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Overview We have now defined the concept of credibility quite precisely in terms

of the incentives to follow through with a threat or promise, and arrived at a so-

lution concept of perfect equilibrium which takes it into account. We now turn to

the question of incomplete information and study an escalation game in which the

defender is uncertain about whether its opponent is resolute or not. We find that

we have to consider not just strategies but beliefs, and refine our solution concept

to account for both, calling it Perfect Bayesian equilibrium. The solutions to this

game uncover some rather surprising dynamics of deterrence and compellence.



We have now defined the concept of credibility very precisely. A threat (or a

promise) is not credible if the player would not carry it out if given a choice. We

then used this idea to argue that a reasonable solution to a game should not depend

on a player using incredible threats because his opponent would never believe them,

and would therefore ignore them when determining her own best response. We

introduced the perfect equilibrium solution concept that rules out Nash equilibria

which depend on such unreasonable behavior. Further, we studied an easy way to

analyze complete information games with backward induction.

The solutions to the two escalation games, one with a weak challenger and the

other with a tough challenger, demonstrated that the perfect equilibria are very dif-

ferent. In the first case, the challenger did not have a credible threat to attack, so

the defender had a credible threat to resist, which in turn was sufficient to deter the

challenger from escalating in the first place. The perfect equilibrium outcome was

the status quo. In the second case, where the challenger could credibly threaten to

launch an attack if resisted, the defender was compelled to concede, which in turn

implied that she would fail to deter the opponent from escalating in the first place.

The outcome was capitulation by the defender.

In both cases, the probability of war in equilibrium was zero, which makes intu-

itive sense. If everything in the game is common knowledge, then players would

succeed in avoiding the costly confrontation. Note in particular that even though

the resolute challenger prefers the status quo to war, he still escalates because he

knows that the defender will back down. Furthermore, if the defender knows that

the challenger will capitulate, she will resist and her threat will work even though

she is weak.

Although very useful to illustrate the idea of credibility, these models actually

pose more questions than they answer. In the real world, it is very likely that ad-

versaries will not know the resoluteness of the opponent. So, what would happen if

this is the case? Further, from our simple simultaneous move crisis game we know

that a little uncertainty can immediately generate a positive probability of war in

the mixed strategy equilibrium. Yet war is sure not to occur in the perfect equilibria

of the escalation models. We now turn to the analysis of an escalation game under

incomplete information.

1 The Escalation Game with Incomplete Information

We have seen how to model games of incomplete information as games of imper-

fect information. A brief review is in order. Suppose that the weak defender, DW ,

does not know whether the challenger is tough, CT , or weak, CW . (Her weakness

is common knowledge.) The defender does have some prior belief (e.g. from pre-

vious interactions, from results of CIA analysis, etc.) that the probability that the

challenger is tough is p 2 .0; 1/. Of course, we could assign a specific probability
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to p, but we prefer to conduct the analysis for arbitrary values of the prior beliefs so

we can apply the results to all sorts of situations. That is, we want to be able to say

things like “if D’s prior belief is pessimistic (that is, it assigns a high probability

to the challenger being tough), then the equilibrium would be such and such, and if

D’s prior belief is optimistic, then the equilibrium would be so and so.” The idea is

to make our results as general, and therefore useful, as possible.

Recall that to model the uncertainty about the challenger’s type, we introduce the

fictitious player Nature, N , which “chooses” the tough type with probability p, and

the weak type with probability 1 � p. The challenger knows his type when making

his move, but the defender can only observe the move and does not know which

type of opponent actually made it. The situation is represented in Figure 1.
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Figure 1: Escalation Game with a Weak Defender and Incomplete Information

about the Challenger.

The information set for player D contains two nodes, one following escalation

by CT and another following escalation by CW , because even though D can ob-

serve escalation, she does not know wether the tough or the weak challenger was

responsible for it. The label x represents D’s belief that it was the tough one who

escalated, and 1 � x represents her belief that it was the weak one who escalated.

In other words, x is D’s estimate that the challenger is tough given that escalation

has occurred. We shall see shortly how D will calculate this belief. For now, all we

need to keep in mind is that because D is unsure about the nature of her opponent,

she may be unable to predict what he will do when resisted. From her perspective,

resistance will lead to war if C is tough but to peace (with victory) if C is weak.

Since D does not like war, she has to figure out if the risk of resistance is worth it.

Estimating this risk depends on what she believes about the type of her opponent.

Intuitively, this belief, x, should depend on her priors and on any new information
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she can glean during the crisis itself (i.e., from the challenger’s decision to escalate).

We can begin solving this game by backward induction. At the last node for the

weak type, C will never attack because attacking yields �12, while not attacking

yields �10. Therefore, in any perfect equilibrium, the weak type would capitulate

if resisted. On the other hand, at the last node for the tough type, C will always

attack because doing so yields �1, while not attacking yields �10. Therefore, in

any perfect equilibrium, the tough type would attack if resisted. We fold back the

game by removing the branches representing actions that are not credible (attack for

the weak and capitulation for the tough) because these can never occur in a perfect

equilibrium.

Because resisting the weak type results in capitulation by the challenger and re-

sisting the tough type results in war, we replace C ’s last decision nodes with the

payoffs for the outcomes that would result in these nodes are ever reached by D’s

resistance. The result is shown in Figure 2. Note that, as our intuition suggested,

D’s choice to resist can lead to two different outcomes depending on the type of

opponent she faces.
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Figure 2: The Escalation Game After Pruning the Last Nodes.

Unfortunately, we cannot continue the backward induction. Why? Because the

optimality of D’s action depends on what she thinks about C ; that is, whether D

believes that she is at the lower or upper node in her information set. For example,

if D knew that her opponent were weak (she would be at the upper node), her belief

would be 1�x D 1, or x D 0. In this case, she would prefer to resist because doing

so would yield 10, while playing �r would yield only �10. However, if D believed

that C were tough (she would be at the lower node), her belief would be x D 1. In

this case, she would prefer not to resist because doing so would yield �10, while

playing r would yield �15. As we expected, the optimal action crucially depends
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on this belief. We now formalize this idea by analyzing how D’s optimal behavior

depends her beliefs.

2 Sequential Rationality

We shall call a player’s strategy sequentially rational if it is a best response to the

opponent’s strategy given the player’s beliefs. (For now, we do not specify where

these beliefs come from.) A strategy is sequentially rational for some belief x if the

player would actually want to play this strategy if his belief ever became x. This

generalizes the notion of best response by explicitly taking into account the beliefs

that the player has about his opponent’s behavior.

Returning to our example, let’s determine the beliefs that would make r a best

response by D, and the beliefs that would make �r a best response. That is, we

are asking the question, “What could D believe about the type of her opponent that

would make resistance a best response?” To put it another way, we want to find the

belief that rationalizes a particular strategy.

Note that at her information set, D only has two choices: resist or not. Let’s

calculate the expected utility from resisting, like we did for the mixed strategies

before. If player D chooses r , then she will either end up at war if C is tough or

victory if C is weak. She believes that C is tough with probability x, so from her

perspective resistance leads to war (payoff of �15) with probability x and victory

(payoff of 10) with probability 1 � x. The expected payoff from resistance is then:

UD.r/ D x.�15/ C .1 � x/.10/ D 10 � 25x:

If player D chooses �r , then the outcome will be her capitulation regardless of the

type of opponent. We could write out the expected payoff: she would get �10 with

probability x and �10 with probability 1 � x, or:

UD.�r/ D x.�10/ C .1 � x/.�10/ D �10:

When would she choose r? When the expected utility from doing so exceeds the

expected utility of choosing �r :

UD.r/ > UD.�r/

10 � 25x > �10

x < 20=25 D 4=5 D 0:8:

This gives is the critical threshold for the belief that rationalizes resistance. If D

came to believe that C is tough with probability less than 80%, then the rational

thing to do will be to resist. There is risk in this action: after all, the challenger

could turn out to be tough, and in that case resistance will cause war. However, the

risk is worth it given her beliefs. Optimism (belief that one’s opponent is weak)
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can generate a risk of war, as many historians and political scientists have noted.

Pessimism, on the other hand, may lead to peace. If D’s estimate of the chances of

C being tough goes above 80%, then the risk of war becomes intolerable, and she

will submit. In this case, her belief causes her to think that resistance is too likely

to lead to an attack because the challenger is very likely to be tough. Given her

aversion to war, D will not run this risk.

In our terminology, the strategy r is sequentially rational if x < 0:8. That is,

the strategy of resisting is sequentially rational if, and only if, D believes that C is

tough with probability less than 80%. This means that the strategy �r is sequen-

tially rational if x > 0:8. That is, the strategy of not resisting is sequentially rational

if, and only if, D believes that C is tough with probability greater than 80%. Fi-

nally, if x D 0:8, then D is indifferent between the two strategies. As before, this

means that they are both best responses; both r and �r are sequentially rational. As

we know, if this is the case, then D can mix between them, so she can play r with

some probability q and �r with some probability 1 � q, where 0 � q � 1.

We shall express D’s pure strategies in terms of this mixed strategy. That is,

q D 1 is the same as the pure strategy r , and the mixed strategy q D 0 is the same

as the pure strategy �r . To summarize our findings, D’s sequentially rational best

responses are:

BRD.x/ D

8

ˆ

<

ˆ

:

q D 1 if x < 0:8

q D 0 if x > 0:8

0 � q � 1 if x D 0:8:

Notice that these best responses are now functions of D’s beliefs. Sequential ra-

tionality critically depends on beliefs: an action is only sequentially rational given

some beliefs. One cannot evaluate its optimality without considering them. But

where do these beliefs come from?

3 Consistent Beliefs

When we think about D’s belief x (the probability she assigns to the opponent being

tough), we intuitively know that it should depend on two things: (i) the initial belief

D had before C escalated, and (ii) the fact that C actually did escalate. That is, x

is going to be somehow related to the information D had before the crisis, and the

new information acquired during the crisis from observing her opponent’s behavior

and making inferences about what could have produced such behavior.

We have already decided that prior to the crisis, D’s belief is represented by the

move by Nature. That is, this chance move was designed to convey the idea that

D believed that C was tough with probability p, and weak with probability 1 � p.

We shall call this p, player D’s prior belief for obvious reasons. As we discussed,

this belief could come from prior experience with the challenger, or analysis of

challenger’s behavior in other crises, or analysis by experts (this is what the CIA,
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army intelligence, and a host of other organizations actually do), or even impres-

sions from C ’s interactions with other players (we shall see quite a bit of that when

we go over historical cases). At any rate, this prior belief p exists before the game

begins.

If the challenger escalates, then D must take this into account and revise her

belief accordingly. Why? Because the challenger knows his own type, his choice

of strategy will depend on that private information. But if that’s the case, then

the defender can look at the choices C is making and perhaps infer what type of

opponent she faces. The defender will attempt to learn this private information

so that she may choose her best response accordingly. Obviously, the challenger

knows that she will do this and will try to manipulate this belief in order to induce

a response that he likes best. Of course, the defender knows that the challenger

knows what she is doing, so she will take into account his attempt to manipulate

her beliefs when she makes her inferences, and so on. The question then is: how

does D revise her prior belief in the light of the new information conveyed by

escalation?

What we are asking is how to compute x D Pr.CT je/, which reads “what is the

probability that the challenger is tough given that he escalated?” We call x the pos-

terior belief (or updated belief) because it takes into account the information that

C has escalated. Of course, D cannot just arbitrarily interpret escalation: the in-

formation provided by this move must be consistent with what constitutes rational

behavior by C . For example, if the weak type would never escalate in equilibrium,

then upon observing escalation D should never believe that she might be facing the

weak challenger.

This means that D has to take into account the challenger’s strategy when making

her inferences. Since we allow for mixed strategies, when D updates her belief she

will note the probability that the tough challenger would escalate and the probability

that the weak one would escalate. Since we do not know these probabilities yet, let

˛ denote the probability that CT chooses e, and let ˇ denote the probability that

CW chooses e. Recall that player C has two information sets in our revised game

in Figure 2. Therefore, his strategy should include two components: what to do if

he is the tough type, and what to do if he is the weak type. A pure strategy would

be .e; �e/, which says “escalate if tough, do not escalate if weak.” There are four

type-contingent pure strategies.1

With ˛ and ˇ, we are just writing the mixed strategies, so .˛; ˇ/ is the type-

contingent mixed strategy which says “escalate with probability ˛ if tough, and

escalate with probability ˇ if weak.” Of course, this means also “do not escalate

1Strictly speaking, the strategy must include the action to take after D’s choice to resist. We

already know that subgame-perfection requires the tough challenger to attack and the weak to ca-

pitulate. Hence, any equilibrium we find must specify these actions as part of the optimal strategy

for the challenger. To reduce clutter, I will not write them explicitly but instead focus on the initial

choice to escalate.
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with probability 1 � ˛ if tough, and do not escalate with probability 1 � ˇ if weak.”

For example, the mixed strategy .1; 0/, which denotes ˛ D 1 (tough type escalates

with certainty) and ˇ D 0 (weak type does not escalate with certainty) is the same

as the pure strategy .e; �e/. The mixed strategy .0:5; 0:3/ would be read as “es-

calate with probability 0:5 if tough, and escalate with probability 0:3 if weak.” To

keep things clear, the revised Figure 3 labels the branches with their corresponding

probabilities.
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Figure 3: The Escalation Game With Mixed Strategies.

Note that D’s mixing probability q must be the same for both nodes in her in-

formation set because she cannot condition her behavior on C ’s type if she does

not know it. On the other hand, C ’s mixing probabilities at his two nodes can be

different because they are in different information sets: he does know his type and

can therefore condition his behavior on it.

How do we calculate the posterior probability x given the prior probability p and

C ’s mixing probabilities ˛ and ˇ? There is a simple formula that allows us to com-

pute the posterior belief from the prior belief and the new information. It is called

Bayes rule, which some of you may have seen in elementary courses on probability

theory or statistics. In our case, this rule allows us to answer the question: Given

that C has escalated, what is the probability that C is tough? Intuitively, to answer

this question, we need to figure out what the probability of escalation is in the first

place. Knowing that, we can estimate what portion of that probability “belongs” to

the event that escalation was caused by a tough challenger.

Escalation can be caused by either type of challenger. Because the two types are

mutually exclusive (if the challenger is weak he cannot be tough) and exhaustive

(there are only these two possible types of challenger), the probability of escalation

is simply the sum of the probability that the tough type escalates and the probability
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that the weak one does. The tough type escalates with probability Pr.ejCT / D ˛

and the weak one with probability Pr.ejCW / D ˇ. We read the expression Pr.ejCT /

as “the probability that the challenger escalates if he is tough.” The probability that

the challenger is tough and escalates is then Pr.CT ; e/ D Pr.CT /�Pr.ejCT / D p˛.

This is different from the conditional probability Pr.ejCT /, which assumes that the

challenger is, in fact, tough. The joint probability of type and escalation takes into

account the uncertainty about the type. In other words, whereas the conditional

probability measures how likely escalation is if the challenger is tough, the joint

probability measures how likely it is for the challenger to be tough and to escalate.

The probability that the challenger is weak and escalates is Pr.CW ; e/ D Pr.CW / �

Pr.ejCW / D .1 � p/ˇ.

Since D is uncertain about the type she faces, from her perspective the probability

of escalation is Pr.e/ D Pr.CT ; e/ C Pr.Cw ; e/ D p˛ C .1 � p/ˇ. This quantity is

the total probability of escalation. Now that we know how likely escalation is in the

first place, we can compute the chances that it was caused by the tough challenger.

We want to know x D Pr.CT je/, that is, the conditional probability that C is tough

given that escalation has occurred. But this is simply the probability that C is tough

and escalates divided by the probability that escalation occurs, Pr.CT ; e/= Pr.e/, or:

x D Pr.CT je/ D
Pr.ejCT / Pr.CT /

Pr.ejCT / Pr.CT / C Pr.ejCW / Pr.CW /
D

p˛

p˛ C .1 � p/ˇ
:

This is Bayes rule. We require that D update her beliefs using this formula. The

only posterior beliefs that we shall consider reasonable are ones that are derived

from the prior beliefs and the strategies by applying Bayes’ rule, if possible. When

beliefs are computed with this formula (which takes into account the strategy of the

opponent), we say that beliefs are consistent with the strategies.

By “if possible” I mean “whenever the formula is defined.” Note that if ˛ D

ˇ D 0, then the formula is not defined because one cannot divide by zero. In other

words, one cannot condition on zero-probability events in this way. Thus, if no type

of C escalates (˛ D ˇ D 0), then escalation is a zero-probability event and should

not occur. What is D to believe if this event actually does occur? This is an open

question and a people are still trying to figure out what a “reasonable” belief should

be in this case. For example, we all expect the sun to rise in the east, so the sun

rising in the west is a zero-probability event. What would you believe if one day

you woke up and the sun was rising in the west? For our purposes, it is sufficient

to assume that if the formula is not defined, then any belief is consistent with the

strategies. That is, we can assign whatever beliefs we wish.

Let’s see how the formula works. Suppose C ’s strategy is .e; �e/; that is, the

tough one escalates with certainty, and the weak one does not, also with certainty.

In our mixed-strategy notation where the strategy is denoted by .˛; ˇ/, it translates

into .1; 0/. What should x be? Intuitively, we think that x D 1 should be the result

because if escalation does occur and only the tough one escalates, the posterior

9



belief after escalation should be that D is facing the tough one for sure. This is

indeed the case: x D p.1/

p.1/C.1�p/.0/
D 1, as expected. Note that it does not matter

what p is in this case.

Suppose now that C ’s strategy is .0; 1/; that is, the tough one never escalates, but

the weak one always does. Then x D p.0/

p.0/C.1�p/.1/
D 0. That is, after observing

escalation, D would conclude that C is weak for sure. This is also intuitive and

also does not depend on p. In both instances, the prior belief is irrelevant because

C ’s strategy must lead to certain inferences.

Observe that it is quite possible to obtain certain inferences even if C plays a

partially mixed strategy. For example, suppose ˛ 2 .0; 1/ and ˇ D 0; the tough

type escalates with some positive probability and the weak type never does. Again,

x D p˛

p˛C.1�p/.0/
D 1, so the inference depends neither on the prior nor on the

precise mixing probability by the tough type.

Of course, things are not so simple if ˛ D 1 and ˇ 2 .0; 1/. Here, the tough type

escalates for sure and the weak escalates with positive probability. Escalation is no

longer a sure signal of C ’s type. Suppose, for the sake of illustration, that p D 1=2

and ˇ D 1=3. Then Bayes’ rule yields:

x D
p.1/

p.1/ C .1 � p/ˇ
D

.1=2/.1/

.1=2/.1/ C .1=2/.1=3/
D 3=4 D 75%:

In other words, if D had this prior and thought that C played this particular strategy,

her consistent belief following escalation would be that the challenger is tough with

75% probability. Whereas D will still be uncertain about the type of her opponent,

she would have learned something from his escalation. Recall that she began the

game believing that the chance of C being tough was 50%. Following escalation,

she revises her belief upward and now estimates that this chance is 75%. This makes

intuitive sense: the challenger’s strategy is such that the tough type escalates with

a higher probability than the weak type. We would expect this to cause D to revise

her estimate upward when escalation does occur. Bayes’ rule gives us the precise

result of this intuitive revision.

4 Perfect Bayesian Equilibrium

We now put together the ideas of sequential rationality and consistent beliefs to

refine our solution concept to take them into account. A strategy profile is a perfect

Bayesian equilibrium (PBE) if the strategies for all players are sequentially ratio-

nal and beliefs are consistent with these strategies. This is a generalization of the

perfection requirement in that it takes into account beliefs explicitly. Our search for

mutual best responses is now a bit more complicated because we have to consider

not just the strategies but also the accompanying beliefs in our solutions. After

all, we know that beliefs rationalize strategies but that the strategies themselves are

used to derive these beliefs. We have to solve for the combination simultaneously.
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Let’s proceed with our example. We now know how D is going to update her

beliefs for any strategy that C might play. We further know how D is going to

behave given these beliefs. The only remaining question is how C would play when

he knows that his action is going to influence D’s beliefs. Recall that D will use

Bayes rule to make consistent inferences from C ’s strategy. C knows that and will

attempt to pick strategies that induce inferences he prefers. For example, if he could

get D to believe that he is tough with sufficiently high probability (any x > 0:8),

then D would rationally respond by capitulating. It is in C ’s interest to attempt

to manipulate D’s beliefs to cause her capitulation. Conversely, C really does not

want D to believe that he is weak with high probability (any x < 0:8) because if

she ever did acquire this belief, she would resist. Hence, the challenger (and in

particular the tough type) really wants to prevent D from making this inference.

Of course, D is perfectly aware of these incentives and knows that C will try to

manipulate her beliefs. We now see how all of this resolves itself in equilibrium.

4.1 The Equilibrium

We are going to solve the game by first showing that only two particular types of

strategy profiles can be candidates for equilibria. This is done via the following

claim: if the weak type escalates with any positive probability in equilibrium, then

the strong type must escalate with certainty. In symbols, if ˇ > 0 in equilibrium,

then ˛ D 1. The proof of this claim requires two steps: we fist show that if CW

escalates with positive probability in equilibrium, then the probability that D re-

sists cannot be too high; we then show that this implies that CT strictly prefers to

escalate.

Suppose that ˇ > 0 in some equilibrium. Since the weak type escalates with

positive probability as part of his optimal strategy, it must be the case that escalating

must be at least as good in expectation as not escalating: U.CW /.e/ � U.CW /.�e/.

The payoff from not escalating is just 0, and the expected payoff from escalating

given that D resists with probability q and CW capitulates whenever his bluff is

called is: q.�10/C.1�q/.10/. We conclude that since CW escalates in equilibrium,

it must be that

q.�10/ C .1 � q/.10/ � 0;

or, solving for q, that

q �
1

2
:

In other words, if the weak type is willing to escalate with positive probability as

part of his optimal strategy (in equilibrium), then the defender must resist with prob-

ability no larger than 1=2. This makes sense: if D resisted with higher probability,

then the risk of having the bluff called would be too great, and CW would strictly

prefer not to bluff by escalating.
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We now show that if q � 1=2, then CT does strictly better by escalating. To

see this, recall that U.CT /.e/ D q.�1/ C .1 � q/.10/ because this type attacks

whenever D resists. If q � 1=2, then U.CT / � 4:5, which exceeds the payoff

from not escalating, U.CT /.�e/ D 0. Since the expected payoff from escalating is

strictly better than the payoff from not escalating, it follows that CT will escalate

with certainty: ˛ D 1.

The intuition for the result is straightforward: if the weak type is willing to bluff,

there must be a good enough chance that the bluff will succeed and cause D to

capitulate; but if there’s such a good chance of that happening, then the strong type

is better off escalating because that type does as well as the weak type when D

capitulates but strictly better than the weak type if she does not.

We now know that if ˇ > 0, the only actions that can potentially be components

of equilibrium strategies are of the form .˛ D 1; ˇ > 0/. We will consider two

cases: one where ˇ D ˛ and the other where ˇ ¤ ˛. The reasoning here is that

if the escalation probabilities are the same, no information would be transmitted by

the act of escalation, and so the posterior would equal the prior belief. If the prob-

abilities are different, then some information will be transmitted, and the posterior

would be different.

Suppose first that ˇ D ˛ D 1, and so the challenger escalates with the same

probability (in this case, with certainty) irrespective of his type. Since the action re-

veals no new information, x D p, so the defender’s response is entirely determined

by her prior beliefs. If p < 0:8, then her best response is to resist, q D 1. But then

the challenger would not want to escalate (recall that CW would only escalate with

positive probability if q � 1=2). Therefore, ˇ D 1 cannot be part of an equilibrium

strategy. There is no pooling equilibrium when p < 0:8.

If p > 0:8, on the other hand, the defender’s best response is to capitulate, q D 0.

Given this strategy, the challenger strictly prefers to escalate regardless of type.

Therefore, ˛ D ˇ D 1 is the appropriate best response. We obtain our first solution

for this game — the strategy profile

h.˛ D 1; a/; .ˇ D 1; �a/; q D 0i ;

constitutes a perfect Bayesian equilibrium but only if p > 0:8. In words, if D

believes that the chance of the challenger being tough is more than 80%, then we

would expect her to back down if challenged, and therefore expect the challenger

to escalate. Intuitively, since D is too pessimistic, even weak challengers can get

away with escalation. Deterrence will certainly fail if the defender is believed to be

pessimistic. However, the probability of war will be zero: the game will end with

capitulation by the defender.

Suppose now that 0 < ˇ < ˛ D 1. Since the weak challenger is mixing in

equilibrium, ˇ 2 .0; 1/, it follows that he must be indifferent between escalation

and staying with the status quo. (If this were not the case, he would certainly pick

the strategy that yields the strictly better payoff, so either ˇ D 1 or ˇ D 0.) From
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the calculations above, we know that this type of challenger will be indifferent if,

and only if, q D 1=2. We conclude that if the weak challenger bluffs with positive

probability, the defender must be resisting with probability precisely equal to 1=2

in any equilibrium. Since the defender’s equilibrium strategy is mixed, it follows

that she must be indifferent between resisting and not resisting. From the best

response derivation above, we know that this can only happen if she believes the

chance of her opponent being tough is precisely x D 0:8. This now means that the

challenger must select a bluffing probability ˇ that induces this posterior belief or

else the defender’s expected response would not be sequentially rational. Since the

posterior belief is consistent with the strategies, the following must obtain:

x D 0:8 D
p˛

p˛ C .1 � p/ˇ
D

p

p C .1 � p/ˇ
;

which is an equation with one unknown, ˇ (recall that p is just an exogenous pa-

rameter so you can treat it as an arbitrary number between 0 and 1). Solving for ˇ

yields:

ˇ D
p

4.1 � p/
:

In other words, if the weak challenger chooses to escalate with this precise prob-

ability, he will induce in D the belief x D 0:8, which will make her indifferent

between her two strategies, which in turn rationalizes her randomization. This is

an instance of how a rational player can manipulate the beliefs of a rational oppo-

nent. Clearly, there is not much latitude in doing so, as we should have expected. It

should not be too easy to get a rational player to believe whatever one wants.

Note now that bluffing must involve a valid probability, so ˇ 2 .0; 1/. It is

clearly positive, so we only need to ensure that ˇ < 1. Solving this inequality for

p yields the condition that p < 0:8. Thus, manipulating D’s belief in this way

is only possible if her prior belief assigns less than 80% chance to C being tough.

The reason for that is simple: to get D to capitulate, she must believe that it is quite

likely that her opponent is tough (in this case, the probability must be at least 80%).

With a strategy according to which the tough challenger is more likely to escalate

than the weak one, the posterior belief will always exceed the prior. That is, after

escalation D will become more pessimistic. If the prior is already above 80%, then

she is already pessimistic enough to begin with and there is no need to manipulate

her belief: the challenger escalates regardless of type and reaps the benefits. Only

when D starts out relatively optimistic that C must manipulate her beliefs.

We conclude that the strategy profile

�

.˛ D 1; a/; .ˇ D
p

4.1 � p/
; �a/; q D 1=2

�

is a perfect Bayesian equilibrium but only if p < 0:8.
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Before we analyze the equilibrium we found, let’s give it a name. A strategy

in which one type plays some action with certainty and another type plays that

action with positive probability is called semi-separating, or “partially separating.”

This is because the two types only partially separate themselves by their behavior.

If D observes escalation, she can update the probability of her opponent being

tough because the tough type is more likely to have escalated, but D still cannot be

absolutely certain. Some information gets transmitted, but not enough to ensure D

of the type of opponent she is facing. (If D does not observe escalation, then she

can conclude that the opponent is weak because the tough types always escalate,

so the status quo is only kept by the weak type with positive probability.) A PBE

in which players play semi-separating strategies is called a semi-separating (or

“hybrid”) equilibrium. This game has exactly one such equilibrium.

We have now established a solution for each possible value of p.2 We have dis-

covered that if D is sufficiently pessimistic about the chance of her opponent being

weak, then the unique PBE of the game involves deterrence failure: the challenger

will escalate (even if weak), and the defender will capitulate. Observe that D capit-

ulates even though she knows that the escalation could be a bluff (that’s because she

knows it could have been caused by a weak opponent). However, the risk of war is

too great, so resistance is very likely to turn out a costly mistake. The defender is

unwilling to take this particular bet, and capitulates instead.

If D is optimistic about her opponent being weak, then the PBE becomes risky.

Because she believes that bluffing is now more likely, the defender also become

more likely to resist an escalation. This, in turn, discourages the weak challenger

and so he becomes less likely to bluff. Since the tough type still escalates, escala-

tion signals to the defender that the challenger is more likely to be tough, and she

in turn becomes less likely to resist. In equilibrium, the probability of resistance is

balanced against the probability of bluffing in a way that rationalizes both. Unfor-

tunately, as we shall see, because the defender sometimes (unknowingly) resists the

tough challenger, war becomes a distinct possibility.

Recall now that we assumed ˇ > 0 in our analysis so far. Are there any equilibria

where the weak challenger does not escalate at all, ˇ D 0? There are none. To see

this, suppose that ˇ D 0 and ˛ > 0. With these strategies, escalation unambigu-

ously signals that the challenger is tough (he is the only one that ever escalates with

positive probability), so x D 1. The rational response to this is to capitulate, so

q D 0. But if the defender capitulates with certainty after escalation, then even the

weak type would strictly prefer to escalate, so ˇ D 1. Thus, ˇ D 0 cannot be part

of any equilibrium strategy profile with ˛ > 0.

2Strictly speaking, we also need to consider p D 0:8. We do not because the likelihood that

the prior beliefs will be exactly equal to some particular number are vanishingly small. If p dif-

fered from 80% by even the tiniest amount, then none of these solutions will exist. In fact, if the

prior is drawn from a continuous distribution, the probability of it taking a particular value is zero.

Therefore, it is safe to ignore this case altogether.
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What about ˛ D 0? This is a bit tricky: since neither type of challenger is

supposed to escalate, the probability of escalation under this strategy is zero. To

rationalize the choice to stay with the status quo, we need to be able to say that

doing so is at least as good as escalation for both types of challenger. This means

that we must still construct their expectations about the consequences of escalation:

what must they expect the defender to do after escalation. Recall that the defender’s

action depends on her belief, which must be derived from the strategies of the chal-

lenger by Bayes rule. The problem is that Bayes rule is undefined for events that

have zero probability of occurring:

x D
p˛

p˛ C .1 � p/ˇ
D

0

0
;

and we cannot divide by zero. Our definition of rationality (PBE) does not tell

us what to do in these cases. What beliefs must D have if she observes an event

that is not supposed to happen? There are ways to deal with this by placing more

demands on our definition of rationality but this will take us farther afield in game

theory that we can afford to go. So let us approach this in a different way. Let us

ask, if we are unrestricted in specifying the posterior beliefs, what must they be in

order to rationalize the strategies (i.e., to make them part of an equilibrium)? Since

even the tough challenger is choosing not to escalate, it must be that the defender

is resisting with high enough probability. Since she will only resist if x < 0:8, we

conclude that the only types of beliefs that could possibly support non-escalation

as an optimal strategy must be such that the defender believes that the challenger is

tough with low enough probability after escalation.

But is this a reasonable belief? Essentially, we are saying that D expects the

challenger not to escalate, but when unexpected escalation occurs, she will believe

that it is unlikely to have come from the tough challenger. This does not sound

reasonable because we know that the tough challenger has stronger incentives to

escalate, so the only reasonable thing for the defender to infer from unexpected

escalation is that it is more likely to have been caused by a tough challenger. But

with this inference she would not resist, and as a result the challenger would strictly

prefer to escalate. The only reason, then, that he is not escalating must be that

the defender is threatening with resistance which is rationalized by her belief that

escalation signals weakness. The defender is essentially “threatening with beliefs”

and this should not be any more credible than threatening with actions. If it is not

credible to have such a belief, it would not be credible to resist escalation with

high probability, and so the challenger should not be deterred from escalating. In

other words, staying with the status quo irrespective of type cannot be a reasonable

solution.
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4.2 Working through the Strategy Profiles

It might not have been entirely clear how we knew to start the analysis with the

claim we made about the implications of the weak type’s willingness to mix. With-

out this useful time-saving insight, we would have to be methodical about solving

the game, and go through all possible strategy profile types. We are going to do this

next to illustrate the process.

4.2.1 Separating Equilibria

We first consider the four pure strategies for C . Suppose C plays the strategy

.˛ D 1; ˇ D 0/; that is, escalate if tough, do not escalate if weak. In this case, D’s

updated belief will be, by applying the formula, x D 1. From D’s best response

function, we know that BRD.1/ is q D 0, so her best response to this belief is

to capitulate. But is C ’s strategy a best response to capitulation? Let’s compare

the expected utility of the weak type who is supposed to stay with the status quo

with certainty. If he does not escalate, his payoff is UCW
.ˇ D 0/ D 0 because

the status quo prevails. If he deviates and escalates instead, D (wrongly thinking

escalation was caused by the tough type) will back down, and the expected payoff

is UCW
.ˇ D 1/ D 10. That is, the weak challenger can definitely do better by

escalating. But in equilibrium no player should have an incentive to deviate from

his strategy. Thus, the strategy .1; 0/ cannot be a part of any perfect Bayesian

equilibrium. This makes intuitive sense. If D were to believe with certainty that

C is tough, she would always back down. But precisely because she would back

down, the weak challenger will do better by changing strategy and escalating. After

all, there will be no risk in having to capitulate himself.

Suppose now that C plays the strategy .0; 1/; that is, do not escalate if tough,

escalate if weak. In this case, D’s posterior belief will be x D 0, so her best

response will be to resist (q D 1). Is C ’s strategy then a best response to this? It

is not: The weak type’s expected payoff from escalating is, given that D will resist,

UCW
.ˇ D 1/ D �10, which is worse than the expected payoff from not escalating

which is UCW
.ˇ D 0/ D 0. Therefore, this strategy cannot be a part of any perfect

Bayesian equilibrium. This also makes intuitive sense. The only way D would

believe with certainty that C is weak following escalation is if only CW escalated.

But given this belief, D’s best response is to resist, which CW wants to avoid in the

first place, so CW will never escalate, which in turn implies that there is no way for

D to hold this belief.

The strategies .1; 0/ and .0; 1/ are called separating because the different types

of C choose different actions with certainty. That is, the types “separate” them-

selves by their actions. Of course, when C plays a separating strategy, D can infer

with certainty what C ’s type is, as we have already seen. A PBE, in which players

play separating strategies is called a separating equilibrium. As we have seen,
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there are no separating equilibria in this game. It is not reasonable to expect that C

will choose a strategy that would reveal to D whether he is weak or tough.

This is a crucially important result. Think about what it means. If C played a

separating strategy in equilibrium, D would either capitulate for sure (because she

believes C is tough) or resist for sure (because she believes that C is weak). But

as we know from the complete information case, if she resists the weak type, the

weak C never escalates in the first place. Thus, if C plays a separating strategy in

equilibrium, either C never escalates (status quo) or D capitulates. In other words,

the probability of war would be zero, just like in the complete information case.

If there were any way for C to reveal his type to D, war would be avoided. But,

as we have just shown, there is no way for C to do this in equilibrium. The intuition

is that to avoid war, the weak C would have to show his weakness and the tough C

would have to show his strength. But they cannot do so credibly because if D were

convinced that C is tough (and therefore was sure to capitulate), the weak C would

have incentives to pretend he is tough and would enjoy D’s capitulation to his bluff.

Because the weak C has these incentives, the tough one cannot convince D that he

is not lying. As we shall see, knowing something the opponent does not (private

information) and having incentives to misrepresent what you know constitute one

of the main explanations of why war occurs.

4.2.2 Pooling Equilibria

Let’s consider the two remaining pure strategies for C . Suppose he plays .1; 1/;

that is, he escalates for sure regardless of type. In this case, D’s posterior belief

will be:

x D
.1/p

.1/p C .1/.1 � p/
D p:

That is, the posterior belief is the same as the prior belief. This makes sense: if both

types are sure to escalate, observing escalation does not tell D anything new, so her

belief must remain unchanged. In this case, D’s optimal behavior depends on the

his prior, p. There are two cases to consider:

1. p < 0:8, in which case D’s best response is to play r (q D 1). Is C ’s strategy

.1; 1/ a best response to q D 1? It is not. Consider the tough type’s expected

payoffs. If CT escalates, his expected payoff given that D will resist and he

will attack is UCT
.˛ D 1/ D �1, which is worse than his expected payoff

from not escalating at all, which equals UCT
.˛ D 0/ D 0. Thus, the tough

type would not play this strategy, and this profile cannot be a perfect Bayesian

equilibrium.

2. p > 0:8, in which case D’s best response is to play �r (q D 0). Is C ’s

strategy .1; 1/ a best response to q D 0? Compare the expected utilities for
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the two types given that D would not resist:

UCT
.˛ D 1/ D 10 > UCT

.˛ D 0/ D 0

UCW
.ˇ D 1/ D 10 > UCW

.ˇ D 0/ D 0

Yes, this strategy is a best response. Therefore, we have found our first solu-

tion: the profile h.1; 1/; 0i is a PBE if p > 0:8.

We now have a unique solution provided that p > 80%.

Suppose now that C ’s strategy is .0; 0/; that is, C never escalates regardless of

his type. In this case, D cannot update her beliefs if escalation occurs because

escalation is a zero-probability event. What is D to believe then? There cannot be

a PBE in which D updates to believe that C is tough. To see this, note that if D did

update this way (x D 1), then she would definitely back down. But if she is certain

to back down, both types would prefer to escalate, so the strategy .0; 0/ cannot be a

best response.

The only way to ensure that neither type escalates in equilibrium is that D up-

dates to believe that the probability of a weak challenger is extremely high when-

ever she observes unexpected escalation. For example, if D updated to x D 0,

then her best response would be to resist, in which case neither type of challenger

would want to escalate. Although this is a PBE, it does not seem reasonable: D is

“threatening with beliefs”. That is, she seems to be able to threaten C by saying “I

expect you not to escalate, but if you do escalate, then I will believe that you are

weak.” Such beliefs are not credible because if any type would for some reason

ever escalate, it would have been more likely to be the tough type, not the weak

one. What to do for these equilibria is an unresolved issue in game theory. There

are increasingly stronger refinements of the solution concept that eliminate unrea-

sonable beliefs much in the same way subgame perfection eliminates unreasonable

actions. Many, and sometimes all, of these weird equilibria supported by strange

beliefs can be eliminated by some such refinement. However, these are beyond the

scope of this course or our needs. We shall simply ignore such bizarre solutions.

Strategies, like .1; 1/ and .0; 0/, that prescribe the same actions for all types are

called pooling because all types of C “pool” on the same behavior: they all do

the same thing. Of course, if C plays a pooling strategy, D cannot infer anything

new from his behavior, as we have already seen. A PBE in which players play

pooling strategies is called a pooling equilibrium. This game a unique pooling

equilibrium if p > 0:8. It is reasonable to expect that deterrence will fail when the

defender believes that the challenger is tough with high probability. Deterrence fails

because the defender cannot credibly threaten to resist given her own beliefs. The

defender’s position is weakened because she thinks that her chances are not good.

We should therefore expect that a lot of foreign policy will consist of bravado,

swagger, and posturing where nations attempt to demonstrate that they believe they

are tough and invincible. Conversely, a lot of intelligence work would be directed
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at estimating whether they have any basis for such posturing. You should now

understand why nations care about their image. They are afraid that if they appear

to believe themselves to be weak, a potential opponent will conclude that aggression

will not be resisted, and will therefore proceed to challenge them.

4.2.3 Semi-Separating Equilibria

Up to now we only considered pure strategies for C . How about mixed ones? That

is, profiles with .˛; ˇ/ where ˛; ˇ are some numbers between 0 and 1. As it turns

out, these give us the most interesting results from our model. Again, there are

several cases to consider:

1. Suppose that C plays .˛; 1/; that is, he escalates with probability 0 < ˛ < 1

if tough, and escalates for sure if weak. We now show that no such profile

can be a PBE. The intuition is that if the weak type finds it optimal to escalate

with certainty, it cannot be the case that the tough type finds it optimal to not

escalate with positive probability.

We do a proof by contradiction.3 Suppose that h.˛; 1/; qi is a PBE (we don’t

know what q is right now). This means that escalation is a best response for

CW , which implies that:

UCW
.ˇ D 1/ > UCW

.ˇ D 0/

q.�10/ C .1 � q/.10/ > 0

q < 1=2:

That is, the fact that the weak type’s strategy is optimal implies that D’s

equilibrium probability of resisting must be less than 1=2. Let’s compute the

expected utilities of the tough type. We know that by not escalating he would

get UCT
.˛ D 0/ D 0. By escalating, he would get:

UCT
.˛ D 1/ D q.�1/ C .1 � q/.10/ D 10 � 11q;

and because q < 1=2, this means that:

UCT
.˛ D 1/ D 10 � 11q > 10 � 11.1=2/ D 4:5 > 0 D UCT

.˛ D 0/:

3A proof by contradiction works as follows. Suppose we want to prove that some statement

is false. We assume that it is true and then demonstrate that it being true implies something that

is contradictory. We can therefore conclude that the statement cannot be true; i.e. that it is false,

which is what we wanted to show. Here’s an example. We know that I only teach National Security

Strategy (NSS) on Mondays, Wednesdays, and Fridays, each day at 11:00a. Consider the statement

“If it is 11:00a, then I am teaching NSS.” We want to prove that this statement is false. Assume that

it is true, seeking a contradiction. Since it is true, it implies that I am teaching NSS on Sundays as

well (because there is no reference to the day of the week in the statement). But we know that I only

teach MWF, which implies that I do not teach NSS on Sunday. Hence, we arrive at a contradiction.

We conclude, that the statement “If it is 11:00a, then I am teaching NSS” is false.
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In other words, if q < 1=2 (which must be the case since the weak type

is escalating), the tough type can always get a higher expected payoff from

escalating than from not escalating himself. This means, that it cannot be

optimal to play a strategy that puts positive probability on not escalating.

Thus, there can be no PBE where C plays a strategy .˛; 1/.

2. Suppose now that C plays .˛; 0/; that is, he escalates with probability ˛ if

tough, and never escalates if weak. Because the weak type never escalates,

D’s posterior probability is x D 1, and so her best response is to capitulate.

But if D is going to capitulate for sure, then the weak type would strictly

prefer to escalate, ˇ D 1. Thus, there can be no PBE where C plays a

strategy .˛; 0/.

3. Suppose now that C plays .0; ˇ/; that is, he never escalates if tough, and

escalates with probability ˇ > 0 if weak. Because the tough one never es-

calates, D’s posterior belief will be x D 0, and so her best response would

be to resist. But if D is expected to resist for sure, then the weak type would

strictly prefer not to challenge her at all, and so ˇ D 0. Thus, there can be no

PBE where C plays a strategy .0; ˇ/.

4. Suppose now that C plays .˛; ˇ/; that is he escalates with probability ˛ if

tough, and with probability ˇ if weak. Suppose that D resists with probability

q (we don’t know what it is for now). Since the weak type is willing to play

a mixed strategy, he must be indifferent between his two actions. That is,

UCW
.ˇ D 1/ D UCW

.ˇ D 0/

q.�10C.1 � q/.10/ D 0

q D 1=2:

Thus, if the weak type is willing to randomize, it must be the case that q D 1=2

(or else one of the pure actions would yield a strictly higher payoff, and CW

would choose to play it with certainty). However, if q D 1=2, we have:

UCT
.˛ D 1/ D q.�1/ C .1 � q/.10/ D 4:5 > 0 D UCT

.˛ D 0/:

That is, the tough type’s expected utility from escalating is strictly better than

his expected utility from not escalating. This means that the tough type would

not be willing to play a mixed strategy which puts a positive probability on

not escalating. Therefore, ˛ < 1 cannot be an optimal strategy. Hence, there

is no PBE where C plays a strategy .˛; ˇ/.

5. This leaves one final possibility to consider. Suppose now that player C plays

a strategy .1; ˇ/; that is, he escalates for sure if tough, but escalates only with

probability ˇ if weak. Let q denote the mixed strategy for D. As we have
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already seen, since the weak type is willing to randomize, his expected payoff

from escalating must equal his expected payoff from not escalating. That is,

it must be the case that q D 1=2. We have already seen that if q D 1=2, then

the tough type strictly prefers to escalate, so the strategy ˛ D 1 is optimal, as

specified here.

Since D herself must be willing to randomize to play q D 1=2, it follows

that her expected payoff from resisting equals her expected payoff from not

resisting. If this were not the case, she would always choose the strategy

that yielded the higher payoff. Thus, it must be the case that UD.q D 1/ D

UD.q D 0/, or:

UD.q D 1/ D UD.q D 0/

x.�15/ C .1 � x/.10/ D x.�10/ C .1 � x/.�10/

�25x D �20

x D 0:8:

Noting that D’s posterior belief will be x D p.1/

p.1/C.1�p/ˇ
, we now have:

p

p C .1 � p/ˇ
D 0:8:

Solving this for ˇ yields:

ˇ� D
p

4.1 � p/
:

We now have the exact mixing probability for the weak type (as a function of

the prior belief p) that would yield the necessary posterior belief for D, which

would in turn make C ’s strategy optimal. Here’s how this works. Given

D’s prior belief p, the weak challenger will choose a mixing probability ˇ�,

which will ensure that the defender will be indifferent between resisting and

not resisting, and will be willing to mix between them. In particular, it could

be optimal to do so with probability q D 1=2, which in turn renders the weak

challenger’s strategy optimal. We already know that if D mixes like that, the

tough challenger will always escalate.

Since ˇ < 1 only if p < 0:8, the profile
D�

1; p

4.1�p/

�

; 1=2

E

is a PBE if p <

0:8. Note that this equilibrium exists only for values of the prior probability

p (we can always compute the necessary ˇ from it) that are less than 80%,

unlike the pooling equilibrium we found before which only existed for values

that exceed 80%. We shall analyze the substantive features of this equilibrium

in the next section.
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5 Substantive Implications

What does all this analysis give us in terms of substantive ideas we can use when

thinking about real crises? We have already learned two things from the pooling

equilibrium and the nonexistence of separating equilibria:

� We cannot reasonably expect states to reveal their private information in a

crisis because weak ones always have incentives to pretend they are strong.

No amount of diplomacy and communication can alter this basic fact.

� Deterrence can fail if the defender appears pessimistic of her chances, which

means that states would tend to publicly brag about their strengths and exag-

gerate the weaknesses of their adversaries.

� Because states cannot credibly communicate capabilities or intentions, they

will spend a lot of resources on uncovering information about their opponents

(and preventing their opponents from learning stuff about themselves). But

even after a state finds evidence that its opponent is weak (e.g. satellite photos

show few missiles), the opponent can dismiss public statements to that effect

by arguing that the state would have said something like this anyway because

it is in its interest to pretend that its opponents are weak.

Note now that our solutions are very general because they cover the entire range

of initial beliefs p that the defender might have. If p > 0:8, then the model predicts

the pooling equilibrium in which the challenger escalates regardless of type and the

defender backs down. The equilibrium outcome will be surrender by the defender.

This is the certain deterrence failure equilibrium.

If p < 0:8, on the other hand, the model predicts the semi-separating equilibrium,

in which tough challengers always escalate, but weak ones only do so sometimes.

The defender sometimes resists and sometimes does not. This is an equilibrium that

may involve deterrence failure and success, and, more importantly, it may involve

war with positive probability.

Let’s now see what the semi-separating equilibrium tells us. First of all, what is

the equilibrium outcome? The probability that C will escalate, as we have already

seen, is given by the formula:

Pr.e/ D ˛p C ˇ.1 � p/ D 1:25p;

where p < 0:8 (again, recall that p < 0:8 is a necessary condition for this equilib-

rium to exist). The probability of non-escalation (deterrence success) is simply the

probability that the challenger is weak and does not escalate (the tough one always

does):

Pr.�e/ D .1 � ˇ/.1 � p/ D 1 � 1:25p:
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The probability of war is the probability that the tough one escalates and the de-

fender resists:

Pr.War/ D Pr.CT / � Pr.ejCT / � Pr.r/ D p � .1/ � 0:5 D 0:5p:

The probability that the defender capitulates is:

Pr.CapD/ D Pr.CT /�Pr.ejCT /�Pr.�r/CPr.CW /�Pr.ejCW /�Pr.�r/ D 0:625p:

Finally, the probability that the challenger capitulates (compellence) is:

Pr.CapC / D Pr.CW / � Pr.ejCW / � Pr.r/ D 0:125p:

Let’s do a quick check of our calculations. Deterrence can either succeed or fail.

That is, either escalation or non-escalation should occur: Pr.e/CPr.�e/ D 1:25pC

1�1:25p D 1, so we’re fine. The possible outcomes are status quo (non-escalation),

capitulation by defender, capitulation by challenger (compellence), and war: Pr.�

e/ C Pr.CapD/ C Pr.CapC / C Pr.War/ D 1, so we’re fine.

We now turn to implications. First, note that the probability of war is strictly

positive and increasing in the defender’s pessimism up to a point (when p D 0:8).

That is, if the defender believes that her opponent is unlikely to be tough (p is

low), the chance of war is also low because the defender becomes likely to resist,

and therefore unlikely to be challenged. As the defender’s pessimism increases,

the danger of war begins to loom larger and larger. It is highest right before the

defender crosses the threshold of believing with 80% chance that his opponent is

tough. At this extremely dangerous point, the probability of war is close to 40%.

Note some rather telling dynamics here. As p increases (defender’s pessimism

goes up), the probability that she will capitulate also increases. However, the proba-

bility that the challenger will capitulate increases as well. This is because when the

probability of non-resistance by defender goes up, more weak challengers will test

their luck by escalating. But since the defender sometimes does resist, this means

that more of them will end up capitulating themselves. Unfortunately, this means

that she will also sometimes resist escalation by a tough opponent causing war.

This is very interesting: the weaker the defender believes herself to be, the more

vulnerable she will appear to challengers, who may miscalculate and escalate. But

because the defender still believes that the challenger might be weak, she may re-

spond by resisting, which would compel a weak one to capitulate. Unfortunately, it

would also cause war if the challenger is genuinely tough. The weaker the defender

appears, the more likely are weak challengers to try their luck, which implies that

the defender is herself more likely to resist because of the higher chance of the

challenger being weak. But this, paradoxically, increases also the chance of war.

Once the threshold of p D 0:8 is crossed, the defender becomes hopelessly

pessimistic, and never resists. Suddenly the chance of war drops precipitously to
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zero even though all types of challengers now escalate. Deterrence always fails but

no war will occur as a consequence. Thus, it is incorrect the state that the probability

of war always increases with pessimism. Rather, it increases up to a point, and then

abruptly goes down. It is also incorrect to state that optimism generally causes war.

As we have seen, the probability of war can drastically jump at the point of the

equilibrium switch from pooling to semi-separating. However, from this point on

as optimism increases (p goes down), the probability of war will decrease.

This escalation model is a signaling game, because the informed player (the

challenger) gets to move first and reveal something about his privately known type.

Of course, as the pooling equilibrium demonstrates, sometimes no information will

get transmitted. Further, as the lack of separating equilibria shows, it is not pos-

sible for all information to be revealed. However, there are many cases where the

defender can learn something about her opponent, as in the semi-separating equi-

librium.

The tough opponent tries to signal that he is tough by escalating in the semi-

separating equilibrium. Indeed, the posterior belief x is always greater than the

prior belief p regardless of ˇ. Because tough types escalate more than weak ones,

escalation is an imperfect signal that the challenger is tough. Surprisingly, this does

not cause D to alter her behavior: Her equilibrium strategy is to resist and capitulate

with equal probability. This makes sense: If she responded by capitulating more

often, then she would encourage more weak types to try escalation in the hopes

that they will get lucky. So the defender balances the risk of war with the desire

to deter weak opponents from escalating. As you can already see, deterrence and

compellence are balancing acts that are difficult and counter-intuitive (without the

model).

It is worth emphasizing one other central conclusion. War is really bad for both

the defender and the challenger regardless of the challenger’s type. If the players

had a choice between living with the status quo and fighting, both would prefer to

live with the status quo. In other words, both players are “peace-loving” because

neither likes war for its own sake. One often hears the argument that “only if every-

one loved peace, then we would not have war” and its extension to “everyone that

starts a war must be a war-monger.”

Our model demonstrates that this claim and entire line of reasoning is incorrect.

Both our players are peace-loving and yet the probability of war is strictly greater

than zero as long as the defender is not entirely pessimistic (that is, as long as

p < 0:8). Thus, war can occur despite both players hating it. The problem here

is not whether one likes peace or not, but whether one is prepared to risk war to

prevent an opponent from taking advantage of one’s love of peace. As the Romans

said, if you want peace, prepare for war.

We shall see this trade-off between the risk of war and the gain from the threat

to unleash it quite often. It even has a formal name in the theory of the use of force

as the risk-return trade-off. It captures the idea that one would pursue policies
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that balance the risk of disaster with the gains from threatening it. That is, one

would press one’s advantage to the extent that doing so would increase one’s gains,

which always comes at the expense of a increased risk of disaster. At some point,

you would forego additional gains because the risk becomes intolerable. This is the

trade-off. But of course, when you pursue such a strategy, you do actually run the

risk of everything ending in disaster.

We conclude that it is entirely rational for peace-loving nations to end in a

war with each other. Destruction, even when hated by everyone, might occur and

we do not need irrationality or evil to explain it. It is a natural consequence of

players trying to obtain good outcomes in the international arena. The reason that

war does not occur all that often should also be intuitive: it is precisely because

of its costliness that even a small risk of disaster is sufficient to deter most players

from attempting to extract more from their opponents.

The presence of incomplete information is a necessary condition for rationalizing

war in our model. Thus, we can conclude that private information and incentives

to misrepresent it constitute a major cause of war. When you read the article by

James Fearon, you will note that this is one of his two central claims. The article

was written in 1995 and you should carefully note that its author goes through a

long list of causes of war that people have proposed and finds problems with all

explanations.

6 Coming Up Next. . .

Note that the idea of credibility pervades the entire discussion because it is a fun-

damental feature of the solution concept we employed. The main concerns are: (a)

how can the tough challenger credibly reveal its type? (b) how can the defender

credibly commit to resisting, thereby enhancing the prospect of deterrence success?

(c) how can a challenger credibly commit to compelling the defender to back down?

All these turn out to be inter-connected issues and we cannot consider one of them

in separation from the others. The solution to the model showed why this is the

case. It also uncovered some rather intriguing dynamics resulting from uncertainty.

Next time we shall look at how one can, at least in part, overcome some of the

problems caused by informational asymmetries.
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