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Overview We have now defined the concept of credibility quite pregigeterms
of the incentives to follow through with a threat or promised arrived at a so-
lution concept of perfect equilibrium which takes it intocaont. We now turn to
the question of incomplete information and study an esicalaame in which the
defender is uncertain about whether its opponent is resaunot. We find that
we have to consider not just strategies but beliefs, anderefim solution concept
to account for both, calling it sequential equilibrium. Té@lutions to this game
uncover some rather surprising dynamics of deterrence amgellence.




We have now defined the concept of credibility very precisélythreat (or a
promise) is not credible if the player would not carry it ougiven a choice. We
then used this idea to argue that a reasonable solution tma glould not depend
on a player using incredible threats because his opponartwever believe them,
and would therefore ignore them when determining her own fesponse. We
introduced the perfect equilibrium solution concept thdés out Nash equilibria
which depend on such unreasonable behavior. Further, wieedtan easy way to
analyze complete information games with backward indactio

The solutions to the two escalation games, one with a wealkecigar and the
other with a tough challenger, demonstrated that the pegtpdlibria are very dif-
ferent. In the first case, the challenger did not have a cledhiveat to attack, so
the defender had a credible threat to resist, which in tum sudficient to deter the
challenger from escalating in the first place. The perfeatldggium outcome was
the status quo. In the second case, where the challenget cadlibly threaten to
launch an attack if resisted, the defender was compelledrioexle, which in turn
implied that she would fail to deter the opponent from edaadan the first place.
The outcome was capitulation by the defender.

In both cases, the probability of war in equilibrium was zevbich makes intu-
itive sense. If everything in the game is common knowledgen tplayers would
succeed in avoiding the costly confrontation. Note in gatér that even though
the resolute challenger prefers the status quo to war, hestalates because he
knows that the defender will back down. Furthermore, if teéedder knows that
the challenger will capitulate, she will resist and her #tnill work even though
she is weak.

Although very useful to illustrate the idea of credibilithese models actually
pose more questions than they answer. In the real world vierig likely that ad-
versaries will not know the resoluteness of the opponentwfiat would happen if
this is the case? Further, from our simple simultaneous moses game we know
that a little uncertainty can immediately generate a pasitirobability of war in
the mixed strategy equilibrium. Yet war is sure not to ocouhe perfect equilibria
of the escalation models. We now turn to the analysis of aalason game under
incomplete information.

1 TheEscalation Game with Incomplete I nformation

We have seen how to model games of incomplete informatioraaseg of imper-
fect information. A brief review is in order. Suppose that theak defendey,
does not know whether the challenger is tough, or weak,Cy . (Her weakness
is common knowledge.) The defender does have some priaflgelg. from pre-
vious interactions, from results of CIA analysis, etc.) ttieg probability that the
challenger is tough ip € (0, 1). Of course, we could assign a specific probability



to p, but we prefer to conduct the analysis for arbitrary valudgb® prior beliefs so
we can apply the results to all sorts of situations. That esywant to be able to say
things like “if D’s prior belief is pessimistic (that is, it assigns a highlability
to the challenger being tough), then the equilibrium wowddbch and such, and if
D’s prior belief is optimistic, then the equilibrium would Be and so.” The idea is
to make our results as general, and therefore useful, adbfgoss

Recall that to model the uncertainty about the challenggps,twe introduce the
fictitious player NatureN, which “chooses” the tough type with probabilipy and
the weak type with probability — p. The challenger knows his type when making
his move, but the defender can only observe the move and didsaw which
type of opponent actually made it. The situation is represkim Figure 1.
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Figure 1. Escalation Game with a Weak Defender and Incomplgbrmation
about the Challenger.

The information set for playeb contains two nodes, one following escalation
by Cr and another following escalation lyy,, because even though can ob-
serve escalation, she does not know wether the tough or thk @rellenger was
responsible for it. The label represent®d’s belief that it was the tough one who
escalated, andl — x represents her belief that it was the weak one who escalated.
In other wordsx is D’s estimate that the challenger is tough given that escalati
has occurred. We shall see shortly howwill calculate this belief. For now, all we
need to keep in mind is that becaulds unsure about the nature of her opponent,
she may be unable to predict what he will do when resistednfrer perspective,
resistance will lead to war i€ is tough but to peace (with victory) &' is weak.
SinceD does not like war, she has to figure out if the risk of resistaaavorth it.
Estimating this risk depends on what she believes aboutygieedf her opponent.
Intuitively, this belief,x, should depend on her priors and on any new information
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she can glean during the crisis itself (i.e., from the clmgjés’s decision to escalate).

We can begin solving this game by backward induction. At &s¢ hode for the
weak type,C will never attack because attacking yield$2, while not attacking
yields—10. Therefore, in any perfect equilibrium, the weak type wocdgitulate
if resisted. On the other hand, at the last node for the toypé, C will always
attack because doing so yieldd, while not attacking yields-10. Therefore, in
any perfect equilibrium, the tough type would attack if stsd. We fold back the
game by removing the branches representing actions thabaceedible (attack for
the weak and capitulation for the tough) because these ceam aecur in a perfect
equilibrium.

Because resisting the weak type results in capitulation éycktallenger and re-
sisting the tough type results in war, we repl&cs last decision nodes with the
payoffs for the outcomes that would result in these nodegwaereached by'’s
resistance. The result is shown in Figure 2. Note that, asnbwition suggested,
D’s choice to resist can lead to two different outcomes dejpgndn the type of
opponent she faces.
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Figure 2: The Escalation Game After Pruning the Last Nodes.

Unfortunately, we cannot continue the backward inductify? Because the
optimality of D’s action depends on what she thinks ab6utthat is, whetheD
believes that she is at the lower or upper node in her infaomatet. For example,
if D knew that her opponent were weak (she would be at the uppe) noetr belief
would bel —x = 1, orx = 0. In this case, she would prefer to resist because doing
so would yield10, while playing~r would yield only—10. However, if D believed
thatC were tough (she would be at the lower node), her belief woald &= 1. In
this case, she would prefer not to resist because doing stdwaid —10, while
playing r would yield —15. As we expected, the optimal action crucially depends
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on this belief. We now formalize this idea by analyzing hovs optimal behavior
depends her beliefs.

2 Sequential Rationality

We shall call a player’s strateggquentially rational if it is a best response to the
opponent’s strategy given the player’s beliefs. (For noe,de not specify where
these beliefs come from.) A strategy is sequentially ratidor some beliek if the
player would actually want to play this strategy if his bekser becamec. This
generalizes the notion of best response by explicitly ko account the beliefs
that the player has about his opponent’s behavior.

Returning to our example, let's determine the beliefs thatldionaker a best
response byD, and the beliefs that would maker a best response. That is, we
are asking the question, “What coultibelieve about the type of her opponent that
would make resistance a best response?” To put it anothemveayant to find the
belief that rationalizes a particular strategy.

Note that at her information sef) only has two choices: resist or not. Let's
calculate the expected utility from resisting, like we dad the mixed strategies
before. If playerD chooses, then she will either end up at war is tough or
victory if C is weak. She believes that is tough with probabilityx, so from her
perspective resistance leads to war (payoff-af) with probability x and victory
(payoff of 10) with probability 1 — x. The expected payoff from resistance is then:

Up(r) = x(—15) + (1 — x)(10) = 10 — 25x.

If player D chooses~r, then the outcome will be her capitulation regardless of the
type of opponent. We could write out the expected payoff:vebeld get—10 with
probability x and—10 with probability 1 — x, or:

Up(~r) = x(—10) + (1 — x)(=10) = —10.

When would she choose? When the expected utility from doing so exceeds the
expected utility of choosingr:

Up(r) > Up(~r)
10 — 25x > —10
X < 20/25 = 4/5 = 0.8.

This gives is thecritical threshold for the belief that rationalizes resistance.f
came to believe that' is tough with probability less than 80%, then the rational
thing to do will be to resist. There is risk in this action: eaftall, the challenger
could turn out to be tough, and in that case resistance will causehaavever, the
risk is worth it given her beliefs. Optimism (belief that mepponent is weak)
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can generate a risk of war, as many historians and polit@ahssts have noted.

Pessimism, on the other hand, may lead to pead@ d#estimate of the chances of
C being tough goes above 80%, then the risk of war become®rmatdk, and she

will submit. In this case, her belief causes her to think tieatstance is too likely

to lead to an attack because the challenger is very likelyettobgh. Given her

aversion to warpD will not run this risk.

In our terminology, the strategy is sequentially rational it < 0.8. That is,
the strategy of resisting is sequentially rational if, améiyaof, D believes thaC is
tough with probability less than 80%. This means that thategyy~r is sequen-
tially rational if x > 0.8. That is, the strategy of not resisting is sequentiallyorzi
if, and only if, D believes thatC is tough with probability greater than 80%. Fi-
nally, if x = 0.8, then D is indifferent between the two strategies. As before, this
means that they are both best responses;battd~r are sequentially rational. As
we know, if this is the case, thel can mix between them, so she can ptayith
some probability; and~r with some probabiliti — ¢, where0 < g < 1.

We shall expres®'’s pure strategies in terms of this mixed strategy. That is,
g = 1 is the same as the pure strategyand the mixed strategy = 0 is the same
as the pure strategyr. To summarize our findingd)'s sequentially rational best
responses are:

qg=1 if x <0.8

BRp(x) =4¢ =0 if x> 0.8
0<g<1 ifx=0.2.8.

Notice that these best responses are now function3'efeliefs. Sequential ra-
tionality critically depends on beliefs: an action is onggsentially rationagiven
some beliefs. One cannot evaluate its optimality without consideringnih But
where do these beliefs come from?

3 Consistent Bdliefs

When we think abouD’s belief x (the probability she assigns to the opponent being
tough), we intuitively know that it should depend on two tfgn (i) the initial belief

D had beforeC escalated, and (ii) the fact th@t actually did escalate. That is,

is going to be somehow related to the informatidrhad before the crisis, and the
new information acquired during the crisis from observieg bpponent’s behavior
and making inferences about what could have produced sudvioes.

We have already decided that prior to the crigiss belief is represented by the
move by Nature. That is, this chance move was designed tcegdhe idea that
D believed thatC was tough with probability, and weak with probability — p.
We shall call thisp, playerD’s prior belief for obvious reasons. As we discussed,
this belief could come from prior experience with the chadjer, or analysis of
challenger’s behavior in other crises, or analysis by dspghis is what the CIA,
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army intelligence, and a host of other organizations alstutd), or even impres-
sions fromC'’'s interactions with other players (we shall see quite atihat when
we go over historical cases). At any rate, this prior betiegxists before the game
begins.

If the challenger escalates, théh must take this into account and revise her
belief accordingly. Why? Because the challenger knows his tyye@, his choice
of strategy will depend on thairivate information. But if that’'s the case, then
the defender can look at the choio@sis making and perhapsfer what type of
opponent she faces. The defender will attempt to learn tfivgte information
so that she may choose her best response accordingly. Glyithe challenger
knows that she will do this and will try tonanipulate this belief in order tanduce
a response that he likes best. Of course, the defender kiawshie challenger
knows what she is doing, so she will take into account higrgiteéo manipulate
her beliefs when she makes her inferences, and so on. Theajqué®en is: how
doesD revise her prior belief in the light of the new information conveyed by
escalation?

What we are asking is how to compute= Pr(Cr|e), which reads “what is the
probability that the challenger is tough given that he edeal?” We call the pos-
terior belief (or updated belief) because it takes into account the irdtion that
C has escalated. Of coursB, cannot just arbitrarily interpret escalation: the in-
formation provided by this move must bensistent with what constitutes rational
behavior byC. For example, if the weak type would never escalate in dauim,
then upon observing escalati@dnshould never believe that she might be facing the
weak challenger.

This means thab has to take into account the challenger’s strategy whenmgaki
her inferences. Since we allow for mixed strategies, whenpdates her belief she
will note theprobability that the tough challenger would escalate angtlobability
that the weak one would escalate. Since we do not know thesalpitities yet, let
a denote the probability thaf'7 chooses, and let denote the probability that
Cw chooseg. Recall that playeC has two information sets in our revised game
in Figure 2. Therefore, his strategy should include two congmts: what to do if
he is the tough type, and what to do if he is the weak type. A ptregegy would
be (e, ~¢), which says “escalate if tough, do not escalate if weak."ré&lage four
type-contingent pure strategiés.

With o and 8, we are just writing the mixed strategies, &@a ) is the type-
contingent mixed strategy which says “escalate with proiyhy if tough, and
escalate with probability if weak.” Of course, this means also “do not escalate

IStrictly speaking, the strategy must include the actiorate@tafterD’s choice to resist. We
already know that subgame-perfection requires the toughestger to attack and the weak to ca-
pitulate. Hence, any equilibrium we find must specify thestéoas as part of the optimal strategy
for the challenger. To reduce clutter, | will not write thespécitly but instead focus on the initial
choice to escalate.



with probability 1 — « if tough, and do not escalate with probability- g if weak.”

For example, the mixed strategy, 0), which denotes = 1 (tough type escalates
with certainty) and8 = 0 (weak type does not escalate with certainty) is the same
as the pure strategl, ~¢). The mixed strategy0.5, 0.3) would be read as “es-
calate with probabilityd.5 if tough, and escalate with probabiliéy3 if weak.” To
keep things clear, the revised Figure 3 labels the branchibghveir corresponding
probabilities.
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Figure 3. The Escalation Game With Mixed Strategies.

Note thatD’s mixing probabilityg must be the same for both nodes in her in-
formation set because she cannot condition her behavidr 'siype if she does
not know it. On the other hand,’s mixing probabilities at his two nodes can be
different because they are in different information setsdbes know his type and
can therefore condition his behavior on it.

How do we calculate the posterior probabilityiven the prior probability and
C’s mixing probabilitiesx and8? There is a simple formula that allows us to com-
pute the posterior belief from the prior belief and the neferimation. It is called
Bayesrule, which some of you may have seen in elementary courses oalpitip
theory or statistics. In our case, this rule allows us to amndive question: Given
thatC has escalated, what is the probability thats tough? Intuitively, to answer
this question, we need to figure out what the probability cbégtion is in the first
place. Knowing that, we can estimate what portion of thabphility “belongs” to
the event that escalation was caused by a tough challenger.

Escalation can be caused by either type of challenger. Be¢haswo types are
mutually exclusive (if the challenger is weak he cannot hegk) and exhaustive
(there are only these two possible types of challengerpitbieability of escalation
is simply the sum of the probability that the tough type estes and the probability
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that the weak one does. The tough type escalates with piipdhi(e|Cr) = o
and the weak one with probability @tCy ) = B. We read the expression(@|Cr)
as “the probability that the challenger escalates if heughd The probability that
the challenger is toughnd escalates is then R, ¢) = Pr(Cr) xPr(e|Cr) = pa.
This is different from theconditional probability Pke|C7), which assumes that the
challenger is, in fact, tough. Theint probability of type and escalation takes into
account the uncertainty about the type. In other words, edwethe conditional
probability measures how likely escalation is if the chadjer is tough, the joint
probability measures how likely it is for the challenger tsotbugh and to escalate.
The probability that the challenger is weahd escalates is R€yy , e) = Pr(Cy) x
Pr(e|Cw) = (1 - p)B.

SinceD is uncertain about the type she faces, from her perspebtvarobability
of escalation is Re) = Pr(Cr,e) + Pr(Cy,e) = pa + (1 — p)B. This quantity is
thetotal probability of escalation. Now that we know how likely escalation is ia th
first place, we can compute the chances that it was causec bgugh challenger.
We want to knowx = Pr(Cr|e), that is, theconditional probability thatC is tough
given that escalation has occurred. But this is simply théaidity thatC is tough
and escalates divided by the probability that escalaticnss P(Cr, e)/ Pr(e), or:

Pr(e|Cr) Pr(Cr) _
Pr(e|Cr) PXCr) + Pre|Cw) PRCw)  pa+ (1— p)f’

This is Bayes rule. We require th&t update her beliefs using this formula. The
only posterior beliefs that we shall consider reasonal#eoales that are derived
from the prior beliefs and the strategies by applying Baye!&,nf possible. When
beliefs are computed with this formula (which takes intocast the strategy of the
opponent), we say thakliefs are consistent with the strategies.

By “if possible” | mean “whenever the formula is defined.” Ndtat if @ =
B = 0, then the formula is not defined because one cannot dividetny in other
words, one cannot condition on zero-probability eventhisiway. Thus, if no type
of C escalateso{ = B = 0), then escalation is a zero-probability event and should
not occur. What i to believe if this event actually does occur? This is an open
guestion and a people are still trying to figure out what asoeable” belief should
be in this case. For example, we all expect the sun to riseere#ist, so the sun
rising in the west is a zero-probability event. What would ylieve if one day
you woke up and the sun was rising in the west? For our purpassssufficient
to assume that if the formula is not defined, then any beliebissistent with the
strategies. That is, we can assign whatever beliefs we wish.

Let's see how the formula works. SuppaSés strategy is(e, ~¢); that is, the
tough one escalates with certainty, and the weak one doesalsotwith certainty.
In our mixed-strategy notation where the strategy is dehbig(«, §), it translates
into (1, 0). What shouldrx be? Intuitively, we think that = 1 should be the result
because if escalation does occur and only the tough oneagéssathe posterior

x = Pr(Crle) =
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belief after escalation should be thatis facing the tough one for sure. This is
indeed _th_e caser = m = 1, as expected. Note that it does not matter
what p is in this case.

Suppose now that'’s strategy i90, 1); that is, the tough one never escalates, but
the weak one always does. Then= m = 0. That is, after observing
escalation,D would conclude thaC is weak for sure. This is also intuitive and
also does not depend gn In both instances, the prior belief is irrelevant because
C'’s strategy must lead to certain inferences.

Observe that it is quite possible to obtain certain infeesneven ifC plays a
partially mixed strategy. For example, suppos& (0,1) andf = 0; the tough
type escalates with some positive probability and the wegpd hever does. Again,

X = m = 1, so the inference depends neither on the prior nor on the
precise mixing probability by the tough type.

Of course, things are not so simplexit= 1 andg € (0, 1). Here, the tough type
escalates for sure and the weak escalates with positivabpildl. Escalation is no
longer a sure signal af'’s type. Suppose, for the sake of illustration, that 1/,

andp = /3. Then Bayes’ rule yields:

U [0 B C)[C) Iy
p(M)+ A =p)p (1) + (12)(153)

In other words, ifD had this prior and thought that played this particular strategy,
her consistent belief following escalation would be that¢hallenger is tough with
75% probability. Wherea® will still be uncertain about the type of her opponent,
she would have learned something from his escalation. Rewdlshe began the
game believing that the chance Gfbeing tough was 50%. Following escalation,
she revises her belief upward and now estimates that threeha 75%. This makes
intuitive sense: the challenger’s strategy is such thatabgh type escalates with
a higher probability than the weak type. We would expecttihisauseD to revise
her estimate upward when escalation does occur. Bayes’ nde gs the precise
result of this intuitive revision.

4 Sequential Equilibrium

We now put together the ideas séquential rationality and consistent beliefs

to refine our solution concept to take them into account. Atsgy profile is a
sequential equilibrium if the strategies for all players are sequentially raticarad
beliefs are consistent with these strategies. This is argbn&tion of the perfection
requirement in that it takes into account beliefs explcitDur search for mutual
best responses is now a bit more complicated because wedaewagider not just
the strategies but also the accompanying beliefs in outieak After all, we know
that beliefs rationalize strategies but that the strasafiemselves are used to derive
these beliefs. We have to solve for the combination simatasly.
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Let’'s proceed with our example. We now know hdwis going to update her
beliefs for any strategy that might play. We further know howD is going to
behave given these beliefs. The only remaining questioovisth would play when
he knows that his action is going to influentes beliefs. Recall thaD will use
Bayes rule to make consistent inferences fiGia strategy.C knows that and will
attempt to pick strategies that induce inferences he @ef@r example, if he could
get D to believe that he is tough with sufficiently high probalil{any x > 0.8),
then D would rationally respond by capitulating. It is {@i's interest to attempt
to manipulateD’s beliefs to cause her capitulation. Conversélyreally does not
want D to believe that he is weak with high probability (amy< 0.8) because if
she ever did acquire this belief, she would resist. Hencae cttallenger (and in
particular the tough type) really wants to prevéntfrom making this inference.
Of course,D is perfectly aware of these incentives and knows thawill try to
manipulate her beliefs. We now see how all of this resohsdfitn equilibrium.

4.1 Separating Equilibria

We first consider the four pure strategies ©r SupposeC plays the strategy
(¢ = 1,8 = 0); that is, escalate if tough, do not escalate if weak. In tagegD’s
updated belief will be, by applying the formula,= 1. From D’s best response
function, we know that BR(1) is ¢ = 0, so her best response to this belief is
to capitulate. But isC’s strategy a best response to capitulation? Let's compare
the expected utility of the weak type who is supposed to stdly the status quo
with certainty. If he does not escalate, his payoff ig,U8 = 0) = 0 because
the status quo prevails. If he deviates and escalates thsieéwrongly thinking
escalation was caused by the tough type) will back down, ba@expected payoff

is Uc,, (B = 1) = 10. That is, the weak challenger can definitely do better by
escalating. But in equilibrium no player should have an itigerto deviate from
his strategy. Thus, the strategy 0) cannot be a part of any sequential equilibrium.
This makes intuitive sense. I» were to believe with certainty th&t is tough, she
would always back down. But precisely because she would bawak dthe weak
challenger will do better by changing strategy and escajatAfter all, there will

be no risk in having to capitulate himself.

Suppose now thaf' plays the strategyo, 1); that is, do not escalate if tough,
escalate if weak. In this casé@)’s posterior belief will bex = 0, so her best
response will be to resisyy(= 1). Is C’s strategy then a best response to this?
It is not: The weak type’s expected payoff from escalatinggisen thatD will
resist, &, (B = 1) = —10, which is worse than the expected payoff from not
escalating which is d,, (8 = 0) = 0. Therefore, this strategy cannot be a part of
any sequential equilibrium. This also makes intuitive sed$ie only wayD would
believe with certainty that’ is weak following escalation is if onl¢y escalated.
But given this belief,D’s best response is to resist, whi€lj, wants to avoid in the

11



first place, saCy will never escalate, which in turn implies that there is noyviax
D to hold this belief.

The strategiesl, 0) and(0, 1) are calledsepar ating because the different types
of C choose different actions with certainty. That is, the tyfseparate” them-
selves by their actions. Of course, wh€mplays a separating stratedy, can infer
with certainty whatC'’s type is, as we have already seen. A sequential equilirium
in which players play separating strategies is calledoar ating equilibrium. As
we have seen, there are no separating equilibria in this glimsenot reasonable to
expect thatC will choose a strategy that would reveal lowhether he is weak or
tough.

This is a crucially important result. Think about what it mea If C played a
separating strategy in equilibriun®, would either capitulate for sure (because she
believesC is tough) or resist for sure (because she believes@hist weak). But
as we know from the complete information case, if she refiisveak type, the
weakC never escalates in the first place. Thug iplays a separating strategy in
equilibrium, eitherC never escalates (status quo)/@rcapitulates. In other words,
the probability of war would be zero, just like in the compla@tformation case.

If there were any way for C to reveal histypeto D, war would be avoided. But,
as we have just shown, there is no waybto do this in equilibrium. The intuition
is that to avoid war, the weak would have to show his weakness and the todgh
would have to show his strength. But they cannot do so cretibbause ifD were
convinced thaC is tough (and therefore was sure to capitulate), the wéalould
have incentives to pretend he is tough and would eBj&ycapitulation to his bluff.
Because the weak has these incentives, the tough one cannot convintdeat he
is not lying. As we shall see, knowing something the oppoweeis not (private
information) and having incentives to misrepresent what kwow constitute one
of the main explanations of why war occurs.

4.2 Pooling Equilibria

Let's consider the two remaining pure strategies@r Suppose he playd, 1);
that is, he escalates for sure regardless of type. In this, éis posterior belief
will be:

(Dp

T oprma-p 7
That is, the posterior belief is the same as the prior beliefs makes sense: if both
types are sure to escalate, observing escalation doedIinbt émything new, so her
belief must remain unchanged. In this ca®es optimal behavior depends on the
his prior, p. There are two cases to consider:

1. p < 0.8, in which caseD’s best response is to play(g = 1). IsC’s
strategy(1, 1) a best response tp= 17 It is not. Consider the tough type’s
expected payoffs. I€7 escalates, his expected payoff given thawill resist

12



and he will attack is ¥, (¢ = 1) = —1, which is worse than his expected
payoff from not escalating at all, which equalgJ{a = 0) = 0. Thus, the
tough type would not play this strategy, and this profile caitre a sequential
equilibrium.

2. p > 0.8, in which caseD’s best response is to playr (¢ = 0). IsC’s
strategy(1, 1) a best response tp = 0? Compare the expected utilities for
the two types given thab would not resist:

UCT(Ol = 1) =10 > UCT(O[ = 0) =0
Ucy (B =1) = 10 > Ug, (8 = 0) = 0

Yes, this strategy is a best response. Therefore, we hawe fowr first solu-
tion: the profile((1, 1), 0) is a sequential equilibrium i > 0.8. In words, if
D believes that the chance of the challenger being tough i tian 80%,
then we would expect her to back down if challenged, and tbereexpect
the challenger to escalate. Intuitively, sinbeis too pessimistic, even weak
challengers can get away with escalation. Deterrence withaly fail if the
defender is believed to be pessimistic. However, the pritityabf war will
be zero: the game will end with capitulation by the defender.

We now have a unique solution provided that> 80%.2 We have discovered
that if D is sufficiently pessimistic about the chance of her oppobeirtg weak,

2Strictly speaking, we also need to consiget= 0.8. In this caseD is indifferent between her
two strategies because they are both best responses. Hersdree to mix between them with
anyq € [0, 1]. Suppose then thd plays a mixed strategy. Is (1, 1) a best response to it? Let's
compute the expected utility of the tough challenger:

Ucr (@ =1) =q(=5) + (1 —¢)(10) = 10 — 15¢.

Since in equilibrium this must be better than not escalatihgse expected payoff is¢) (¢ =

0) = 0, it follows that10 — 15¢ > 0 requires thay; < 2/3. Thus, as long as the probability of
resistance is less than two-thirds, escalating is optioraihfe tough challenger. Let's compute the
expected utility for the weak challenger:

Ucy (B =1) = q(=10) + (1 — ¢)(10) = 10 — 20g.

Since in equilibrium this must be better than not escalatmhgse expected payoff is¢}, (8 =

0) = 0, it follows that10 — 20¢ > 0 requires thayy < 1/2. Thus, as long as the probability of
resistance is less than one-half, escalating is optimalhferweak challenger. Putting these two
results together, we conclude thayif< 1/2 (which automatically means that < 2/3 as well),
C’s strategy(1, 1) would be a best response¢oThus, we have found other solutions. The strategy
profiles{(1,1),¢ < 1/2) are sequential equilibria ip = 0.8. There is an infinite number of these
equilibria because there is an infinite number of possible 1/2 that D could pick. In these
equilibria, the probability of war may not be zero. In fatig probability of war equals exactly so

it can be anything from /2 to nothing. The multiplicity of solutions is a bit of a probtebecause it
means that we cannot say exactly which solution would betsle Howeverp = 0.8 is a knife-
edge condition that is quite unlikely to be satisfied in pract The likelihood that the prior beliefs
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then the unique sequential equilibrium of the game invotleterrence failure: the
challenger will escalate (even if weak), and the defenddéroapitulate. Observe
that D capitulates even though she knows that the escalation bewddluff (that’s
because she knows it could have been caused by a weak oppddewever, the
risk of war is too great, so resistance is very likely to tuat @ costly mistake. The
defender is unwilling to take this particular bet, and calpiies instead.

Suppose now that'’s strategy iS(0, 0); that is,C never escalates regardless of
his type. In this caseD cannot update her beliefs if escalation occurs because
escalation is a zero-probability event. Whatisto believe then? There cannot
be a sequential equilibrium in which updates to believe th&t is tough. To see
this, note that ifD did update this wayx = 1), then she would definitely back
down. But if she is certain to back down, both types would prefescalate, so the
strategy(0, 0) cannot be a best response.

The only way to ensure that neither type escalates in equitibis thatD up-
dates to believe that the probability of a weak challengexigemely high whenever
she observes unexpected escalation. For exampleuipdated tox = 0, then her
best response would be to resist, in which case neither typbadlenger would
want to escalate. Although this is a sequential equilibriiiithoes not seem reason-
able: D is “threatening with beliefs”. That is, she seems to be abtareaterC by
saying “l expect you not to escalate, but if you do escalatn 1 will believe that
you are weak.” Such beliefs are not credible because if ang tyould for some
reason ever escalate, it would have been more likely to béotigh type, not the
weak one. What to do for these equilibria is an unresolvectigsgame theory.
There are increasingly stronger refinements of the solwamtept that eliminate
unreasonable beliefs much in the same way subgame perfettiminates unrea-
sonable actions. Many, and sometimes all, of these weirdileda supported by
strange beliefs can be eliminated by some such refinememevéw, these are be-
yond the scope of this course or our needs. We shall simplgregauch bizarre
solutions.

Strategies, likg1, 1) and(0, 0), that prescribe the same actions for all types are
called pooling because all types af “pool” on the same behavior: they all do
the same thing. Of course, @ plays a pooling strategy) cannot infer anything
new from his behavior, as we have already seen. A sequeqgtidiium in which
players play pooling strategies is called@oling equilibrium. This game a unique
pooling equilibrium if p > 0.8. It is reasonable to expect that deterrence will fail
when the defender believes that the challenger is toughhiggin probability. De-
terrence fails because the defender cannot credibly tmeatresist given her own
beliefs. The defender’s position is weakened because #hiestthat her chances
are not good. We should therefore expect that a lot of forpaity will consist of

will be exactly equal to some particular number are vanigligismall. If p differed from 80% by
even the tiniest amount, then none of these solutions witiiteX herefore, it is safe to ignore this
case altogether.
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bravado, swagger, and posturing where nations attempttowigrate that they be-
lieve they are tough and invincible. Conversely, a lot ofligence work would be
directed at estimating whether they have any basis for sastupng. You should
now understand why nations care about their image. Theyfea& dhat if they
appear to believe themselves to be weak, a potential oppevikkrconclude that
aggression will not be resisted, and will therefore prodeechallenge them.

4.3 Semi-Separating Equilibria

Up to now we only considered pure strategies@orHow about mixed ones? That
is, profiles with(«, ) wherecw, f are some numbers between 0 and 1. As it turns
out, these give us the most interesting results from our inoégain, there are
several cases to consider:

1. Suppose that plays(«, 1); that is, he escalates with probabiliy< o < 1
if tough, and escalates for sure if weak. We now show that b guofile
can be a sequential equilibrium. The intuition is that if threak type finds
it optimal to escalate with certainty, it cannot be the case the tough type
finds it optimal to not escalate with positive probability.

We do a proof by contradictioh. Suppose that(c, 1), ¢) is a sequential
equilibrium (we don’t know whay is right now). This means that escalation
is a best response fdty,, which implies that:

Ucy, (B =1)>Uc, (B =0)
q(—10) + (1 —¢)(10) > 0
q < 1)

That is, the fact that the weak type’s strategy is optimalliespthat D’s
equilibrium probability of resisting must be less thgh Let's compute the
expected utilities of the tough type. We know that by not &doey he would
get Ug, (¢ = 0) = 0. By escalating, he would get:

Ucr (@ =1) = ¢q(=1) + (1 —¢)(10) = 10— 11gq,

3A proof by contradiction works as follows. Suppose we wanptove that some statement
is false. We assume that it is true and then demonstratettbatrig true implies something that
is contradictory. We can therefore conclude that the stateérmannot be true; i.e. that it is false,
which is what we wanted to show. Here’s an example. We know thialy teach National Security
Strategy (NSS) on Mondays, Wednesdays, and Fridays, egcit d4:00a. Consider the statement
“If itis 11:00a, then | am teaching NSS.” We want to prove tidg statement is false. Assume that
it is true, seeking a contradiction. Since it is true, it ilplthat | am teaching NSS on Sundays as
well (because there is no reference to the day of the weeleigtdtement). But we know that | only
teach MWF, which implies that | do not teach NSS on Sunday. Elewe arrive at a contradiction.
We conclude, that the statement “If it is 11:00a, then | archigey NSS” is false.
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and becausg < 1/,, this means that:
Uc, (e =1)=10—11¢g > 10— 11(1/2) = 4.5> 0 = U, (¢ = 0).

In other words, ifg < 1!/ (which must be the case since the weak type
is escalating), the tough type can always get a higher ezgquyoff from
escalating than from not escalating himself. This mearet, ithcannot be
optimal to play a strategy that puts positive probability rast escalating.
Thus, there can be no sequential equilibrium whénglays a strategyw, 1).

. Suppose now thaf plays(«, 0); that is, he escalates with probabilityif
tough, and never escalates if weak. Because the weak type emnadates,
D’s posterior probability isc = 1, and so her best response is to capitulate.
But if D is going to capitulate for sure, then the weak type wouldtyri
prefer to escalatgg = 1. Thus, there can be no sequential equilibrium where
C plays a strategyw, 0).

. Suppose now that' plays (0, B); that is, he never escalates if tough, and
escalates with probabilitg > 0 if weak. Because the tough one never es-
calates,D’s posterior belief will bex = 0, and so her best response would
be to resist. But ifD is expected to resist for sure, then the weak type would
strictly prefer not to challenge her at all, and&e= 0. Thus, there can be no
sequential equilibrium wher€ plays a strategyo, ).

. Suppose now that plays(«, 8); that is he escalates with probabilidyif
tough, and with probability if weak. Suppose thdd resists with probability
g (we don’t know what it is for now). Since the weak type is willito play
a mixed strategy, he must be indifferent between his twoastiThat is,

Ucw (B =1) = Ucy, (B =0)
q(—104(1—g)(10) = 0
q =1
Thus, if the weak type is willing to randomize, it must be thsethaty = 1/,

(or else one of the pure actions would yield a strictly highayoff, andCy
would choose to play it with certainty). Howevergif= 1/, we have:

Ue, (@ =1) = g(=1) + (1 —¢)(10) = 4.5 > 0 = Uc, (& = 0).

That is, the tough type’s expected utility from escalatsmgtrictly better than
his expected utility from not escalating. This means thatttugh type would
not be willing to play a mixed strategy which puts a positivel@bility on
not escalating. Therefore, < 1 cannot be an optimal strategy. Hence, there
is no sequential equilibrium wher@ plays a strategyw, §).
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5. This leaves one final possibility to consider. SupposethatplayerC plays
a strategy(1, B); that is, he escalates for sure if tough, but escalates oitity w
probability 8 if weak. Letg denote the mixed strategy fd». As we have
already seen, since the weak type is willing to randomizeekpected payoff
from escalating must equal his expected payoff from notlasng. That is,
it must be the case that= 1/,. We have already seen thayjif= 1/, then
the tough type strictly prefers to escalate, so the strategyl is optimal, as
specified here.

Since D herself must be willing to randomize to play = 1/, it follows
that her expected payoff from resisting equals her expguagdff from not
resisting. If this were not the case, she would always cholsestrategy
that yielded the higher payoff. Thus, it must be the caselthay = 1) =
Up(g = 0), or:

Up(g =1) =Up(g =0)
x(—=15) + (1 —x)(10) = x(—10) + (1 — x)(—10)

—25x = -20
x = 0.8.
Noting thatD’s posterior belief will bex = %, we now have:
14
— =10..8.
p+(1—p)p
Solving this forg yields:
pro P
4(1-p)

In other words, if the weak challenger chooses to escalate prvobability

B*, he will induce inD the beliefx = 0.8, which will make her indifferent
between her two strategies, which in turn rationalizes éledomization. This
is an instance of how a rational player can manipulate thefgedf a rational
opponent. Clearly, there is not much latitude in doing so, @skould have
expected. It should not be too easy to get a rational playeglieve whatever
one wants.

We now have the exact mixing probability for the weak typeg&snction of
the prior beliefp) that would yield the necessary posterior belieffarwhich
would in turn makeC'’s strategy optimal. Here’s how this works. Given
D’s prior belief p, the weak challenger will choose a mixing probabilfy,
which will ensure that the defender will be indifferent beem resisting and
not resisting, and will be willing to mix between them. In peular, it could
be optimal to do so with probability = 1/,, which in turn renders the weak
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challenger’s strategy optimal. We already know tha®imixes like that, the
tough challenger will always escalate.

Note now that8* has to be a valid probability. It is positive, so we only
need to ensure th#t" < 1. Solving this inequality fop yields the condition
that p < 0.8. Thus, manipulating)’s belief in this way is only possible if
her prior belief assigns less than 80% chancé€ tbeing tough. The reason
for that is simple: to getD to capitulate, she must believe that it is quite
likely that her opponent is tough (in this case, the prolighihust be at least
80%). With a strategy according to which the tough challemgmore likely

to escalate than the weak one, the posterior belief will gbavexceed the
prior. That is, after escalatioP® will become more pessimistic. If the prior is
already above 80%, then she is already pessimistic enougggia with and
there is no need to manipulate her belief: the challengel@ss regardless
of type and reaps the benefits. Only whBrstarts out relatively optimistic
thatC must manipulate her beliefs.

Thus, the profile((l, ﬁ) , 1/2> is a sequential equilibrium ip < 0.8.
Note that this equilibrium exists only for values of the proobability p (we
can always compute the necessgrfrom it) that are less than 80%, unlike
the pooling equilibrium we found before which only existed ¥alues that
exceed 80%. We shall analyze the substantive featuressoédpiilibrium in
the next section.

Before we analyze the equilibrium we found, let’s give it a earA strategy in
which one type plays some action with certainty and anotyyee plays that ac-
tion with positive probability is calledemi-separating, or “partially separating.”
This is because the two types only partially separate theesdy their behav-
ior. If D observes escalation, she can update the probability ofgprent being
tough because the tough type is more likely to have escalatgd still cannot
be absolutely certain. Some information gets transmitiatinot enough to ensure
D of the type of opponent she is facing. {If does not observe escalation, then
she can conclude that the opponent is weak because the ypeghdlways esca-
late, so the status quo is only kept by the weak type with pesgrobability.) A
sequential equilibrium in which players play semi-sepagastrategies is called a
semi-separ ating (or “hybrid”) equilibrium. This game has exactly one sucluieq
librium.

5 Substantive Implications

What does all this analysis give us in terms of substantivasdee can use when
thinking about real crises? We have already learned twashirom the pooling
equilibrium and the nonexistence of separating equilibria
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e \We cannot reasonably expect states to reveal their priv&bemation in a
crisis because weak ones always have incentives to prdtegmcdate strong.
No amount of diplomacy and communication can alter thisdtasit.

e Deterrence can falil if the defender appears pessimistieothances, which
means that states would tend to publicly brag about theingths and exag-
gerate the weaknesses of their adversaries.

e Because states cannot credibly communicate capabilitiegentions, they
will spend a lot of resources on uncovering information dtloeir opponents
(and preventing their opponents from learning stuff abbatiiselves). But
even after a state finds evidence that its opponent is wegks@ellite photos
show few missiles), the opponent can dismiss public statésie that effect
by arguing that the state would have said something likeaiysvay because
itis in its interest to pretend that its opponents are weak.

Note now that our solutions are very general because thesr tg entire range
of initial beliefs p that the defender might have. gf> 0.8, then the model predicts
the pooling equilibrium in which the challenger escalatggardless of type and the
defender backs down. The equilibrium outcome will be sutezrby the defender.
This is the certain deterrence failure equilibrium.

If p < 0.8, onthe other hand, the model predicts the semi-separajunf@ium,
in which tough challengers always escalate, but weak onlgsdonso sometimes.
The defender sometimes resists and sometimes does nots @higequilibrium that
may involve deterrence failure and success, and, more aumtty, it may involve
war with positive probability.

Let's now see what the semi-separating equilibrium tellsrusst of all, what is
the equilibrium outcome? The probability th@twill escalate, as we have already
seen, is given by the formula:

Prie) = ap + B(1 — p) = 1.25p,

wherep < 0.8 (again, recall thap < 0.8 is a necessary condition for this equilib-
rium to exist). The probability of non-escalation (detewe success) is simply the
probability that the challenger is weak and does not essélla¢ tough one always
does):

Pr(~e) = (1 — B)(1 — p) = 1 — 1.25p.

The probability of war is the probability that the tough orssaates and the de-
fender resists:

Pr(War) = Pr(Cr) x Pr(e|Cr) x Pr(r) = p x (1) x 0.5 = 0.5p.
The probability that the defender capitulates is:
Pr(Cap,) = Pr(Cr)xPr(e|Cr)xPr(~r)+Pr(Cw)xPr(e|Cw ) xPr(~r) = 0.625p.
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Finally, the probability that the challenger capitulatesrpellence) is:
Pr(Cap.) = Pr(Cw) x Pr(e|Cw) x Pr(r) = 0.125p.

Let's do a quick check of our calculations. Deterrence cémeeisucceed or fail.
That is, either escalation or non-escalation should odexe) +Pr(~e) = 1.25p+
1-1.25p = 1, sowe're fine. The possible outcomes are status quo (n@iatien),
capitulation by defender, capitulation by challenger (pettence), and war: Px
e) + Pr(Cap,) + Pr(Cap-) + Pr(War) = 1, so we're fine.

We now turn to implications. First, note that the probapibf war is strictly
positive and increasing in the defender’s pessimism up tir pwhenp = 0.8).
That is, if the defender believes that her opponent is ulylike be tough p is
low), the chance of war is also low because the defender besdikely to resist,
and therefore unlikely to be challenged. As the defendez&spnism increases,
the danger of war begins to loom larger and larger. It is hsghight before the
defender crosses the threshold of believing with 80% ché#metehis opponent is
tough. At this extremely dangerous point, the probabilityvar is close to 40%.

Note some rather telling dynamics here. Asncreases (defender’s pessimism
goes up), the probability that she will capitulate also@ases. However, the proba-
bility that the challenger will capitulate increases aslwehis is because when the
probability of non-resistance by defender goes up, mor&kwhkallengers will test
their luck by escalating. But since the defender sometimes desist, this means
that more of them will end up capitulating themselves. Utfioately, this means
that she will also sometimes resist escalation by a tougbrgt causing war.

This is very interesting: the weaker the defender belieegséif to be, the more
vulnerable she will appear to challengers, who may mistatewand escalate. But
because the defender still believes that the challengentrbgyweak, she may re-
spond by resisting, which would compel a weak one to capéuldnfortunately, it
would also cause war if the challenger is genuinely tougle Weaker the defender
appears, the more likely are weak challengers to try thek,lwhich implies that
the defender is herself more likely to resist because of thken chance of the
challenger being weak. But this, paradoxically, increatsstae chance of war.

Once the threshold op = 0.8 is crossed, the defender becomes hopelessly
pessimistic, and never resists. Suddenly the chance of e@s grecipitously to
zero even though all types of challengers now escalate rietee always fails but
no war will occur as a consequence. Thus, itis incorrectttite shat the probability
of war always increases with pessimism. Rather, it increagés a point, and then
abruptly goes down. It is also incorrect to state that oimgenerally causes war.
As we have seen, the probability of war can drastically jurhtha point of the
equilibrium switch from pooling to semi-separating. Howgvrom this point on
as optimism increase® (@oes down), the probability of war will decrease.

This escalation model is signaling game, because thenformed player (the
challenger) gets to move first and reveal something aboytrivately known type.
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Of course, as the pooling equilibrium demonstrates, son&stino information will
get transmitted. Further, as the lack of separating egialighows, it is not pos-
sible for all information to be revealed. However, there m@y cases where the
defender can learn something about her opponent, as in mhiessparating equi-
librium.

The tough opponent tries to signal that he is tough by esoglat the semi-
separating equilibrium. Indeed, the posterior bekef always greater than the
prior belief p regardless 0. Because tough types escalate more than weak ones,
escalation is an imperfect signal that the challenger ighto&urprisingly, this does
not cause) to alter her behavior: Her equilibrium strategy is to rearsd capitulate
with equal probability. This makes sense: If she respondedalpitulating more
often, then she would encourage more weak types to try ¢goala the hopes
that they will get lucky. So the defender balances the rislwarf with the desire
to deter weak opponents from escalating. As you can alreaelydeterrence and
compellence are balancing acts that are difficult and counteitive (without the
model).

It is worth emphasizing one other central conclusion. Waealy bad for both
the defender and the challenger regardless of the chalierigpe. If the players
had a choice between living with the status quo and fightiot) would prefer to
live with the status quo. In other words, both players are “peace-loving” because
neither likes war for its own sake. One often hears the argaithat “only if every-
one loved peace, then we would not have war” and its exterisibeveryone that
starts a war must be a war-monger.”

Our model demonstrates that this claim and entire line cfoeimg is incorrect.
Both our players are peace-loving and yet the probability af i strictly greater
than zero as long as the defender is not entirely pessin{ibtat is, as long as
p < 0.8). Thus, war can occur despite both players hating it. Thélpro here
is not whether one likes peace or not, but whether one is pedga risk war to
prevent an opponent from taking advantage of one’s love at@eAs the Romans
said, if you want peace, prepare for war.

We shall see this trade-off between the risk of war and the fyam the threat
to unleash it quite often. It even has a formal name in therthebthe use of force
as therisk-return trade-off. It captures the idea that one would pursue policies
that balance the risk of disaster with the gains from threatgit. That is, one
would press one’s advantage to the extent that doing so wacidase one’s gains,
which always comes at the expense of a increased risk oftelisas some point,
you would forego additional gains because the risk becontekerable. This is the
trade-off. But of course, when you pursue such a strategydgpoactually run the
risk of everything ending in disaster.

We conclude thatt is entirely rational for peace-loving nations to end in a
war with each other. Destruction, even when hated by everyone, might occur and
we do not need irrationality or evil to explain it. It is a netliconsequence of
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players trying to obtain good outcomes in the internati@maha. The reason that
war does not occur all that often should also be intuitives iprecisely because
of its costliness that even a small risk of disaster is sweificto deter most players
from attempting to extract more from their opponents.

The presence of incomplete information is a necessary tlondor rationalizing
war in our model. Thus, we can conclude thpaivate infor mation and incentives
to misrepresent it constitute a major cause of war. When you read the article by
James Fearon, you will note that this is one of his two cemteins. The article
was written in 1995 and you should carefully note that ithaugoes through a
long list of causes of war that people have proposed and firmggmns with all
explanations.

6 Coming Up Next...

Note that the idea of credibility pervades the entire dismrsbecause it is a fun-
damental feature of the solution concept we employed. The awacerns are: (a)
how can the tough challenger credibly reveal its type? (by ban the defender
credibly commit to resisting, thereby enhancing the prospedeterrence success?
(c) how can a challenger credibly commit to compelling thiedder to back down?
All these turn out to be inter-connected issues and we caroraider one of them
in separation from the others. The solution to the model glgowhy this is the
case. It also uncovered some rather intriguing dynamiastieg from uncertainty.
Next time we shall look at how one can, at least in part, oveesome of the
problems caused by informational asymmetries.
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