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We have already seen an example of a finitely repeated game (recall the multi-stage game
where a static game with multiple equilibria was repeated twice). Generally, we would like
to be able to model situations where players repeatedly interact with each other. In such
situations, a player can condition his behavior at each point in the game on the other players’
past behavior. We have already seen what this possibility implies in extensive form games
(and we have obtained quite a few somewhat surprising results). We now take a look at a
class of games where players repeatedly engage in the same strategic game.

When engaged in a repeated situation, players must consider not only their short-term
gains but also their long-term payoffs. For example, if a Prisoner’s Dilemma is played once,
both players will defect. If, however, it is repeatedly played by the same two players, then
maybe possibilities for cooperation will emerge. The general idea of repeated games is that
players may be able to deter another player from exploiting his short-term advantage by
threatening punishment that reduces his long-term payoff.

We shall consider two general classes of repeated games: (a) games with finitely many
repetitions, and (b) games with infinite time horizons. Before we jump into theory, we need
to go over several mathematical preliminaries involving discounting.

1 Preliminaries

Let G = 〈N, (Ai), (gi)〉 be an n-player normal form game. This is the building block of a
repeated game and is the game that is repeated. We shall call G the stage game. This can
be any normal form game, like Prisoner’s Dilemma, Battle of the Sexes, or anything else you
might conjure up. As before, assume that G is finite: that is it has a finite number of players
i, each with finite action space Ai, and a corresponding payoff function gi : A → R, where
A = �Ai.

The repeated game is defined in the following way. First, we must specify the players’
strategy spaces and payoff functions. The stage game is played at each discrete time period
t = 0,1,2, . . . , T and at the end of each period, all players observe the realized actions. The
game is finitely repeated if T <∞ and is infinitely repeated otherwise.

Let at ≡ (at1, at2, . . . , atn) be the action profile that is played in period t (and so ati is the
action chosen by player i in that period), and denote the initial history by h0. A history of the
repeated game in time period t ≥ 1 is denoted by ht , and is simply the sequence of realized
action profiles from all periods before t:

ht =
(
a0, a1, a2, . . . , at−1

)
, for t = 1,2, . . .

For example, one possible fifth-period history of the repeated Prisoner’s Dilemma (RPD) game
is h4 = ((C,C), (C,D), (C,C), (D,D)). Note that because periods begin at t = 0, the fifth
period is denoted by h4 because the four periods played are 0, 1, 2, and 3. Let Ht = (A)t

be the space of all possible period-t histories. So, for example, the set of all possible period-
1 histories in the RPD game is H1 = {(C,C), (C,D), (D,C), (D,D)}, that is, all the possible
outcomes from period 0. Similarly, the set of all possible period-2 histories is

H2 = (A)2 = A×A
= {(C,C), (C,D), (D,C), (D,D)} × {(C,C), (C,D), (D,C), (D,D)}

A terminal history in the finitely repeated game is any history of length T , where T <∞ is the
number of periods the game is repeated. A terminal history in the infinitely repeated game
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is any history of infinite length. Every nonterminal history begins a subgame in the repeated
game.

After any nonterminal history, all players i ∈ N simultaneously choose actions ai ∈ Ai.
Because every player observes ht , a pure strategy for player i in the repeated game is a
sequence of functions, si(ht) : Ht → Ai, that assign possible period-t histories ht ∈ Ht to
actions ai ∈ Ai. That is, si(ht) denotes an action ai for player i after history ht . So, a
strategy for player i is just

si =
(
si(h0), si(h1), . . . , si(hT )

)
where it may well be the case that T = ∞. For example, in the RPD game, a strategy may
specify

si(h0) = C

si(ht) =
⎧⎪⎨
⎪⎩
C if aτj = C, j ≠ i, for τ = 0,1, . . . , t − 1

D otherwise

This strategy will read: “begin by cooperating in the first period, then cooperate as long as
the other player has cooperated in all previous periods, defect otherwise.” (This strategy is
called the grim-trigger strategy because even one defection triggers a retaliation that lasts
forever.)

Denote the set of strategies for player i by Si and the set of all strategy profiles by S = �Si.
A mixed (behavior) strategy σi for player i is a sequence of functions, σi(ht) : Ht → Ai,
that map possible period-t histories to mixed actions αi ∈ Ai (where Ai is the space of
probability distributions over Ai). It is important to note that a player’s strategy cannot
depend on past values of his opponent’s randomizing probabilities but only on the past
values of a−i. Note again that each period begins a new subgame and because all players
choose actions simultaneously, these are the only proper subgames. This fact will be useful
when testing for subgame perfection.

We now define the players’ payoff functions for infinitely repeated games (for finitely re-
peated games, the payoffs are usually taken to be the time average of the per-period payoffs).
Since the only terminal histories are the infinite ones and because each period’s payoff is
the payoff from the stage game, we must describe how players evaluate infinite streams of
payoffs of the form

(
gi(a0), gi(a1), . . .

)
. There are several alternative specifications in the

literature but we shall focus on the case where players discount future utilities using a dis-
count factor δ ∈ (0,1). Player i’s payoff for the infinite sequence

(
a0, a1, . . .

)
is given by the

discounted sum of per-period payoffs:

ui = gi(a0)+ δgi(a1)+ δ2gi(a2)+ · · · + δtgi(at)+ · · · =
∞∑
t=0

δtgi(at)

For any δ ∈ (0,1), the constant stream of payoffs (c, c, c, . . .) yields the discounted sum1

∞∑
t=0

δtc = c
1− δ

1It is very easy to derive the formula. First, note that we can factor out c because it’s a constant. Second, let
z = 1+ δ+ δ2 + δ3 + . . . denote the sum of the infinite series. Now, δz = δ+ δ2 + δ3 + δ4 + . . ., and therefore
z − δz = 1. But this now means that z = 1/(1− δ), yielding the formula. Note that we had to use the fact that
δ ∈ (0,1) to make this work.
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If the player’s preferences are represented by the discounted sum of per-period payoffs, then
they are also represented by the discounted average of per-period payoffs:

ui = (1− δ)
∞∑
t=0

δtgi(at).

The normalization factor (1− δ) serves to measure the repeated game payoffs and the stage
game payoffs in the same units. In the example with the constant stream of payoffs, the
normalized sum will be c, which is directly comparable to the payoff in a single period.

To be a little more precise, in the game denoted by G(δ), player i’s payoff function is to
maximize the normalized sum

ui = Eσ(1− δ)
∞∑
t=0

δtgi(σ(ht)),

where Eσ denotes the expectation with respect to the distribution over infinite histories gen-
erated by the strategy profile σ . For example, since gi(C,C) = 2, the payoff to perpetual
cooperation is given by

ui = (1− δ)
∞∑
t=0

δt(2) = (1− δ) 2
1− δ = 2.

This is why averaging makes comparisons easier: the payoff of the overall game G(δ) is
directly comparable to the payoff from the constituent (stage) game G because it is expressed
in the same units.

To recapitulate the notation, ui, si, and σi denote the payoffs, pure strategies, and mixed
strategies for player i in the overall game, while gi, ai, and αi denote the payoffs, pure
strategies, and mixed strategies in the stage game.

Finally, recall that each history starts a new proper subgame. This means that for any
strategy profile σ and history ht , we can compute the players’ expected payoffs from pe-
riod t onward. We shall call these the continuation payoffs, and re-normalize so that the
continuation payoffs from time t are measured in time-t units:

ui(σ |ht) = (1− δ)
∞∑
τ=t

δτ−tgi(σ(ht)).

With this re-normalization, the continuation payoff of a player who will receive a payoff of 1
per period from period t onward is 1 for any period t.

2 Finitely Repeated Games

These games represent the case of a fixed time horizon T <∞. Repeated games allow players
to condition their actions on the way their opponents behave in previous periods. We begin
the one of the most famous examples, the finitely repeated Prisoner’s Dilemma. The stage
game is shown in Fig. 1 (p. 5).

Let δ ∈ (0,1) be the common discount factor, and G(δ, T) represent the repeated game,
in which the Prisoner’s Dilemma stage game is played T periods. Since we want to examine
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C D
C 2,2 0,3
D 3,0 1,1

Figure 1: The Stage Game: Prisoner’s Dilemma.

how the payoffs vary with different time horizons, we normalize them in units used for the
per-period payoffs. The average discounted payoff is

ui = 1− δ
1− δT+1

T∑
t=0

δtgi(at).

To see how this works, consider the payoff from both players cooperating for all T periods.
The discounted sum without the normalization is

T∑
t=0

δt(2) = 1− δT+1

1− δ (2),

while with the normalization, the average discounted sum is simply 2.
Let’s now find the subgame perfect equilibrium (equilibria?) of the Finitely Repeated Pris-

oner’s Dilemma (FRPD) game. Since the game has a finite time horizon, we can apply back-
ward induction. In period T , the only Nash equilibrium is (D,D), and so both players defect.
Since both players will defect in period T , the only optimal action in period T −1 is to defect
as well. Thus, the game unravels from its endpoint, and the only subgame perfect equilib-
rium is the strategy profile where each player always defects. The outcome in every period
of the game is (D,D), and the payoffs in the FRPD are (1,1).

With some more work, it is possible to show that every Nash equilibrium of the FRPD
generates the always defect outcome. To see this, let σ∗ denote some Nash equilibrium.
Both players will defect in the last period T for any history hT that has positive probability
under σ∗ because doing so increases their period-T payoff and because there are no future
periods in which they might be punished. Since players will always defect in the last period
along the equilibrium path, if player i conforms to his equilibrium strategy in period T − 1,
his opponent will defect at time T , and therefore player i has no incentive not to defect in
T − 1. An induction argument completes the proof.

Although there are several applications of finitely repeated games, the “unraveling” effect
makes them less suitable for modeling repeated situations than the games we now turn to.

3 Infinitely Repeated Games

These games represent the case of an infinite time horizon T = ∞ and are meant to model
situations where players are unsure about when precisely the game will end. The set of
equilibria of an infinitely repeated game can be very different from that of the corresponding
finitely repeated game because players can use self-enforcing rewards and punishments that
do not unravel from the terminal date. In particular, because there is no fixed last period of
the game, in which both players will surely defect, in the Repeated Prisoner’s Dilemma (RPD)
game players may be able to sustain cooperation by the threat of “punishment” in case of
defection.
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While in the finitely repeated games case a strategy can explicitly state what to do in each
of the T periods, specifying strategies for infinitely repeated games is trickier because it must
specify actions after all possible histories, and there is an infinite number of these. Here are
the specifications of several common strategies.

• Always Defect (ALL-D). This strategy prescribes defecting after every history no matter
what the other player has done. So, si(ht) = D for all t = 0,1, . . ..

• Always Cooperate (ALL-C). This strategy prescribes cooperating after every history no
matter what the other player has done. So, si(ht) = C for all t = 0,1, . . ..

• Näıve Grim Trigger (N-GRIM). This strategy prescribes cooperating while the other
player cooperates and, should the other player defect even once, defect forever there-
after:

si(ht) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
C if t = 0

C if aτj = C, j ≠ i, for τ = 0,1, . . . , t − 1

D otherwise

This is a very unforgiving strategy that punishes a single deviation forever. However, it
only punishes deviations by the other player. The following strategy punishes even the
player’s own past deviations.

• Grim Trigger (GRIM). This strategy prescribes cooperating in the initial period and then
cooperating as long as both players cooperated in all previous periods:

si(ht) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
C if t = 0

C if aτ = (C,C) for τ = 0,1, . . . , t − 1

D otherwise

Unlike N-GRIM, this strategy “punishes” the player for his own deviations, not just the
deviations of the other player.

• Tit-for-Tat (TFT). This strategy prescribes cooperation in the first period and then play-
ing whatever the other player did in the previous period: defect if the other player
defected, and cooperate if the other player cooperated:

si(ht) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
C if t = 0

C if at−1
j = C, j ≠ i

D otherwise

This is the most forgiving retaliatory strategy: it punishes one defection with one de-
fection and restores cooperation immediately after the other player has resumed coop-
erating.

• Limited Retaliation (LR-K). This strategy, also known as Forgiving Trigger, prescribes
cooperation in the first period, and then k periods of defection for every defection of
any player, followed by reverting to cooperation no matter what has occurred during
the punishment phase:
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1. Phase A: cooperate and switch to Phase B

2. Phase B: cooperate unless some player has defected in the previous period, in
which case switch to Phase C and set τ = 0;

3. Phase C: if τ ≤ k, set τ = τ + 1 and defect, otherwise switch to Phase A.

This retaliatory strategy fixes the number of periods with which to punish defection
but this is independent of the behavior of the other player. (In TFT, on the other hand,
the length of punishment depends on what the other player does while he is being
punished.)

• Pavlov (WS-LS). Also called, win-stay, lose-shift, this strategy prescribes cooperation in
the first period and then cooperation after any history in which the last outcome was
either (C,C) or (D,D) and defection otherwise:

si(ht) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
C if t = 0

C if at−1 ∈
{
(C,C), (D,D)

}
D otherwise

This strategy chooses the same action if the last outcome was relatively good and
switches action if the last outcome was relatively bad for the player.

• Deviate Once (DEV1L). This strategy prescribes TFT until period L, then deviating in
period L, cooperating in period L+ 1, and playing TFT thereafter.

si(ht, t ≠ L, L+ 1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
C if t = 0 or t = L+ 1

C if at−1
j = C, j ≠ i and t ≠ L

D otherwise

This retaliatory strategy attempts to exploit the opponent just once, if at all possible.

• Grim DEV1L. Play Grim Trigger until period L, then play D in period L and thereafter.

si(ht, t < L) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
C if t = 0

C if aτj = C, j ≠ i, for τ = 0,1, . . . , t − 1

D otherwise

si(ht, t ≥ L) = D

This strategy attempts to be “nice” until some specified period and then pre-empt by
defecting first and never resuming cooperation.

Of course, the number of possible strategies in RPD is infinite, and people have proposed
various modifications to the basic list of sample strategies shown above.

To calculate the payoffs, we need to specify the strategies for both players. For example,
let’s check whether (ALL-D,ALL-D) is a Nash equilibrium. This is clearly the case because
whatever player 1 does, player 2 will always play D, and the best response to D is D as well.
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Let’s now work our way through a more interesting example. Is (GRIM,GRIM), the strategy
profile where both player use Grim Trigger, a Nash equilibrium? If both players follow GRIM,
the outcome will be cooperation in each period:

(C,C), (C,C), (C,C), . . . , (C,C), . . .

whose average discounted value is

(1− δ)
∞∑
t=0

δtgi(C,C) = (1− δ)
∞∑
t=0

δt(2) = 2.

Consider the best possible deviation for player 1. For such a deviation to be profitable, it
must produce a sequence of action profiles which has defection by some players in some
period. If player 2 follows GRIM, he will not defect until player 1 defects, which implies that
a profitable deviation must involve a defection by player 1. Let τ where τ ∈ {0,1,2, . . .}
be the first period in which player 1 defects. Since player 2 follows GRIM, he will play D
from period τ + 1 onward. Therefore, the best deviation for player 1 generates the following
sequence of action profiles:2

(C,C), (C,C), . . . , (C,C)︸ ︷︷ ︸
τ times

, (D,C)︸ ︷︷ ︸
period τ

, (D,D), (D,D), . . . ,

which generates the following sequence of payoffs for player 1:

2,2, . . . ,2︸ ︷︷ ︸
τ times

,3,1,1, . . . .

The average discounted value of this sequence is3

(1− δ)
[
2+ δ(2)+ δ2(2)+ · · · + δτ−1(2)+ δτ(3)+ δτ+1(1)+ δτ+2(1)+ · · ·

]

= (1− δ)
[ T−1∑
t=0

δt(2)+ δT (3)+
∞∑

t=T+1

δt(1)
]

= (1− δ)
[
(1− δT)(2)

1− δ + δT (3)+ δ
T+1(1)
1− δ

]

= 2+ δT − 2δT+1

Solving the following inequality for δ yields the discount factor necessary to sustain cooper-
ation:

2+ δT − 2δT+1 ≤ 2

δT ≤ 2δT+1

δ ≥ 1
2
.

2Note that the first profile is played τ times, from period 0 to period τ − 1 inclusive. That is, if τ = 3, the
(C,C) profile is played in periods 0, 1, and 2 (that is, 3 times). The sum of the payoffs will be

∑τ−1
t=0 δt(2) =∑2

t=0 δt(2). That is, notice that the upper limit is τ − 1.
3It might be useful to know that

T∑
t=0

δt =
∞∑
t=0

δt −
∞∑

t=T+1

δt = 1
1− δ − δ

T+1
∞∑
t=0

δt = 1− δT+1

1− δ
whenever δ ∈ (0,1).
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In other words, for δ ≥ 1/2, deviation is not profitable. This means that if players are suffi-
ciently patient (i.e. if δ ≥ 1/2), then the strategy profile (GRIM,GRIM) is a Nash equilibrium of
the infinitely repeated PD. The outcome is cooperation in all periods.

It is fairly easy to see that the strategy profile in which both players play ALL-C cannot be
Nash equilibrium because each player can gain by deviating to ALL-D, for example.

3.1 Subgame Perfect Equilibria in Infinitely Repeated Games

At this point, it will be useful to recall the One-Shot Deviation Property (OSDP) that we previ-
ously covered. We shall make heavy use of OSDP in the analysis of subgame perfect equilibria
of the RPD. Briefly, recall that a strategy profile (s∗i , s

∗
−i) is a SPE of G(δ) if and only if no

player can gain by deviating once after any history and conform to his strategy thereafter.

1. Näıve Grim Trigger. Let’s check whether (N-GRIM,N-GRIM) is subgame perfect. To do
this, we only need to check whether it satisfies OSDP. Consider the history h1 = (C,D),
that is, in the initial history, player 2 has defected. If player 2 now continues playing
N-GRIM, the sequence of action profiles will result (player 1 sticks to N-GRIM as well):

(D,C), (D,D), (D,D), . . . ,

for which the payoffs are 0,1,1, . . ., whose discounted average value is δ. If player 2
deviates and plays D instead of C in period 1, he will get a payoff of 1 in every period,
whose discounted average value is 1. Since δ < 1, this deviation is profitable. Therefore,
(N-GRIM,N-GRIM) is not a subgame perfect equilibrium. (You now see why I called this
strategy näıve.)

2. Grim Trigger. Let’s now check if (GRIM,GRIM) is subgame perfect. Consider first all
histories of the type ht = ((C,C), (C,C), . . . , (C,C)), that is, all histories without any
defection. For player 1, the average discounted payoff from all these histories is 2. Now
suppose player 1 deviates at some period t and returns to GRIM from t+1 onward (the
one-shot deviation condition). This yields the following sequence of action profiles:

(C,C), (C,C), . . . , (C,C)︸ ︷︷ ︸
t times

, (D,C)︸ ︷︷ ︸
period t

, (D,D), (D,D), . . . ,

for which, as we saw before, the payoff is 2+δt−2δt+1. This deviation is not profitable
as long as δ ≥ 1/2. Therefore, if players are sufficiently patient, deviating from GRIM by
defecting at some period is not profitable.

Consider now all histories other than ((C,C), (C,C), . . . , (C,C)), that is histories in
which some player has defected. We wish to check if it is optimal to stick to GRIM.
Suppose the first defection (by either player) occurred in period t. The following se-
quence of action profiles illustrates the case of player 2 defecting:

(C,C), (C,C), . . . , (C,C)︸ ︷︷ ︸
t times

, (C,D)︸ ︷︷ ︸
period t

, (D,D), (D,D), . . . .

The average discounted sum is 2 − 2δt + δt+1. (You should verify this!) Suppose now
that player 1 deviates and plays C in some period T > t. This generates the following
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sequence of action profiles:

(C,C), (C,C), . . . , (C,C)︸ ︷︷ ︸
t times

, (C,D)︸ ︷︷ ︸
period t

, (D,D), . . . , (D,D)︸ ︷︷ ︸
T−t−1 times

, (C,D)︸ ︷︷ ︸
period T

, (D,D), (D,D), . . . .

The average discounted sum of this stream is 2 − 2δt + δt+1 + δT (δ − 1). (You should
verify this as well.4) However, since δ−1 < 0, this is strictly smaller than 2−2δt+δt+1,
and so such deviation is not profitable.

Because there are no other one-shot deviations to consider, player 1’s strategy is sub-
game perfect. Similar calculations show that player 2’s strategy is also optimal, and so
(GRIM,GRIM) is a subgame perfect equilibrium of RPD as long as δ ≥ 1/2.

The Grim Trigger strategy is very fierce in its punishment. The Limited Retaliation
and Tit-for-Tat strategies are much less so. However, we can show that these, too, can
sustain cooperation.

3. Limited Retaliation. Suppose the game is in the cooperative phase (either no deviations
have occurred or all deviations have been punished). We have to check whether there
exists a profitable one-shot deviation in this phase. Suppose player 2 follows LR-K. If
player 1 follows LR-K as well, the outcome will be (C,C) in every period, which yields
an average discounted payoff of 2. If player 1 deviates to D once and then follows the
strategy, the following sequence of action profiles will result:

(D,C), (D,D), (D,D), . . . , (D,D)︸ ︷︷ ︸
k times

, (C,C), (C,C), . . . ,

with the following average discounted payoff:

(1− δ)
[
3+ δ+ δ2 + · · · + δk +

∞∑
t=k+1

δt(2)
]
= 3− 2δ+ δk+1

Therefore, there will be no profitable one-shot deviation in the cooperation phase if and
only if

3− 2δ+ δk+1 ≤ 2

δk+1 − 2δ+ 1 ≤ 0

So, if, for example, k = 1, then this condition is (δ−1)2 ≤ 0, which, of course, can never
be satisfied since δ < 1. If, on the other hand k = 2, then the condition will be satisfied
for any δ ≥ 0.62. Generally, as the length of punishment increases, the lower bound on
δ decreases, and as k → ∞, the bound converges to 1/2. This is the grim trigger bound,
which is not surprising because GRIM specifies an infinite punishment phase.

4To get this result, simplify the sum of payoffs

t−1∑
τ=0

δτ(2)+ δt(0)+
T−1∑
τ=t+1

δτ(1)+ δT (0)+
∞∑

τ=T+1

δτ(1),

and normalize by multiplying by (1− δ), as before.
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We now have to check if there is a profitable one-shot deviation in the punishment
phase. Suppose there are k′ < k periods left in the punishment phase. If player 1
follows LR-K, the following action profile will be realized:

(D,D), (D,D), . . . , (D,D)︸ ︷︷ ︸
k′ times

, (C,C), (C,C), . . . ,

while a one-shot deviation at the beginning produces

(C,D), (D,D), . . . , (D,D)︸ ︷︷ ︸
k′ times

, (C,C), (C,C), . . . .

Even without going through the calculations it is obvious that such deviation cannot
be profitable. Thus, following LR-K is optimal in the punishment phase as well. We
can now do similar calculations for player 2 to establish the optimality of his behavior
although it is not necessary since he’s also playing LR-K.

We conclude that if k ≥ 2 and if the players are patient enough, (LR-K,LR-K) is a subgame
perfect equilibrium.5

These techniques can be applied to any stage game, not just the Prisoner’s Dilemma. It
should be fairly clear how one would go about doing that (which does not, of course, mean
that it would be easy!). Here’s a simple but useful result.

Observation 1. If α∗ is a Nash equilibrium of the stage game (i.e. it is a “static equi-
librium”), then the strategies “each player i plays α∗i from now on” are a subgame-perfect
equilibrium of G(δ). Moreover, if the game has m static equilibria {αj}mj=1, then for any map
J : t → j, where t = 0,1, . . . is the time period and j ∈ {1,2, . . . ,m} is the static equilibrium,
the strategies “play αJ(t) in period t” are a subgame-perfect equilibrium as well.

To see that this observation is correct, note that with these strategies the future play of
player i’s opponents is independent of how player i plays today, so his optimal response is
to maximize his current payoff, which means he plays the static best-response to αJ(t)−i in
every period t.

This observation tells us that repeated play does not decrease the set of equilibrium pay-
offs. Also, since the only reason not to play a static best response is concern about the future,
if the discount factor is low enough, then the only Nash equilibria of the repeated game will
be the strategies that specify a static equilibrium at every history to which the equilibrium
gives positive probability. Note that the same static equilibrium need not occur in every pe-
riod. In infinitely repeated games, the set of Nash-equilibrium continuation payoff vectors is
the same in every subgame.

3.2 Folk Theorems for Infinitely Repeated Games

There is a set of useful results, known as “folk theorems” for repeated games, which assert
that if players are sufficiently patient, then any feasible, individually rational payoffs can be
supported by an equilibrium. Thus, with δ close enough to 1, repeated games allow virtually
any payoff to be an equilibrium outcome! To show these results, we need to get through
several definitions.

5Note that “patient enough” means that we can find some discount factor δ ∈ (0,1) such that the claim is
true. When doing proofs like that, you should always explicitly solve for δ to show that it in fact exists.

11



Definition 1. The payoffs (v1, v2, . . . , vn) is feasible in the stage gameG if they are a convex
combination of the pure-strategy payoffs in G. The set of feasible payoffs is

V = convex hull
{
v|∃a ∈ A with g(a) = v}.

In other words, payoffs are feasible if they are a weighted average (the weights are all non-
negative and sum to 1) of the pure-strategy payoffs. For example, the Prisoner’s Dilemma
in Fig. 1 (p. 5) has four pure-strategy payoffs, (2,2), (0,3), (3,0), and (1,1). These are all
feasible. Other feasible payoffs include the pairs (v,v) with v = α(1) + (1 − α)(2), with
α ∈ (0,1), and the pairs (v1, v2) with v1 = α(0)+ (1− α)(3) with v1 + v2 = 3, which result
from averaging the payoffs (0,3) and (3,0). There are many other feasible payoffs that result
from averaging more than two pure-strategy payoffs. To achieve a weighted average of pure-
strategy payoffs, the players can use a public randomization device. To achieve the expected
payoffs (1.5,1.5), they could flip a fair coin and play (C,D) if it comes up heads and (D,C)
if it comes up tails.

The convex hull of a set of points is simply the smallest convex set containing all the
points. The set V is easier to illustrate with a picture. Let’s compute V for the stage game
shown to the left in Fig. 2 (p. 12). There are three pure-strategy payoffs in G, so we only
need consider the convex hull of the set of three points, (−2,2), (1,−2), and (0,1), in the
two-dimensional space.

L R
U −2,2 1,−2
M 1,−2 −2,2
D 0,1 0,1

�v1

�
v2

�

(0,1)

�

(−2,2)

�

(1,−2)

�
�
�
�
�
�
�
��

�������
�

�
�

�
�

�
�

�
�

��

Figure 2: The Game G and the Convex Hull of its Pure-Strategy Payoffs.

As the plot on the right in Fig. 2 (p. 12) makes it clear, all points contained within the
triangle shown are feasible payoffs (the triangle is the convex hull).

Suppose now we consider a simple modification of the stage game, as shown in the payoff
matrix on the left in Fig. 3 (p. 13). In effect, we have added another pure-strategy payoff to
the game: (2,3). What is the convex hull of these payoffs? As the plot on the right in Fig. 3
(p. 13) makes it clear, it is (again) the smallest convex set that contains all points. Note that
(0,1) is now inside the set. All payoffs contained within the triangle are feasible payoffs.

We now proceed to define what we mean by “individually rational” payoffs. To do this, we
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M 1,−2 −2,2
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Figure 3: The Game G2 and the Convex Hull of Its Pure-Strategy Payoffs.

must recall the minimax payoffs we discussed in the context of zero-sum games.6 To remind
you, here’s the formal definition.

Definition 2. Player i’s reservation payoff or minimax value is

vi = min
α−i

[
max
αi

gi(αi,α−i)
]
.

In other words, vi is the lowest payoff that player i’s opponents can hold him to by any
choice of α−i provided that player i correctly foresees α−i and plays a best response to it.
Letmi

−i be the minimax profile against player i, and letmi
i be a strategy for player i such that

gi(mi
i,m

i
−i) = vi. That is, the strategy profile (mi

i,m
i
−i) yields player i’s minimax payoff in

G.
Let’s look closely at the definition. Consider the stage game G illustrated in Fig. 2 (p. 12).

To compute player 1’s minimax value, we first compute the payoffs to his pure strategies as
a function of player 2’s mixing probabilities. Let q be the probability with which player 2
chooses L. Player 1’s payoffs are then vU(q) = −3q+1, vM(q) = 3q−2, and vD(q) = 0. Since
player 1 can always guarantee himself a payoff of 0 by playing D, the question is whether
player 2 can hold him to this payoff by playing some particular mixture. Since q does not
enter vD, we can pick a value that minimizes the maximum of vU and vM , which occurs at
the point where the two expressions are equal, and so −3q + 1 = 3q − 2 ⇒ q = 1/2. Since
vU(1/2) = vM(1/2) = −1/2, player 1’s minimax value is 0.7

Finding player 2’s minimax value is a bit more complicated because there are three pure
strategies for player 1 to consider. Let pU and pM denote the probabilities of U and M

6Or, as it might be in our case, did not discuss because we did not have time. Take a look at the lecture
notes.

7Note that max
(
vU(q), vM(q)

) ≤ 0 for any q ∈ [1/3,2/3], so we can take any q in that range to be player
2’s minimax strategy against player 1.
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respectively. Then, player 2’s payoffs are

vL(pU,pM) = 2(pU − pM)+ (1− pU − pM)
vR(pU,pM) = −2(pU − pM)+ (1− pU − pM),

and player 2’s minimax payoff may be obtained by solving

min
pU ,pM

max
[
vL(pU,pM), vR(pU,pM)

]
.

By inspection we see that player 2’s minimax payoff is 0, which is attained by the profile(
1
2 ,

1
2 ,0

)
. Unlike the case with player 1, the minimax profile here is uniquely determined:

If pU > pM , the payoff to L is positive, if pM > pU , the payoff to R is positive, and if
pU = pM < 1

2 , then both L and R have positive payoffs.
The minimax payoffs have special role because they determine the reservation utility of

the player. That is, they determine the payoff that players can guarantee themselves in any
equilibrium.

Observation 2. Player i’s payoff is at least vi in any static equilibrium and in any Nash
equilibrium of the repeated game regardless of the value of the discount factor.

This observation implies that no equilibrium of the repeated game can give player i a payoff
lower than his minimax value. We call any payoffs that Pareto dominate the minimax payoffs
individually rational. In the example game G, the minimax payoffs are (0,0), and so the set of
individually rational payoffs consists of feasible pairs (v1, v2) such that v1 > 0 and v2 > 0.
More formally,

Definition 3. The set of feasible strictly individually rational payoffs is the set

{
v ∈ V |vi > vi∀i

}
.

In the example in Fig. 2 (p. 12), this set includes all points in the small right-angle triangle
cornered at (0,0) and (0,1).

We now state two very important results about infinitely repeated games. Both are called
“folk theorems” because the results were well-known to game theorists before anyone actu-
ally formalized them, and so no one can claim credit. The first folk theorem shows that any
feasible strictly individually rational payoff vector can be supported in a Nash equilibrium of
the repeated game. The second folk theorem demonstrates a weaker result that any feasible
payoff vector that Pareto dominates any static equilibrium payoffs of the stage game can be
supported in a subgame perfect equilibrium of the repeated game.

Theorem 1 (A Folk Theorem). For every feasible strictly individually rational payoff vector
v , there exists a δ < 1 such that for all δ ∈ (δ,1) there is a Nash equilibrium of G(δ) with
payoffs v .

The intuition of this theorem is simply that when the players are patient, any finite one-
period gain from deviation is outweighed by even a small loss in utility in every future period.
The proof constructs strategies that are unrelenting: A player who deviates will be minimaxed
in every subsequent period.

14



Proof. Assume there is a pure strategy profile a such that g(a) = v .8 Consider the
following strategy for each player i: “Play ai in period 0 and continue to play ai as long
as (i) the realized action profile in the previous period was a, or (ii) the realized action in
the previous period differed from a in two or more components. If in some previous period
player i was the only one not to follow profile a, then each player j plays mi

j for the rest of
the game.”

Can player i gain by deviating from this profile? In the period in which he deviates, he
receives at most maxa gi(a) and since his opponents will minimax him forever after, he will
obtain vi in all periods thereafter. Thus, if player i deviates in period t, he obtains at most

(1− δt)vi + δt(1− δ)max
a
gi(a)+ δt+1vi.

To make this deviation unprofitable, we must find the value of δ such that this payoff is
strictly smaller than the payoff from following the strategy, which is vi:

(1− δt)vi + δt(1− δ)max
a
gi(a)+ δt+1vi < vi

δt(1− δ)max
a
gi(a)+ δt+1vi < δtvi

(1− δ)max
a
gi(a)+ δvi < vi

For each player i we define the critical level δi by the solution to the equation

(1− δi)max
a
gi(a)+ δivi = vi.

Because vi < vi, the solution to this equation always exists with δi < 1. Taking δ = maxi δi
completes the argument. Note that when deciding whether to deviate, player i assigns proba-
bility 0 to an opponent deviating in the same period. This is what Nash equilibrium requires:
Only unilateral deviations are considered.

Although this result is somewhat intuitive, the strategies used to prove the Nash folk the-
orem are not subgame perfect. The question now becomes whether the conclusion of the
folk theorem applies to the payoffs of perfect equilibrium. The answer is yes, as shown by
the various perfect folk theorem results. Here we show a popular, albeit weaker, one due to
Friedman (1971).

Theorem 2 (Friedman, 1971). Let α∗ be a static equilibrium with payoffs e. Then for any
v ∈ V with vi > ei for all players i, there is a δ < 1 such that for all δ > δ there is a subgame
perfect equilibrium of G(δ) with payoffs v .

Proof. Assume there is a strategy profile â such that g(â) = v .9 Consider the following
strategy profile: “In period 0 each player i plays âi. Each player i continues to play âi as long
as the realized action profiles were â in all previous periods. If at least one player did not
play according to â, then each player plays α∗i for the rest of the game.”

This strategy profile is a Nash equilibrium for δ large enough that

(1− δ)max
a
gi(a)+ δei < vi.

8This is unnecessary. The proof can be modified to work in cases where v cannot be generated by pure
strategies. It is messier but the logic is the same.

9Again, if this is not the case, we have to use the public randomization technique that I mentioned above.
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This inequality holds strictly at δ = 1, which means it is satisfied for a range of δ < 1. The
strategy profile is subgame perfect because in every subgame off the equilibrium path the
players play α∗ forever, which is a Nash equilibrium of the repeated game for any static
equilibrium α∗.

You probably recognize a variant of the Grim Trigger strategy in the proof above. This
is precisely the case and various folk theorems are usually proved by using various trigger
strategies of the sort because they are the simplest punishment strategies. The Grim Trigger
in RPD works because it prescribes switching to (D,D) for both players should one of them
defect. Since (D,D) is a Nash equilibrium of PD, Friedman’s folk theorem can be applied
directly. In this case, since the unique Nash equilibrium payoffs are (1,1), the theorem tells
us that any payoff vector (v1, v2) with 1 < vi ≤ 3 can be supported in a subgame perfect
equilibrium of the RPD. In other words, just about anything is possible!

Friedman’s theorem is weaker than the folk theorem except in cases where the stage game
has a static equilibrium in which players obtain their minimax payoffs. This requirement is
quite restrictive although it does hold for the Prisoner’s Dilemma. However, there are “perfect
folk theorems” that show that for any feasible, individually rational payoff vector, there is a
range of discount factors for which that payoff vector can be obtained in a subgame perfect
equilibrium.

The folk theorems show that standard equilibrium refinements like subgame perfection do
very little to pin down play by patient players. Almost anything can happen in a repeated
game provided that the players are patient enough. It is troubling that game theory provides
no mechanism for picking any of these equilibria over others. Economists usually focus
on one of the efficient equilibria, typically a symmetric one. The “argument” is that people
may coordinate on efficient equilibria and cooperation is more likely in repeated games. Of
course, this “argument” is simply a justification and is not part of game theory. There are
other refinements, e.g. “renegotiation proofness” that reduces the set of perfect equilibrium
outcomes.

4 Some Problems

4.1 Feasible Payoffs

Consider the game in Fig. 4 (p. 16). Find the convex hull of the feasible payoffs. Find the set
of all feasible, strictly individually rational payoffs.

L R
U −2,2 1,−2
M 1,−2 −2,2
D 0,1 −1,−3

Figure 4: An Example Game.

The convex hull of feasible payoffs is the set of all points in the rectangle with vertices
(−2,2), (−1,−3), (1,−2), and (0,1). Let r denote the probability that player 2 chooses L.
Player 1’s expected payoff from U is −2r + (1− r) = 1− 3r . The expected payoff from M is
3r − 2. The expected payoff from D is r − 1. Plotting these functions shows that q = 1/2 is
the probability that minimaxes player 1 (where player 1 is indifferent among any of his three
pure strategies). Player 1’s minimax payoff is −1/2.
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Let p be the probability that player 1 chooses U and q be the probability that he chooses
M . Player 2’s expected payoff from L is p − 3q + 1, and his payoff from R is p + 5q − 3. By
inspection (or equating the payoffs), we find that p = q = 1/2 is the worst player 1 can do to
player 2, in which case player 2’s minimax payoff is 0. The set of strictly rational payoffs is
the subset of feasible payoffs where u1 ≥ −1/2 and u2 ≥ 0.

4.2 Subgame Perfection

Consider now an infinitely repeated game G(δ) with the stage game shown in Fig. 5 (p. 17).

C D
C 2,2 0,3
D 3,0 1,1

Figure 5: The Stage Game.

Are the following strategy profiles, as defined in the lecture notes, subgame perfect? Show
your work and calculate the minimum discount factors necessary to sustain the subgame
perfect equilibrium, if any.

• (TFT,TFT). Hint: partition payoffs and try using x = δ2.

The game has four types of subgames, depending on the realization of the stage game
in the last period. To show subgame perfection, we must make sure neither player has
an incentive to deviate in any of these subgames.

1. The last realization was (C,C).10 If player 1 follows TFT, then his payoff is

(1− δ)[2+ 2δ+ 2δ2 + 2δ3 + · · · ] = 2.

If player 1 deviates, the sequence of outcomes is (D,C), (C,D), (D,C), (C,D), . . .,
and his payoff will be

(1− δ)[3+ δ+ 3δ2 + δ3 + 3δ4 + δ5 + · · · ] = 3
1+ δ.

(Here we make use of the hint. The payoff can be partitioned into two sequences,
one in which the per-period payoff is 3, and another where the per-period payoff
is 1. So we have (letting x = δ2 as suggested):

3+ 0δ+ 3δ2 + 0δ3 + 3δ4 + 0δ5 + 3δ6 + · · ·
= 3+ 3δ2 + 3δ4 + 3δ6 + · · · + 0δ+ 0δ3 + 0δ5 + · · ·
= 3[1+ δ2 + δ4 + δ6 + · · · ]+ 0δ[1+ δ2 + δ4 + · · · ]
= (3+ 0δ)[1+ δ2 + δ4 + δ6 + · · · ]
= 3[1+ x + x2 + x3 + x4 + · · · ]
= 3

(
1

1− x
)

= 3
1− δ2 =

3
(1− δ)(1+ δ)

10This also handles the initial subgame.
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Which gives you the result above when you multiply it by (1 − δ) to average it.
I have not gone senile. The reason for keeping the multiplication by 0 above is
just to let you see clearly how you would calculate it if the payoff from (C,D) was
something else.)

Deviation will not be profitable when 2 ≥ 3/(1+ δ), or whenever δ ≥ 1/2.

2. The last realization was (C,D). If player 1 follows TFT, the resulting sequence of
outcomes will be (D,C), (C,D), (D,C), . . ., to which the payoff (as we just found
out above) is 3/(1 + δ). If player 1 deviates and cooperates, the sequence will be
(C,C), (C,C), (C,C), . . ., to which the payoff is 2. So, deviating will not be profitable
as long as 3/(1 + δ) ≥ 2, which means δ ≤ 1/2. (We are already in hot water here:
Only δ = 1/2 will satisfy both this condition and the one above!)

3. The last realization was (D,C). If player 1 follows TFT, the resulting sequence of
outcomes will be (C,D), (D,C), (C,D), . . .. Using the same method as before, we
find that the payoff to this sequence is 3δ/(1+δ). If player 1 deviates, the sequence
of outcomes will be (D,D), (D,D), (D,D), . . ., to which the payoff is 1. Deviation
will not be profitable whenever 3δ/(1+ δ) ≥ 1, which holds for δ ≥ 1/2.

4. The last realization was (D,D). If player 1 follows TFT, the resulting sequence
of outcomes will be (D,D), (D,D), (D,D), . . ., to which the payoff is 1. If he devi-
ates instead, the sequence will be (C,D), (D,C), (C,D), . . ., to which the payoff is
3δ/(1+δ). Deviation will not be profitable if 1 ≥ 3δ/(1+δ), which is true only for
δ ≤ 1/2.

It turns out that for (TFT,TFT) to be subgame perfect, it must be the case that δ = 1/2, a
fairly hefty knife-edge requirement. In addition, it is an artifact of the way we specified
the payoffs. For example, changing the payoff from (D,C) to 4 instead of 3 results
in the payoff for the sequence of outcomes (D,C), (C,D), (D,C), . . . to be 4/(1 + δ).
To prevent deviation in case (a), we now want 2 ≥ 4/(1 + δ), which is only true if
δ ≥ 1, which is not possible. So, with this little change, the SPE disappears. For general
parameters, (TFT,TFT) is not subgame perfect, except for special cases where it may be
for some knife-edge value of δ. Therefore, TFT is not all that is so often cracked up to
be!

• (TFT,GRIM)

We first check the optimality of player 1’s strategy and then the optimality of player 2’s
strategy.

1. No deviations have occurred in the past. If player 1 follows TFT, the result is per-
petual cooperation, and the payoff is 2. If player 1 deviates, the resulting sequence
of outcomes is (D,C), (C,D), (D,D), . . .. The payoff is (1 − δ)[3 + ∑∞t=2 δt] =
3− 3δ+ δ2. Deviation is not profitable whenever 1− 3δ+ δ2 ≤ 0, which is true for
any δ ≥ (3−√5)/2.

Similarly, player 2’s payoff from following GRIM is 2. If player 2 deviates, the
sequence is (C,D), (D,D), (D,D), . . .. The payoff is (1− δ)[3+∑∞t=1 δt] = 3− 2δ.
This is not profitable for any δ ≥ 1/2.

2. Player 2 has deviated in the previous period. If player 1 follows TFT, the sequence
of outcomes is perpetual defection, from which the payoff is 1. If player 1 deviates,
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the sequence is (C,D), (D,D), . . ., for which the payoff is δ < 1, and so it is not
profitable for any δ.

If player 2 follows GRIM, the outcome is perpetual defection with a payoff of 1. If
player 2 deviates, the sequence of profiles is (D,C), (D,D), . . . with a payoff of δ.
This deviation is not profitable for any δ.

3. Player 1 has deviated in the previous period. If player 1 sticks to TFT, the sequence
of profiles is (C,D), (D,D), . . . with a payoff of δ. If player 1 deviates, the payoff
is 1, which is always better. Therefore, player 1’s strategy is not optimal in this
subgame, and hence (TFT,GRIM) is not subgame perfect. We do not even have to
check player 2’s strategy for this subgame.

• (WS-LS,WS-LS)

As with TFT, the behavior in a subgame of a player who uses the Pavlov strategy (WS-LS)
depends only one the last outcome; that is, on the realization of the stage game in the
last period only. Thus, we examine the four possibilities: histories ending with (C,C),
(C,D), (D,C), or (D,D).

The last realization was (C,C). If player 1 follows WS-LS, his payoff is 2 because both
players will always play C if they follow the strategy profile specified. If player 1 de-
viates, the sequence of outcomes is (D,C), (D,D), (C,C), (C,C), . . .. The payoff from
this is (1− δ)[3+ δ+∑∞t=2 δt(2)] = (1− δ)[3+ δ+ 2δ2/(1− δ)] = 3− 2δ+ δ2. Thus,
deviating will not be profitable whenever (1 − δ)2 ≤ 0, which is never true. Therefore,
WL-LS is not subgame perfect. You do not have to examine any of the other subgames.
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