will be met (with n.p/ D 0), but as we increase p, it must eventually
fail. Since T .p; Q/ is continuous in p, there must exist some Op where (3) is satisfied with
equality, so that the condition will fail for any p > Op. We now show that it is necessary
to increase Q to restore the condition. First, note that T .p; Q/ is strictly decreasing in Q.
SinceQ changes in discrete jumps, we can rewrite T .p; Q C 1/ " T .p; Q/ D D.p; Q/ as:

D.p; Q/ D

N !QX

kD0

#
.N " Q " 1/Š.Q " 1/Š

.Q C k C 1/Š.N " Q " k/Š

$ !
p

1 " p

"k

ŒQ " .k C 1/N $ < 0;

where the inequality follows from the fact that the first two terms in the summation are
positive but the third is negative for any k ! 0.
We now show that it is possible to satisfy (3) at p > Op by choosing some Q > Qu.

For this, it is sufficient to establish that there exists " > 0 such that T . Op C "; Qu C 1/ <
T . Op; Qu/. Since T .p; Q/ D T .p; Q C 1/ " D.p; Q/, we can write this as:

T . Op C "; Qu C 1/ " T . Op; Qu/ D T . Op C "; Qu C 1/ " T . Op; Qu C 1/ C D. Op; Qu/:

But since lim"!0 ŒT . Op C "; Qu C 1/ " T . Op; Qu C 1/$ D 0 butD. Op; Qu/ < 0, the fact that
this difference is continuous in " implies that that there exists O" > 0 such that T . OpC"; QuC
1/ " T . Op; Qu C 1/ C D. Op; Qu/ < 0 for all " < O". In other words, (3) must be satisfied at
T . OpC"; QuC1/. Thus, the optimal quota for these values of p will beQuC1, or n.p/ D 1.
Continuing in this way, we find that as p increases, n.p/must increase by one unit in a step-
wise manner as well until the quota reaches unanimity, in which case the condition will be
satisfied regardless of the value of p because then T .p; N / D 1=N < a=" .

Proposition 3. Fix Q and consider the voting phase assuming that players will con-
tribute if the quota is met. With everyone contributing when they have to there is no incen-
tive not to vote sincerely. If a supporter votes against the action, it will fail if he happens to
be pivotal, and he will contribute if it gets implemented even without his vote. Clearly such
a deviation cannot be profitable. If an opponent votes for the action, he will only cause it
to be implemented if he happens to be pivotal, an unprofitable deviation. Thus, it is only
necessary to ensure that the contribution is properly enforced.
Consider now the phase in which players have voted and there are q ! Q in support so

the action should take place under the equilibrium strategies. Since x D "=N , any player
who fails to contribute will derail the action. The consequences of not contributing x are
the same regardless of how one has voted, so we can analyze the deviation in this phase
of the stage game without reference to the vote of the player. It is easy to see that if an
opponent can be induced to contribute, then a supporter will surely do so: the continuation
game is the same for both and the current payoff from the equilibrium strategy is lower for
the opponent. Thus, it is sufficient to provide an incentive to the opponent. If he does not
contribute, the action will fail to take place, and the game will revert to the non-cooperative
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equilibrium. If the player follows the equilibrium strategy # and contributes x, the action
will take place now and in every future period in which the quota is met. To calculate the
latter, we need the ex ante expected payoff to an arbitrary player (i.e., the expected payoff
before he learns his preferences). Since the action takes place for any q ! Q, the per-period
expected payoff is:

ui .#/ D

Q!2X

kD0

.1/f .k/

„ ƒ‚ …
no action regardless of i’s vote

C Œp.1 C a " x/ C .1 " p/.1/$ f .Q " 1/„ ƒ‚ …
action occurs only if i votes in favor

C
N !1X

kDQ

Œp.1 C a/ C .1 " p/.1 " a/ " x$ f .k/

„ ƒ‚ …
action occurs regardless of i’s vote

;

which simplifies to:

ui .#/ D 1 C p.a " x/f .Q " 1/ C
N !1X

kDQ

Œ.2p " 1/a " x$ f .k/:

Thus, the condition for an opponent to follow the equilibrium strategy and invest for the
action today is:

1 " a " x C
ıui .#/

1 " ı
! 1 C

ı.1/

1 " ı
;

which we can rewrite as ıui .#/ ! ı C .1 " ı/.a C x/, or ı%u.Q/ ! .1 " ı/.a C x/:
Since a C x C %u.Q/ > 0, this yields ı ! ı u.Q/, with ı u.Q/ defined in (2).To ensure that
ı u.Q/ < 1, we require that %u.Q/ > 0, as stated.
Finally, we need to consider q < Q when the action will not take place. Clearly, no

opponent would contribute anything if the supporters follow the equilibrium strategy, so we
only need to make sure that the supporters do so. If q < " , then the action is beyond the
combined capabilities of the group. This deviation would result in wasted spending and
no action, so it cannot be profitable. The only possibly tempting deviation is for them to
implement the action, which they can do when q ! " (since the opponents are spending
Y D 0). In this case, the action can take place now (with opponents consuming privately)
but the game will revert to the private consumption SPE from the following period. The
condition for supporters to follow their equilibrium strategy and not impose the action today
is:

1 C
ıui .#/

1 " ı
! 1 C a " x.q/ C

ı.1/

1 " ı
;

which simplifies to ı%u.Q/ ! .1 " ı/.a " x.q//. Since this inequality must hold for
all realizations of q < Q # N and because the RHS is increasing in q (since x.q/ D
"=q is decreasing), it is necessary that it be satisfied at q D N . Thus, we end up with
ı%u.Q/ ! .1" ı/.a " x/. Recalling that the condition that prevents deviation by opponents
is ı%u.Q/ ! .1"ı/.a Cx/, we conclude that whenever the latter is satisfied, the supporters
will have no incentive to impose the action either.
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Lemma 2. Since U.Q/ D 1 C %u.Q/, the payoff function will be increasing at Q if,
and only if, U.Q C 1/ " U.Q/ D %u.Q C 1/ " %u.Q/ > 0, and decreasing if the difference
is negative. We now obtain:

%u.Q C 1/ " %u.Q/

D p.a " x/f .Q/ " p.a " x/f .Q " 1/ C Œ.2p " 1/a " x$ .F.Q/ " F.Q " 1//

D p.a " x/f .Q/ " p.a " x/f .Q " 1/ " Œ.2p " 1/a " x$ f .Q/

D .1 " p/.a C x/f .Q/ " p.a " x/f .Q " 1/

D .1 " p/.a C x/

 
N " 1

Q

!

pQ.1 " p/N !Q!1 " p.a " x/

 
N " 1

Q " 1

!

pQ!1.1 " p/N !Q

D pQ.1 " p/N !Q

"

.a C x/

 
N " 1

Q

!

" .a " x/

 
N " 1

Q " 1

!#

D pQ.1 " p/N !Q

#
.a C x/

.N " 1/Š

QŠ.N " Q " 1/Š
" .a " x/

.N " 1/Š

.Q " 1/Š.N " Q/Š

$

D

"
pQ.1 " p/N !Q.N " 1/Š

.Q " 1/Š.N " Q " 1/Š

##
a C x

Q
"

a " x

N " Q

$
:

Since the first bracketed term is always positive, it follows that

%u.Q C 1/ " %u.Q/ > 0 ,
a C x

Q
"

a " x

N " Q
> 0:

Solving the second inequality yields .a C x/N > 2aQ, which, after substituting x D "=N
ends in:

Q <
N C "=a

2
$ eQ: (4)

Thus, ifQ < eQ, then U.Q C 1/ > U.Q/, and the payoff function is increasing; but ifQ >
eQ, then U.QC1/ < U.Q/, so it is decreasing. Since for anyQ < eQ we would pickQC1
for a higher payoff, it follows that the best possible payoff is atQu D

˙ eQ
'

D Q".

Proposition 4. We need to show that Uw.Q/ D Uu.Q/ , %w.Q/ D %u.Q/. We can
rewrite this equation as:

p

!
a "

"

Q

"
f .Q " 1/ C

N !1X

kDQ

#
.2p " 1/a "

p"

k C 1

$
f .k/

D p

!
a "

"

N

"
f .Q " 1/ C

N !1X

kDQ

#
.2p " 1/a "

"

N

$
f .k/;

which simplifies to:

N !1X

kDQ

!
1

N
"

p

k C 1

"
f .k/ D p

!
1

Q
"

1

N

"
f .Q " 1/: (5)
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We need to prove (5) for an arbitrary Q, which we now do by induction. First, we show
that it holds for Q D N . Since the summation term is zero (the lower bound exceeds the
upper bound), it is sufficient to show that the right-hand side is zero too:

p

!
1

N
"

1

N

"
f .N " 1/ D 0:

For the inductive step, assume that (5) holds for someQ > 1. We now prove that the claim
holds forQ " 1 as well. Rewriting the claim atQ " 1 yields:

p

!
1

Q " 1
"

1

N

"
f .Q " 2/ D

N !1X

kDQ!1

!
1

N
"

p

k C 1

"
f .k/

D

!
1

N
"

p

Q

"
f .Q " 1/ C

N !1X

kDQ

!
1

N
"

p

k C 1

"
f .k/;

and since the claim is assumed to hold atQ, we substitute the second term using (5):

D

!
1

N
"

p

Q

"
f .Q " 1/ C p

!
1

Q
"

1

N

"
f .Q " 1/

D

!
1 " p

N

"
f .Q " 1/:

Using the definition of the probability mass function, we can rewrite this as:
!

1

Q " 1
"

1

N

" 
N " 1

Q " 2

!

pQ!1.1 " p/N !QC1 D

!
1

N

" 
N " 1

Q " 1

!

pQ!1.1 " p/N !QC1

which, after canceling the probability terms on both sides, yields
#

N " Q C 1

N.Q " 1/

$ #
.N " 1/Š

.Q " 2/Š.N " Q C 1/Š

$
D

!
1

N

" #
.N " 1/Š

.Q " 1/Š.N " Q/Š

$

and since .N " Q C 1/Š D .N " Q C 1/.N " Q/Š, and .Q " 1/.Q " 2/Š D .Q " 1/Š,
cancellations on both sides yield

1

.Q " 1/Š.N " Q/Š
D

1

.Q " 1/Š.N " Q/Š
;

so the claim holds atQ " 1. By induction, it must hold for allQ D 1; 2; : : : ; N .

Proposition 5. Consider first the continuation game after the vote. Whenever the agent
invests toward the action, it will succeed because x0.Q/ ensures that any groups of oppo-
nents at q ! Q does not have enough resources left to derail it (even though supporters
consume privately). If q < Q, the agent reimburses the players. Since everyone is con-
sumes privately, no supporter can benefit by deviating and attempting to implement the
action. Thus, neither opponents nor supporters have an incentive to deviate after the vote.
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We now examine the voting stage given that the continuation game after the vote will be
played according to the equilibrium strategies. Consider a player who learns that he is an
opponent. If he votes sincerely, the action will be implemented if there are q ! Q support-
ers among the remainingN "1 players. If, on the other hand, he votes insincerely in support
of the action, the agent would implement it when there are q ! Q " 1 supporters among
the remaining players. Since the player would not be able to block the action whenever im-
plementation is attempted, this deviation simply increases the likelihood of implementation
and decreases the likelihood that he will get back some of his payment to the agent, making
him strictly worse off.
Consider now a player who learns that he is a supporter. If he votes sincerely, the action

will be implemented if there are q ! Q " 1 supporters among the remaining players, and
his payoff would be:

Us D

Q!2X

kD0

.1"w/f .k/C
N !1X

kDQ!1

.1"x0.Q/Ca/f .k/ D 1"w C.a" Ox.Q//

N !1X

kDQ!1

f .k/:

(6)
If he deviates and votes against the action, then the agent will attempt implementation when
there are q ! Q supporters among the remaining players. Since he will not even try to
implement the action with fewer votes, there is no point in the supporter spending anything
toward it. Since the action will succeed in all other cases, his payoff will simply be:

OUs D

Q!1X

kD0

.1"w/f .k/C
N !1X

kDQ

.1"x0.Q/Ca/f .k/ D 1"wC.a" Ox.Q//

N !1X

kDQ

f .k/ < Us;

making this deviation unprofitable. Thus, any supporter has strict incentives to vote sin-
cerely as well.

Lemma 3. Delegating with Q means that every player contributes x0.Q/, votes sin-
cerely after observing his preference, and consumes privately. The agent commits the re-
sources toward the action if there are q ! Q supporting votes and reimburses the players
(net his fee) otherwise. The expected payoff to an opponent from a sincere vote is:

Uo D

Q!1X

kD0

.1 " w/f .k/ C
N !1X

kDQ

.1 " x0 " a/f .k/ D 1 " w " .a C Ox.Q//

N !1X

kDQ

f .k/; (7)

where we used (NBC) to obtain

x0.Q/ " w D
.1 " w/.N " Q/ C "

2N " Q
$ Ox.Q/:

That is, Ox.Q/ D x0.Q/ " w is the portion of the contribution that can be used for imple-
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mentation. For any agreed-upon Q, the ex ante expected payoff to player i is:

Ua D p

2

41 " w C .a " Ox.Q//

N !1X

kDQ!1

f .k/

3

5

C .1 " p/

2

41 " w " .a C Ox.Q//

N !1X

kDQ

f .k/

3

5

D 1 " w C p.a " Ox.Q//f .Q " 1/ C Œ.2p " 1/a " Ox.Q/$

N !1X

kDQ

f .k/; (8)

where we used (6) for the payoff in case he turns out to be a supporter (with probability p),
(7) for the payoff in case he turns out to be an opponent (with probability 1 " p). To see
how Ua changes withQ, note that:

Ua.Q C 1/ " Ua.Q/ D .1 " p/ Œa C Ox.Q C 1/$ f .Q/

" p Œa " Ox.Q/$ f .Q " 1/ C Œ Ox.Q/ " Ox.Q C 1/$

N !1X

kDQ

f .k/

or, with '.Q/ D Ox.Q/ " Ox.Q C 1/, and ˇ.Q/ D a.N " 2Q/ C N Ox.Q C 1/ C Q'.Q/,

D ˇ.Q/

#
.N " 1/Š

QŠ.N " Q/Š

$
pQ.1 " p/N !Q

C '.Q/

N !1X

kDQ

#
.N " 1/Š

kŠ.N " 1 " k/Š

$
pk.1 " p/N !1!k;

where we note that
'.Q/ D

.1 " w/N " "

.2N " Q/.2N " Q " 1/
> 0:

Thus, Ua.Q C 1/ " Ua.Q/ ! 0 if, and only if,

ˇ.Q/

#
.N " 1/Š

QŠ.N " Q/Š

$
pQ.1 " p/N !Q

C '.Q/

N !1X

kDQ

#
.N " 1/Š

kŠ.N " 1 " k/Š

$
pk.1 " p/N !1!k ! 0;

or, after dividing both sides by .N " 1/Š pQ.1 " p/N !Q, if, and only if,

ˇ.Q/

QŠ.N " Q/Š
C

#
'.Q/

1 " p

$ N !1X

kDQ

#
1

kŠ.N " 1 " k/Š

$ !
p

1 " p

"k!Q

! 0:
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We re-index the summation term and multiply both sides byQŠ.N " Q/Š to obtain:

ˇ.Q/ C

#
'.Q/

1 " p

$ N !1!QX

iD0

#
QŠ.N " Q/Š

.Q C i/Š.N " 1 " Q " i/Š

$ !
p

1 " p

"i

! 0:

Using the definition of ˇ.Q/, and dividing both sides by Q, we can rewrite this as:

aN C .N " Q/ Ox.Q C 1/

Q
C Ox.Q/

C

#
'.Q/

Q.1 " p/

$ N !1!QX

iD0

#
QŠ.N " Q/Š

.Q C i/Š.N " 1 " Q " i/Š

$ !
p

1 " p

"i

! 2a: (9)

Observe now that all three terms on the left-hand side of this inequality are positive. Fur-
thermore, at Q D 1 the left-hand side is strictly larger because it reduces to aN plus three
non-negative terms and N ! 2. Thus, at Q D 1, the difference is strictly positive, so the
payoff function is increasing. We now prove that the function is concave. For this, we only
need to show that the left-hand side of (9) (which is essentially the first derivative of Ua) is
decreasing in Q. First, note that

Ox.Q/ D
.1 " w/.N " Q/ C "

2N " Q
)

d Ox.Q/

dQ
D

" " .1 " w/N

.2N " Q/2
< 0;

where the inequality follows from w < w. This means that the first two terms on the left-
hand side of (9) are decreasing in Q. If Q > N " 1, then the third term is zero, and the
claim holds. Consider thenQ # N " 1. We now wish to show that the third term decreases
as well. Letting

D.Q/ D

!
1

1 " p

" #
'.Q/

Q

$ N !1!QX

iD0

#
QŠ.N " Q/Š

.Q C i/Š.N " 1 " Q " i/Š

$ !
p

1 " p

"i

;

we note that D.Q C 1/ " D.Q/ < 0 if, and only if,

N !1!.QC1/X

iD0

"
'.Q C 1/.Q C 1/Š.N " .Q C 1//Š

.Q C 1/.Q C 1 C i/Š.N " 1 " .Q C 1/ " i/Š

"
'.Q/QŠ.N " Q/Š

Q.Q C i/Š.N " 1 " Q " i/Š

#!
p

1 " p

"i

"

#
'.Q/QŠ.N " Q/Š

Q.N " 1/Š

$ !
p

1 " p

"N !1!Q

< 0:

Since the second term is positive but is being subtracted, the inequality must hold whenever
the summation is negative. Simplifying the summation, this requirement becomes:

N !1!.QC1/X

iD0

!
p

1 " p

"i #
QŠ.N " .Q C 1//Š

.Q C i/Š.N " 1 " .Q C 1/ " i/Š

$

%

#
'.Q C 1/

Q C 1 C i
"

'.Q/.N " Q/

Q.N " 1 " Q " i/

$
< 0;
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and since the first two multiplicative terms in this summation are positive, the inequality
will certainly hold if the third term is negative. But since the first term in that expression is
decreasing in i while the second one is increasing, it is sufficient to show that the inequality
holds at i D 0, or that

'.Q C 1/

Q C 1
"

'.Q/.N " Q/

Q.N " 1 " Q/
< 0;

because if this is true, then the term above will be negative for any i > 0 as well. Rearrang-
ing terms gives us:

Q.N " 1 " Q/ Œ'.Q C 1/ " '.Q/$ < '.Q/N:

Using the definition of '.Q/, dividing both sides by .1 " w/N " " , and multiplying them
by 2N " Q " 1 gives us:

Q.N " 1 " Q/

!
1

2N " Q " 2
"

1

2N " Q

"
<

N

2N " Q
;

which, after simplifying and multiplying both sides by 2N " Q, yields:

2Q.N " 1 " Q/ < N.2N " Q " 2/

or, after adding and subtracting QN on the right-hand side and re-arranging terms,

2.N " Q/ < 2.N " Q/2 C QN;

which simply reduces to

0 < 2.N " Q/.N " Q " 1/ C QN;

which holds because we have been considering the case with Q # N " 1. Thus, all three
terms on the left-hand side of (9) are decreasing inQ. We conclude that the payoff function
is concave, which implies that it has a unique maximizer, which we denote Q"

a .w; p/. (It
is the smallest integer for which the left-hand side of (9) is less than the right-hand side.) It
is immediate that the optimal quota must beQa.w; p/ D min.Q"

a .w; p/; Qa/.
We finally show that Qa.w; p/ is non-decreasing in p. Since only the interior solution

depends on p, we only need to prove the claim for Q"
a .w; p/. From the FOC given by (9),

it is sufficient to show that the summation term (the only one involving p) is increasing in
p. Taking the derivative of that term with respect to p produces

#
'.Q/

Q

$ N !1!QX

iD0

#
QŠ.N " Q/Š

.Q C i/Š.N " 1 " Q " i/Š

$"
pi

.1 " p/2Ci

#!
1 C

i

p

"
> 0;

so the claim holds. To see why this is so, fix some p and consider the optimum Q"
a .w; p/,

which is the smallest integer for which the left-hand side of (9) is less than the right-hand
side (that is, increasing the quota would make the payoff worse). If increasing p causes the
left-hand side to increase, it will eventually exceed the right-hand side for some Op > p.
But then Q"

a .w; Op/ will no longer be the smallest integer that makes the left-hand side
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less than the right-hand side (i.e., it will no longer be optimal). Since the left-hand side is
decreasing in Q, the requirement for optimality can be restored by increasing the quota to
Q"
a .w; Op/ D Q"

a .w; p/C1, which will make the left-hand side less than the right-hand side
again. Continuing in this manner, we see that increasing p will cause the quota to increase
in step-wise fashion until it reaches the ceiling Qa.

Lemma 4. Note now that limp!1 Ua D 1"wCa" Ox.Qa/. This is strictly preferable to
private consumption whenever this is greater than 1, or, after rearranging terms, whenever
aN C .a " 1/.N " Qa/ > wN C " . Since N ! Qa and a " 1 > 0, the second term on the
left-hand side is non-negative at the optimum quota. It then follows that it is sufficient to
establish that aN > wN C " holds. Since the right-hand side is increasing in w, we only
need to establish the claim at w, where it reduces to aN > wN C " D N , a > 1, which
holds.

Proposition 6. Since the strategies are unconditional, deviation does not affect future
play, and the discount factor is irrelevant. The only possibly profitable deviation is there-
fore limited to the stage-game. However, since delegation with Qa is preferable to private
consumption and because the strategies from Proposition 5 specify an equilibrium in the
stage-game, no such deviation exists.
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