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Proof of Lemma 1. Take some C ∈ S. To simplify notation, let

f(a) = ac−b > 0 and f ′(a) = (c − b)ac−b−1 > 0.

We can now rewrite the constraints as follows:

MC(a,C) = (1− δ)−1
[
(1− δT+1)f (a)− (δ− δT+1)(C +wh)

]
CR(a,C) = (1− δT) [C +wh − f(a)] .

To see how the two constraints behave as a function of demand, take the deriva-
tives:

∂MC
∂a

=
(

1− δT+1

1− δ

)
f ′(a) > 0 and

∂CR
∂a

= −(1− δT )f ′(a) < 0.

These now imply that the constraints either intersect precisely once or not at
all. The necessary and sufficient condition for an intersection is MC(1,C) ≤
CR(1,C)� (1− δ)/(1− δT) ≤ C +wh − 1, which yields

X(C) = (1− δ
T)(C +wh)

2− δ− δT ≥ 1, (1)

as the condition for the intersection. If X(C) satisfies (1), then the intersection
is at

f(ã) = X(C), (2)

where ã = c−b√X(C) by the definition of f(·). We can now use this fact to sub-
stitute (2) into (MC) and (CR) to obtain:

MC(ã,C) = CR(ã,C) = (1− δ)X(C)

at the intersection, which yields the value of w̃(C) for the case of intersection
stated in the lemma. Note in particular that (1 − δ)X(C) does not depend on
a itself, only on the coalition size. This now gives us the smallest contributor
size for C that admits a solution which would satisfy both constraints. Ifw(C) ≥
(1−δ)X(C), then there exist values ofa such that (a,C) is admissible. Otherwise,
there is no solution and this coalition does not permit any admissible profiles.
If the constraints do not intersect, then MC(a,C) > CR(a,C) for all values of a.
Therefore, it suffices to check whether MC(1,C) admits a solution. That is, if
w(C) ≥ MC(1,C), then there exist values of a such that (a,C) is admissible.

Proof of Proposition 1. Given that there exist admissible profiles, the hege-
mon picks the one that maximizes its payoff. Doing so is optimal for the hege-
mon because any alternative admissible profile will yield a worse payoff and any
inadmissible profile fails at least one of the constraints, which implies that coop-
eration will unravel and the hegemon’s payoff will be zero. Since the profile the
hegemon chooses is admissible, both (MC) and (CR) are satisfied, and all mem-
bers prefer to contribute while non-members free-ride on their efforts. Since the
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constraints are derived from the strategies specified in this section, these strate-
gies form a stationary SPE of the game. In fact, these strategies will support any
admissible profile in a stationary SPE of the continuation game after the initial
choice by the hegemon, so the hegemon is effectively choosing which stationary
SPE to play.

Proof of Proposition 2. Define the optimal choices as follows:

(i) if c/b < K1, then w∗ = MC1(a∗) > CR1(a∗), where a∗ = c−b
√
b(W+wh)
c(1+ε) ;

(ii) if c/b ∈ [K1, K2], then w∗ = MC1(a∗) = CR1(a∗), where: a∗ = c−b
√
W+wh
K2

;

(iii) if c/b > K2, then w∗ = CR1(a∗) > MC1(a∗) where: a∗ = c−b
√
b(W+wh)

c ,

where K2 = 1 + (1 − δ)(1 + ε(1 − δT))/(1 − δT) > K2/(1 + ε) = K1 > 1. The
hegemon’s optimization problem is:

max
a,w

πh(a,w) subject to w ≥ max{MC1(a),CR1(a)} & w ≥ 0 & a ≥ 1.

The Lagrangian is:

L = πh(a,w)− λ1(MC1(a)−w)− λ2(CR1(a)−w)− λ3(1− a)− λ4(−w),
with the Kuhn-Tucker conditions:

∂L
∂a

= ∂πh(a,w)
∂a

− λ1
∂MC1(a)
∂a

− λ2
∂CR1(a)
∂a

+ λ3 = 0; (3)

∂L
∂w

= −εab + λ1 + λ2 + λ4 = 0; (4)

λ1 ≥ 0, MC1(a) ≤ w & λ1(MC1(a)−w) = 0; (5)

λ2 ≥ 0, CR1(a) ≤ w & λ2(CR1(a)−w) = 0; (6)

λ3 ≥ 0, −a ≤ −1 & λ3(1− a) = 0;

λ4 ≥ 0, −w ≤ 0 & λ4(−w) = 0. (7)

Since we are looking for an interior solution, we set λ3 = λ4 = 0. Observe now
that at least one of the constraints must be binding at a solution. To see that
this must be the case, suppose that it is not. Since both constraints are slack,
MC1(a) −w > 0 and CR1(a) −w > 0 at the solution, and so (5) and (6) imply
that λ1 = λ2 = 0. But then (4) requires that εab + λ4 = 0. Since εab > 0, this
inequality cannot be satisfied for any a ≥ 1 because λ4 ≥ 0 must hold by (7).
Therefore, at least one of the constraints must be binding at a solution.

To simplify the algebra, define:

Δ = [1− δ(1+ ε(1− δT))]−1
> 0 R = (1− δT+1)Δ > 0

P = [1+ ε(1− δT)](1− δT )−1 > 0 S = δ(1− δT )Δ > 0.
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and note that we can rewrite K2 = (1+ PR)/(1+ PS) > K2/(1+ ε) = K1 > 1.
Suppose first that CR1(a) is slack, and so λ2 = 0. In this case, (4) implies that

λ1 = εab > 0, which means that (5) requires that w = MC1(a); that is, MC1(a)
must bind. Substituting this in (3), we obtain:

b [W +wh − εMC1(a)]ab−1 − cac−1 − εab ∂MC1(a)
∂a

= 0,

which simplifies to:

(1− δ)
[
b(W +wh)ab−1 − c(1+ ε)ac−1

]
1− δ(1+ ε(1− δT)) = 0,

whose unique solution is:

a1 = c−b
√
b(W +wh)
c(1+ ε) .

Since we require that w1 = MC1(a1) > 0, observe that this will hold whenever

c
b
≤ 1− δT+1

(1+ ε)(δ− δT+1)
.

We now need to ensure that CR1(a1)−w1 < 0. This inequality reduces to:1

(1− δT)(c(1+ ε)− b)
1+ ε(1− δT) − (1− δ

T+1)b − (δ− δT+1)(1+ ε)c
1− δ(1+ ε(1− δT )) < 0,

which we can compactly rewrite as (c(1+ ε)− b)/P − Rb − S(1+ ε)c < 0, or:

c
b
<

1+ PR
(1+ ε)(1+ PS) ≡ K1.

This inequality can be satisfied because K1 > 1 � ε < ε, which holds by As-
sumption 1, or:

1+ PR
1+ PS > 1+ ε

1+ (1− δ)[1+ ε(1− δ
T)]

1− δT > 1+ ε

1+ ε(1− δT ) > (1− δ
T)ε

1− δ
1 > ε

(
δ(1− δT)

1− δ

)
1− δ

δ(1− δT ) > ε,
1Note that, letting x = 1+ ε(1− δT ), we obtain:

1+ PR
1+ PS = 1+ (1− δ)x

1− δT = 1+ (1− δ)P
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where the last line follows from Assumption 1. Now observe that:

1− δT+1

(1+ ε)(δ− δT+1)
>

1+ PR
(1+ ε)(1+ PS) � ε < ε

becase:

1− δT+1

δ(1− δT) > 1+ (1− δ)[1+ ε(1− δ
T)]

1− δT
1− δT+1 > δ(1− δT)+ δ(1− δ)[1+ ε(1− δT)]

1 > δ[1+ ε(1− δT)]
1− δ

δ(1− δT) > ε,

In other words, whenever c/b < K1, then w1 = MC1(a1) > 0 will certainly be
satisfied as well. Therefore, (a1,w1) is valid solution if, and only if, b/c < K1,
which yields the first case in the proposition.

Suppose now that MC1(a) is slack, and so λ1 = 0. In this case, (4) implies that
λ2 = εab > 0, which means that (6) requires that w = CR1(a); that is, CR1(a)
must bind. Substituting this in (3), we obtain:

b [W +wh − εCR1(a)]ab−1 − cac−1 − εab ∂CR1(a)
∂a

= 0,

which simplifies to:
b(W +wh)ab−1 − cac−1

1+ ε(1− δT ) = 0,

whose unique solution is:

a2 = c−b
√
b(W +wh)

c
.

Observe now thatw2 = CR1(a2) > 0 is always satisfied, so we only need to check
that MC1(a2)−w2 < 0 to ensure that this is a solution. The inequality reduces
to:

(1− δT+1)b − (δ− δT+1)c
1− δ(1+ ε(1− δT)) − (1− δ

T)(c − b)
1+ ε(1− δT) < 0,

which we can simplify to:

c
b
< 1+

(
1− δ

1− δT
)[

1+ ε(1− δT)
]

which can be satisfied. We can then rewrite the condition as Rb−Sc−(c−b)/P <
0, or:

c
b
>

1+ PR
1+ PS ≡ K2 = (1+ ε)K1 > K1.
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We have already established that K1 > 1, so this inequality can be satisfied for
some values of b and c. Hence, (a2,w2) is a valid solution if, and only if, c/b >
K2. This yields the third case in the proposition.

Finally, suppose that both constraints are binding. Solving MC1(a) = CR1(a)
yields:

ac−b3 = (1− δT )(W +wh)
1− δT + (1− δ)(1+ ε(1− δT))

ac−b3 = (W +wh)(1+ PS)
1+ PR ,

a3 = c−b
√
W +wh
K2

,

and sow3 = MC1(a3) = CR1(a3). The derivation ensures that MC1(a3)−w3 = 0
and CR1(a3) −w3 = 0, as required. To satisfy (4), we need λ1 > 0, λ2 > 0, and
λ1 + λ2 = εab3 > 0, which can certainly be satisfied. Noting now that:

∂πh(a)
∂a

= b(W +wh − εw)ab−1 − cac−1

∂MC1(a)
∂a

= (1− δ
T+1)(c − b)ac−b−1

1− δx = R(c − b)ac−b−1

∂CR1(a)
∂a

= −(1− δ
T )(c − b)ac−b−1

x
= −(c − b)a

c−b−1

P
,

where we let x = 1+ ε(1− δT). Using our definitions, we can also rewrite:

MC1(a) = Rac−b − S(W +wh)

CR1(a) = W +wh − ac−b
P

.

We can rewrite the Lagrangian as follows after dividing through by ab−1
3 :

b(W +wh − εw3)− cac−b3 − λ1R(c − b)ac3 +
(εab3 − λ1)(c − b)ac3

P
= 0.

Since w3 = CR1(a3) = (W +wh)(K2−1)/(PK2) = (W +wh)(R−S)/(1+PR) =
(W +wh)(1− δ)/K2, we can simplify this to:

b(W +wh)
K2

[
1+ 1− δ

1− δT
]
− cac−b3 − λ1R(c − b)ac3 +

(εab3 − λ1)(c − b)ac3
P

= 0.

Substituting for ac−b3 and rearranging terms gives us:

W +wh
K2

[
c − b

(
1+ 1− δ

1− δT
)]
= (c − b)ac3

[
εab3 − λ1(1+ PR)

P

]
.

Dividing through by c − b then yields:

W +wh
K2

[
1− b(1− δ)

(c − b)(1− δT)
]
= ac3

[
εab3 − λ1(1+ PR)

P

]
.

6



Solving for λ1 and noting that (W +wh)/K2 = ac−b3 results in:

λ1 =
(

1
1+ PR

)[
εab3 − Pa−b3

[
1− b(1− δ)

(c − b)(1− δT )
]]
.

We need to ensure that 0 < λ1 < εab3. Let ζ = 1−b(1−δ)/[(c−b)(1−δT)] and
note that ζ < 0 � c/b < (2 − δ)/(1 − δT). Since 1 + PR > 0, λ1 > 0 requires
that a2b

3 > ζP/ε. Analogously, λ1 < εab3 requires that a2b
3 > −ζ/(εR). We now

have two general cases to consider.
Suppose first that ζ < 0. This immediately satisfies λ1 > 0 because a2b

3 > 0
and P/ε > 0. Hence, we only need to ensure that a2b

3 > −ζ/(εR) holds. This
inequality simplifies to c/b > 1 + (1 + δ)/[(1 − δT)(1 + εRa2b

3 )] ≡ K. Since
a2b

3 ≥ 1, it follows that K ≤ 1+ (1− δ)/[(1− δT )(1+ εR)] = K1.
2

Therefore, c/b > K1 ⇒ c/b > K is sufficient to guarantee λ1 is valid whenever
ζ < 0.

Suppose now that ζ > 0. This immediately satisfies λ1 < εa2b
3 because εR > 0.

Hence, we only need to ensure thata2b
3 > ζP/ve holds. This inequality simplifies

to c/b < 1 + (1 − δ)P/[(1 − δT)(P − εa2b
3 )] ≡ K. Since a2b

3 ≥ 1, it follows that
K ≥ 1 + (1 − δ)P/[(1 − δT )(P − ε)] = K2.3 Therefore, c/b < K2 ⇒ c/b < K2 is
sufficient to guarantee that λ1 is valid whenever ζ > 0.

Putting all of these results together yields the range c/b ∈ [K1, K2] that en-
sures that there exists a solution that satisfies the Kuhn-Tucker conditions when
both constraints are binding. This yields the second case in the proposition.

To establish the claim about the comparative statics of the optimal demand,
we need to show that ∂a∗

∂wh
> 0, which is clearly true from inspection. To see that

∂w∗
∂wh

> 0 as well, we examine each case separately:

(i) w∗ = MC1(a∗) = Rb(W+wh)
c(1+ε) − S(W +wh), and the derivative is:

∂w∗

∂wh
= Rb
c(1+ ε) − S > 0 �

c
b
<

1− δT+1

δ(1− δT)(1+ ε) ≡ K.
2To see that this equality holds:

1+ 1− δ
(1− δT )(1+ εR) = 1+ (1− δ)(1− δx)

(1− δT )(1− δx + ε(1− δT+1))

where x = 1+ ε(1− δT ) and 1+ εR = 1+ ε(1− δT+1)/(1− δx)

= 1+ 1− δx
(1+ ε)(1− δT )

because 1− δx + ε(1− δT+1) = (1+ ε)(1− δ)

=
(

1
1+ ε

)[
1+ (1− δ)x

1− δT
]
= K2

1+ ε = K1.

3Since P − ε = 1/(1− δT ), we have 1+ (1− δ)P/[(1− δT )(P − ε)] = 1+ (1− δ)P = K2.
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Since c/b < K1 in this case, it will be sufficient to show that K1 < K. Using
K1 = K2/(1+ ε), this last inequality reduces to ε < ε, which holds.

(ii) w∗ = MC1(a∗) = CR1(a∗) = (W +wh)(K2 − 1)/(PK2), and the derivative
is:

∂w∗

∂wh
= K2 − 1

PK2
> 0,

where the inequality follows from K2 > 1 and P > 0.

(iii) w∗ = CR1(a∗) = (W +wh)(c − b)/(Pc), and the derivative is:

∂w∗

∂wh
= c − b

Pc
> 0,

where the inequality follows from P > 0.

Therefore, the optimal minimum contributor size is strictly increasing in wh as
well. This establishes the comparative statics results.

Proof of Proposition 3. First we show that if the exclusion cost is sufficiently
low, the discriminatory regime is always preferred to the public goods regime.
Let the subscripts D and P denote the discriminatory and public goods regimes,
respectively. Since a∗D is exactly the unconstrained optimum when w = 0, it
follows that the hegemon’s payoff under the discriminatory regime is precisely
the maximum unconstrained payoff net the discrimination cost: πh(a∗D,0) −
m. But πh(a∗D,0) > πh(a∗,w∗) implies that there exists m > 0 such that
πh(a∗D,0)−m = πh(a∗,w∗). Hence, for any m <m, the hegemon will strictly
prefer the discriminatory regime to the public goods regime.

We now show that for any exclusion cost there exists a size threshold above
which hegemons prefer to discriminate. The payoff from the public goods regime
is:

πh(a,w) = (W +wh − εw)ab − ac = ab[W +wh − εw − ac−b]

which, using (a∗,w∗) for the case where both constraints bind, is:

= (W +wh)
(W +wh

K2

) b
c−b [

1− ε(K2 − 1)
PK2

− 1
K2

]
(8)

= (W +wh)
(W +wh

K2

) b
c−b [(P − ε)(K2 − 1)

PK2

]
(9)

and since K2 − 1 = (1− δ)P , we get:

= (W +wh)
c
c−b (1− δ)(P − ε)

(
1
K2

) c
c−b

(10)
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The utility obtained from the discriminatory regime is:

πh(a∗D,0)−m =
(
b(W +wh)

c

) b
c−b [W +wh − b(W +wh)

c

]
−m

= (W +wh)
c
c−b

(
c − b
c

)(
b
c

) b
c−b −m.

The hegemon will prefer to pay the exclusion cost and discriminate rather than
produce public goods whenever πh(a∗D,0)−πh(a∗,w∗) > m, or whenever

Π · (W +wh)
c
c−b > m, (11)

with

Π = (c − b
c

)(
b
c

) b
c−b − (1− δ)(P − ε)

(
1
K2

) c
c−b

> 0, (12)

where the Π > 0 follows from the fact that πh(a∗D,0) > πh(a∗,w∗), which
implies that the left-hand side of (11) must be positive. Define:

wh(m) =
(
mΠ
) c−b

c −W ,

and observe that for a given m, taking wh > wh(m) will satisfy (11). There-
fore, for any m > 0, every hegemon with wh > wh(m) will strictly prefer to
discriminate.

Proof of Proposition 4. Let the subscript S denote slow-time (without an in-
stitution). We first derive the optimal profile without institution where players
interact every other period only using the usual trigger strategies. To simplify
notation, define the following short-hand expressions:

Δ̂ = [1− δ2 − εδ2
(
1− δT

)]−1
and P = ε+

(
1− δT

)−1

R̂ =
(
1− δT+2

) Δ̂ and Ŝ = δ2
(
1− δT

) Δ̂
Note that Δ̂ > Δ > 0, R̂ > Ŝ > 0, R > R̂, and S > Ŝ. For the contributor to be
willing to contribute it must be the case that:

πi(a,C)
1− δ ≥ (1+ δ)

[
(C +wh)ab −wiab

]
+
(
δT+2

1− δ

)
πi(a,C)

Notice that the only change from MC1(a) is that when the potential contributor
defects, it benefits from the defection for two periods instead of one. Making
the necessary substitutions and simplifying yields:

w ≥ R̂ac−b − Ŝ(W +wh) ≡ MCS(a)
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We now find the optimal level of contribution and optimal size of the marginal
contributor in the case where both constraints are binding by setting the contrib-
utor’s constraint equal to the credibility constraint. The credibility constraint is
the same as before, CR1(a), because the hegemon decides whether to punish by
looking at present and future payoffs, which have not changed. (The loss from
an additional period of free riding in the past is irrelevant.) The constraints are
equal when:

P−1
(
W +wh − ac−b

)
= R̂ac−b − Ŝ(W +wh).

Solving this for a yields: (a∗S )c−b = (W +wh)(1+ PŜ)/(1+ PR̂). Note now that
(1+ PŜ) = Δ and (1+ PR̂) = ΔK̂2, where

K̂2 = 1+ (1− δ
2)[1+ ε(1− δT)]

1− δT .

We can rewrite this result as follows:

a∗S = c−b
√
W +wh
K̂2

.

Since both constraints are binding, we obtain w∗
S = CR1(a∗S ) = MCS(a∗S ).

Turning now to the proof of the claim, let (a∗S ,w
∗
S ) be the optimal profile we

just derived and (a∗,w∗) be the optimal (fast-time, with institution present)
profile from Proposition 2 when both constraints are binding. Note now that:

a∗ > a∗S � K̂2 > K2 � 1 > δ,

and so the optimal demand with the institution is strictly larger than without it.
Observe now that:

w∗ < w∗
S � K̂2 > K2,

which we already know to hold. That is, the size of the smallest contributor is
strictly smaller with the institution than without it.

Proof of Proposition 5. We need to compare the expected payoffs with an
institution, πh(a∗,w∗) from Proposition 2 with both constraints binding, and
without an institution,πh(a∗S ,w

∗
S ) from the proof of Proposition 4. Letting k > 0

represent the cost of building the institution, the payoff from doing so exceeds
the payoff of having no institution whenever πh(a∗,w∗)−k > πh(a∗S ,w∗

S ). The
first payoff is simplified in (10). Noting that K̂2 = 1+ (1− δ2)P , we can simplify
the latter payoff as:

πh(a∗S ,w
∗
S ) = (W +wh)

c
c−b (1− δ2)(P − ε)

(
1

K̂2

) c
c−b
.

We can now rewrite the condition as follows:

Π̂ · (W +wh)
c
c−b > k, (13)
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where

Π̂ =
⎡⎣(1− δ)( 1

K2

) c
c−b − (1− δ2)

(
1

K̂2

) c
c−b
⎤⎦ (P − ε) > 0, (14)

where the inequality follows from the fact that we can show that the expression
in the brackets is positive:

1− δ
1− δ2 >

(
K2

K̂2

) c
c−b

� K̂2 > K2.

This means that we can now define the following function:

ŵh(k) =
(
kΠ̂
) c−b

c −W .

For any k > 0, every hegemon with wh > ŵh(k) strictly prefers to build an
institution because its size satisfies (13). This establishes the claim.

Proof of Proposition 6. The hegemon will prefer the private-goods regime to
“slow time” whenever πh(a∗D,0)−m > πh(a∗S ,w

∗
S ), which reduces to:

ΠS · (W +wh)
c
c−b > m,

where

ΠS = (c − bc
) b
c−b − (1− δ2)(P − ε)

(
1

K̂2

) c
c−b
.

Hence, any hegemon with size

wh >
(
mΠS
) c−b

c −W ≡ h

will strictly prefer paying the exclusion cost to continuing without an institution.
We now find the size threshold beyond which a hegemon would prefer the

private-goods regime to the public-goods regime with an institution. The thresh-
old will be similar to the one above, but actions take place in “fast time,” and the
hegemon bears an additional cost to make this change to “fast time.” The hege-
mon will prefer to pay the exclusion cost wheneverπh(a∗D,0)−m > πh(a∗,w∗)−
k, or: Π · (W +wh)

c
c−b > m− k,

where Π is defined in (12). Hence, any hegemon with size

wh >
(
m− kΠ

) c−b
c −W ≡ h

will strictly prefer paying the exclusion cost to building an institution. Note now
that:

h < h� k <
m(ΠS −Π)Π ,
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where ΠS − Π = Π̂ > 0 and Π̂ is defined in (14). In this case, all wh ∈ [h,h]
prefer building an institution to discriminating, and prefer discriminating to
living without an institution.
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