
Game Theory:

Elements of Basic Models.

Branislav L. Slantchev

Department of Political Science, University of California – San Diego

April 23, 2009

Contents.

1 The Building Blocks 2

2 Formal Definition of the Extensive Form 6

2.1 Perfect Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Finite and Infinite Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Informational Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Examples of Games in Extensive Form . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Pure Strategies 13

4 The Strategic (Normal) Form 19

4.1 Examples of Converting Extensive to Strategic Form . . . . . . . . . . . . . . . . . . 22

4.1.1 Several Chance Moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.2 Three Players . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Examples in Strategic Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Reduced Strategic Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Mixed Strategies in Strategic Form Games 32

6 Mixed and Behavior Strategies in Extensive Form Games 38

6.1 Mixed Strategy Equivalent to a Behavior Strategy . . . . . . . . . . . . . . . . . . . . 39

6.2 Equivalence of Mixed and Behavior Strategies . . . . . . . . . . . . . . . . . . . . . . 41

6.2.1 A Mixed Strategy Can Generate Many Behavior Strategies . . . . . . . . . . 44

6.2.2 Different Mixed Strategies Can Generate the Same Behavior Strategy . . . 45



We now begin the study of noncooperative game theory, the analysis of interdependent

decision-making. Before we can analyze any situation, we need to describe it formally. That

is, we must have the specification of the model that describes the situation, or game, that we

are interested in. There are two important ways in which to do that, the extensive form and

the strategic form, sometimes also called the normal form. Of these, the extensive form is

richer and the strategic form is usually conceptualized as being derived from an extensive

form. However, the strategic form is simpler and usually more convenient for analysis.

In this lecture, we shall learn how to describe all kinds of situations that we might be in-

terested in analyzing. We shall learn to distinguish between different classes of information,

when information becomes available, and how. The goal is to get a solid grasp on model

description before proceeding to the study of model solutions.

1 The Building Blocks

Any situation that we wish to represent formally would have some basic elements that will

be part of its description. Most often, we begin with a verbal description (that may be quite

vague at times), and then distill each element from it. Let’s start with a simple card game

borrowed from Roger Myerson.

Example 1. (Myerson’s Card Game.) There are two players, labeled “player 1” and “player

2.”1 At the beginning of this game, each player puts a dollar in a pot. Next, player 1 draws a

card from a shuffled deck of cards in which half the cards are red and half are black. Player

1 looks at his card privately and decides whether to raise or fold. If player 1 folds, then he

shows his card to player 2 and the game ends; player 1 takes the money in the pot if the

card is red, but player 2 takes the money if the card is black. If player 1 raises, then he adds

another dollar to the pot and player 2 must decide whether meet or pass. If she passes, the

game ends and player 1 takes all the money in the pot. If she meets, she puts another dollar

in the pot, and then player 1 shows his card to player 2 and the game ends; if the card is red,

player 1 takes all the money in the pot, but if it is black, player 2 takes all the money.

The essential elements of a game are:

1. players: The individuals who make decisions.

2. rules of the game: Who moves when? What can they do?

3. outcomes: What do the various combinations of actions produce?

4. payoffs: What are the players’ preferences over the outcomes?

5. information: What do players know when they make decisions?

6. chance: Probability distribution over chance events, if any.

A player is a decision-maker who is participant in the game and whose goal is to choose

the actions that produce his most preferred outcomes or lotteries over outcomes. We assume

that players are rational: their preference orderings are complete and transitive. We model

uncertainty over outcomes with lotteries, like we’ve done before. This means that preferences

1We establish the following convention: odd-numbered players are male, and even-numbered players are

female. For a generic player, we shall always use the generic male pronoun.
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can be described with utility functions and rational players choose actions that maximize

their expected utilities (that’s why we need the vNM theorem).

Let I = {1,2, . . .} denote the set of players indexed by i. That is, i ∈ I is a generic member

of this set. In our example, I = {1,2}, the two players labeled “player 1” and “player 2.”

We represent chance events by a random move of nature. Nature, denoted by N , is a

pseudo-player whose actions are purely mechanical and probabilistic; that is, they determine

the probability distribution over the chance events. In our example, Nature “chooses” the

color of the card that player 1 randomly draws from deck. Because the number of red cards

equals the number of black cards and the deck is shuffled, the probability of the randomly

chosen card being red is 0.5. Fig. 1 (p. 3) shows how the random draw by player 1 can be

represented as a move by Nature.

[0.5][0.5]

N

redblack

Figure 1: Move by Nature Determines Card Color.

Nature “moves” first, and so the initial node (or the “root node”) of the game, denoted with

an empty circle, is the place where the chance event occurs. The two possible “actions” by

Nature are red and black, which we represent with one branch each.

Each branch then leads to a decision node (denoted with a filled circle), where player 1

gets to make his choice between raising and folding. When player 1 gets to move, he knows

the color of the card he has drawn. In our example, player 1 chooses whether to raise or fold

under two distinct circumstances, depending on the color of the card. That is, he has one

decision to make conditional on the card being black, and another conditional on the card

being red. In both cases, the choices are between raising and folding.

We need a way to represent the fact that when player 1 gets to move, he knows the color

of the card he is holding. An information set for some player i summarizes what the player

knows when get gets to move. Player 1 has two information sets, labeled “b” and “c”. At

information set “b”, player 1 knows that the card is black, and at information set “c”, he

knows that the card is red. Each of these information sets contains exactly one decision

node.
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Figure 2: Move by Nature Followed by Choice by Player 1.

For each of his information sets, a player must choose what to do. An action (or move)

for player i is a choice, denoted by ai that player i can make at that information set. Let

Ai = {ai} denote the set of choices at an information set. That is, this is the set of actions
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from which the player must choose. The set of actions may be different depending on the

information set. Let h denote an arbitrary information set (we shall shortly see why this letter

is appropriate). Then Ai(h) is the set of actions available to player i at information set h. If

the player does not get to move at information set h, then Ai(h) = ∅.

In our example, player 1 always has the same two actions regardless of the color of the card:

He can either raise, denoted by R, or fold, denoted by F . Thus, A1(b) = {F,R} and A1(c) =

{f , r}. We represent the actions available at a decision node with branches emanating from

that node, as shown in Fig. 2 (p. 3). I have used upper and lower case letters to denote the

actions at the different information sets to emphasize that they are, in fact, different in the

sense that although the action is the same it occurs in a different context. That is, even

though F and f both represent the action “fold,” the first is really “fold on black card” and

the second is “fold on red card.”

Information sets that contain only one decision node are called singletons. Here, both

information sets for player 1 are singletons. Note that we have labeled the two information

sets by player 1 with “1.b” and “1.c” respectively. This is intended to convey both that player

1 gets to move and that he knows different things at the different information sets.

A history of the game is a sequence of actions taken by the various players at their infor-

mation sets. The initial history (before the game begins) is denoted by h0 = ∅. One history

of the game is (black), that is, nature having chosen black. Another history is (black, F), that

is, nature having chosen black, and player 1 having folded.

More generally, we can think of the game as a sequence of stages, where all players simul-

taneously choose actions from their choice sets Ai(h) (remember that these choices may be

“do nothing” if the player’s action set is empty at h). An action profile is the set of actions

taken by the players at that stage. For example, h0 is the “history” at the beginning of the

game, and a0 = (a0
1, . . . , a

0
I ) is the action profile following h0. Then h1 is the history identi-

fied with a0, and Ai(h
1) is the set of actions available to player i there. Continuing iteratively

in this manner, we define the history at the end stage k to be the sequence of actions in the

previous stages:

hk+1 = (a0, a1, . . . , ak).

We shall let K+1 denote the total number of stages in the game, noting that for some games,

we may have K = +∞. In these cases, the “outcome” of the game is the infinite history h∞.

Let H = {hk} denote the set of all possible histories. Since each hK+1 by definition describes

an entire sequence of actions from the beginning of the game to its end, we shall call it a

terminal history. The set Z = {hK+1} ⊂ H of all terminal histories is the same as the set of

outcomes when the game is played.

Returning to our example, the history (red, f ) is terminal because the game ends if player

1 folds. Conversely, the histories (red) and (red, r ) are not terminal because the game con-

tinues. Note that information sets are related to histories because they summarize past play

and what players know about it.

For each player i, we specify a payoff function, ui : Z → R. That is, a function that maps the

set of terminal histories (or outcomes), to real numbers. In other words, we assign numeric

payoffs to the outcomes. Of course, this function must represent the preference ordering

of the player over the outcomes. Since h1 = (black, F) and h2 = (red, f ) are both terminal

histories, the player’s (Bernoulli) payoff functions must assign numbers to these outcomes.2

2Bernoulli defined the utility function over wealth, and by convention we use the term Bernoulli function to

refer to payoff functions defined over the outcomes. Von Neumann and Morgenstern moved away from this
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Let’s assume that utilities are linear in the amount of money received, or u(z) = z. Then:

u1(h1) = u2(h2) = −1

u1(h2) = u2(h1) = 1.

We list these payoffs below the terminal node associated with them. By convention, the order

is determined by the order in which players appear in the game tree, top to bottom and left

to right. In our example in Fig. 2 (p. 3), the first number is player 1’s payoff and the second

number is player 2’s payoff.

If player 1 raises, player 2 gets to make a move. Thus, the R and r branches representing

raising by player 1 lead to decision nodes for player 2. She can either meet, m, or pass, p,

and so each decision node will have two branches, labeled m and p respectively, as shown

in Fig. 3 (p. 5). The payoffs from the resulting terminal histories are specified in the same

manner as before.

[0.5][0.5]
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Figure 3: Myerson’s Card Game in Extensive Form.

The crucial difference between the information available to player 1 and the information

available to player 2 is that player 2, unlike player 1, does not know the color of player

1’s card although she does observe his action (raising). In other words, when player 2 gets

to move, she does not know whether player 1’s card is red or black. The information set,

denoted by “0” for player 2 thus includes both histories h3 = (black, R) and h4 = (red, r ).

Because each of these histories leads to a different decision node for player 2, we enclose

them in a box (or connect them in some other way) to demonstrate that they belong to the

same information set. We say that both h3 and h4 are consistent with the information set

“0”. The information set represents the fact that when player 2 gets to move, she does not

know the color of the card; she only knows what she can see—namely, that player 1 has

chosen to raise.3

and defined the expected utility function over lotteries. People sometimes call these Von Neumann-Morgenstern

Utility Function or, simply, vNM Utility Function. Recall that these are subjective in the sense that preferences

must be given before these utilities can be derived.
3As we shall see when we analyze the game, in equilibrium player 2 may learn about the likelihood of the

card’s color by using the information obtained from observing raising and knowledge of player 1’s optimal

strategy. In some games, the uncertainly will be fully resolved—even though player 2 cannot observe what is

known to the opponent, she can infer that information from his observable behavior and knowledge that he,

being intelligent and rational, is choosing his optimal strategy. Of course, player 1 knows all of that full well,

so he may well try to obfuscate her inferences, just as he will do in this particular game. His optimal strategy

is to prevent this inference. Even then player 2 will be able to learn something from the fact that he’s chosen

to raise. Observe, incidentally, that unless you assume that players pursue the best strategies to the best of
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Player 2’s information set is not a singleton because it contains two of her decision-nodes.

Let h(x) denote the fact that the information set h contains node x. The information set

captures the idea that the player who is choosing an action at h is uncertain whether he is at

x or at some other x′ ∈ h(x). We require that if x′ ∈ h(x), then the same player moves at x

and x′. Otherwise, players may disagree who was supposed to move.

Information sets partition the decision-nodes such that each node belongs to exactly one

information set and no more. It is in this way that information sets are related to histories.

As you can see in the example, it is perfectly fine to have information sets with more then

one decision node. However, it is impossible for the same decision node to appear in more

than one information set.

Recall that the action sets are defined in terms of information sets. That is, Ai(h) is the set

of actions from which player i may choose at information set h. It is essential to realize that

this implies that for all nodes in this information set, the actions available at each are the

same. That is, if x′ ∈ h(x), then Ai(x
′) = Ai(x). Thus, we can let Ai(h) denote the action

set at information set h.

To see why this must be the case, suppose that player 2 had another option, say “punt”,

at the node reached by the history h3 = (black, R) that was not available after history h4 =

(red, r ). This means that she could punt if and only if player 1 had a black card. But how

would player 2 exercise this option if she does not know the color of the card? To represent

this situation, we would have to give player 2 an action called “try to punt” and add it to both

nodes in her information set. Then, if she chooses this option, she would succeed when the

card is black but fail when it is red.

Note, on the other hand, the we could easily give player 1 different actions (or numbers of

actions) at each of his nodes 1.b and 1.c because they belong to different information sets.

It is to emphasize this that I label the actions differently in Fig. 3 (p. 5), with lowercase and

uppercase letters, depending on the color.

The point is that if a player has two nodes with different sets of actions, then these nodes

cannot belong to the same information set. However, one can easily have different nodes

with the same sets of actions even though the nodes are not in the same information set.

This completes the extensive form representation of the card game. Note that we have

specified the players, the rules of the game (who moves when and what options they have),

the outcomes in terms of terminal histories, the payoffs associated with these outcomes, the

information available to the players when they move, and the probability distribution of the

chance events.

2 Formal Definition of the Extensive Form

In most applications, the game trees would rarely be drawn, and so one must make do with

the mathematical description of the extensive form. It is necessary to go through this exercise

to understand the methodology of this fundamental class of games. We shall rarely, if ever,

need to resort to the finer detail, but the mathematical description allows us to define two

important categories of games (perfect and imperfect recall), of which we shall only study

one. The following definition follows Fudenberg & Tirole (1991).

their abilities, you cannot make such inferences, and behavior becomes unintelligible. Among other things,

this would imply that we simply cannot perform any sort of meaningful analysis as social scientists.
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Definition 1. The extensive form of a game, Γ = {I, (X,≻), ι(·),A(·),H,u}, contains the

following elements:

1. A set of players denoted by i ∈ I , with I = {N,1,2, . . .}, withN representing the pseudo-

player Nature;

2. A tree, (X,≻), which is a finite collection of nodes x ∈ X endowed with the precedence

relation ≻, where x ≻ x′ means “x is before x′.” This relation is transitive and asym-

metric, and thus constitutes a partial order.4 This rules out cycles where the game may

go from node x to a node x′, from x′ back to x.5 In addition, we require that each node

x has exactly one immediate predecessor, that is, one node x′ ≻ x such that x′′ ≻ x

and x′′ ≠ x′ implies x′ ≻ x′′ or x′′ ≻ x′. Thus, if x′ and x′′ are both predecessors of

x, then either x′ is before x′′ or x′′ is before x′.

3. A set of terminal nodes, denoted by z ∈ Z consisting of all nodes that are not pre-

decessors of any other node. Because each z determines the path through the tree,

it represents an outcome of the game. The payoffs for outcomes are assigned by the

Bernoulli payoff functions ui : Z → R, and u = (u1(·), . . . , uI(·)) is the collection of

these functions, one for each player.

4. A map ι : X → I , with the interpretation that player ι(x) moves at node x. A function

A(x) that denotes the set of feasible actions at x.

5. Information sets h ∈ H that partition the nodes of the tree such that every node is

exactly in one set. The interpretation of h(x) is that information set h contains the

node x. We require that if x′ ∈ h(x), then A(x′) = A(x), and so we can let A(h)

denote the set of feasible actions at information set h.

6. A probability distribution over the set of alternatives for all chance nodes.

This definition now allows us to make several ideas very precise.

2.1 Perfect Recall

We shall require that players have perfect recall. That is, a player never forgets information

he once knew, and each player knows the actions he has chosen previously. (As we shall see,

the fact that players may know all previous history does not force us to assume that he will

take it all into account when making decisions.) This is accomplished by requiring that:

A) if two decision nodes are in the same information set, then neither is a predecessor of the

other; and

B) if two nodes x′ and x′′ are in the same information set and one of them has a predecessor

x, then the other one has a predecessor x̂ (possibly x itself) in the same information set

as x and the action taken at x that leads to x′ is the same as the action taken from x̂ that

leads to the x′′.

The games in Fig. 4 (p. 8) illustrate some cases of imperfect recall that this requirement

eliminates.

4It is not a complete order because two nodes may not be comparable. For example, consider player 2’s

information set in Fig. 3 (p. 5): Neither of the nodes precedes the other.
5To see this, suppose we constructed a game such that x ≻ x′ ≻ x. By transitivity, x ≻ x, but this violates

asymmetry.
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he was in the game

Figure 4: Games of Imperfect Recall.

The situation in Fig. 4(a) (p. 8) is ruled out by condition Condition B because even though

both x′ and x′′ in player 1’s second information set have the same predecessor, x, the actions

leading from x to the information set are different. The situation in Fig. 4(b) (p. 8) is ruled out

by Condition A because x and x′ are in the same information set but x is a predecessor of

x′. Finally, the situation in Fig. 4(c) (p. 8) is ruled out by Condition B: because x′ and x′′ are

in the same information set and even though x is a predecessor of x′ and x̂ is a predecessor

of x′′, x and x̂ are not in the same information set themselves.

The literature on games with imperfect recall is very small, although there are some very

interesting papers that might be worth looking at (e.g. the famous game where a drunk driver

forgets whether he’s been past an exit on the freeway). These games are still quite exotic and

their application has been of limited usefulness. This is not to say that there are no exciting

areas where these can be applied. One interesting area of research is machine game models of

repeated situations: these machines have limited memory and since information is costly to

acquire, a player may “forget” some of his past actions. This approach has been extensively

used in low-rationality models of learning (evolutionary game theory, for example), where

players look at a most recent past when forming expectations about future behavior. This

course will only deal with games of perfect recall.

2.2 Finite and Infinite Games

There are three different conceptions of finiteness buried in the definition of extensive form

games. The mathematical description can be easily extended to cover these as well.

Definition 2. A finite game has (i) a finite number of players, (ii) a finite number of actions,

and (iii) finite length histories. Otherwise, the game is infinite.

Note that relaxing any of the three requirements results in an infinite number of nodes.

Thus, a game is finite if it has a finite number of nodes. Some examples of useful infinite
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games that we shall encounter include games where players choose actions from some in-

terval that is a subset of the real line; games which can be repeated indefinitely; or games

involving an infinite number of players (we shall see how these games are a way to model

incomplete information).

2.3 Informational Categories

We now make very precise several different informational categories. Make sure you under-

stand the terms because we shall use them quite a bit.

Definition 3. We distinguish the following informational categories:

• A game is one of perfect information if each information set is a singleton; otherwise

it is a game of imperfect information.

• A game is one of certainty if it has no moves by Nature; otherwise it is a game of

uncertainty.

• A game is one of complete information if all payoff functions are common knowledge;

otherwise it is a game of incomplete information.

• A game is one of symmetric information if no player has information that is different

from other players when he moves or at the terminal nodes; otherwise it is a game of

asymmetric information.

Myerson’s Card Game shown in Fig. 3 (p. 5) is a game of complete but imperfect (and

therefore asymmetric) information that is also one of uncertainty. Games of imperfect recall

are always games of imperfect information.

We shall see games of incomplete (asymmetric) information later in the course. We shall

also see how they can be modeled (and solved) as games of imperfect information. It is worth

noting that although many games of incomplete information are also games of asymmetric

information, the two concepts are not equivalent. For example, the famous principal-agent

problem has complete but asymmetric information: both players know all payoff functions

but the principal does not observe the agent’s effort, even after the end of the game.

It is also possible to have games of incomplete but symmetric information. For example, a

Prisoners’ Dilemma where Nature moves first and randomly assigns different payoffs to the

outcomes, unknown to either player.

2.4 Examples of Games in Extensive Form

Let’s now describe the extensive forms for several examples.

Example 2. (Matching Pennies.) There are two players who must each put a penny down.

If the pennies match (either both heads or both tails), then player 1 pays one dollar to player

2. If they don’t match, then player 2 pays one dollar to player 1.

This is a game of complete information, but as it stands, this example omits a crucial

piece of information: What do players know when they get to move? After a bit of thought,

it should be obvious that there are five possible ways that players can move: (i) player 1

moves first and player 2 observes his action before acting herself; (ii) player 2 moves first

and player 1 observes her action before moving himself; (iii) player 1 moves first but player 2
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does not observe his action before acting herself; (iv) player 2 movies first but player 1 does

not observe her action before moving himself; and (v) the players move simultaneously.

Because in (i) and (ii) each player knows what the other has done in the past when it is

time to move, they are games of perfect information. However, in the other three cases,

neither player knows what the other has done, and so they are games of imperfect infor-

mation. With more thought, it should be clear that the last three situations are equivalent

from the perspective of each decision-maker: neither player 1 nor player 2 knows the other’s

action when they make their respective choices. It does not matter when players move if

one cannot observe their actions. For example, from player 1’s standpoint it does not matter

whether player 2 has already made the choice which he cannot see, or is making the choice

simultaneously with him, or will make the choice in the future without seeing his action.

And so, we have three different representations of the situation, depending on how we

wish to specify it. Fig. 5 (p. 10) shows how the extensive form can be represented with a

game-tree diagram. Note that the two variants of the imperfect information specification are

equivalent.
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(b) Player 2 moves first, player 1 observes

her action and moves next
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1,−1
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(c) Each player moves without knowing the

other player’s action, variant I

TH

2

T

−1,1
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1,−1

T

1,−1

H

−1,1

1

(d) Each player moves without knowing the

other player’s action, variant II

Figure 5: The Three Possible Sequences of the Matching Pennies Game.

We have assumed that players know each other’s payoff functions, and so Matching Pennies

is a game of complete information. However, (a) and (b) cases in Fig. 5 (p. 10) represent games

of perfect information, while (c) and (d) represent the case of imperfect information. To see

that (c) and (d) are equivalent representations (as claimed), just examine the information sets

of the players (what they know when they get to move). Also, observe that in (c) and (d) there

is an “initial” node in the game even though there really is no player that moves first.

Example 3. (Multiple Sources of Uncertainty.) Consider the following situation. Two

players are engaged in a game where a coin is flipped, and only player 1 observes the out-

come. If the outcome is heads, then the players play the Matching Pennies, and if the outcome
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were tails, then only player 2 chooses H or T (recall that she does not know whether she’s

choosing against player 1 or against Nature’s “choice” of tails).

N

TH

1

T

1,−1

H

−1,1

T

−1,1

H

1,−1

T

−1,1

H

1,−1

2

H T
[0.5] [0.5]

Figure 6: The Game with Multiple Sources of Uncertainty.

In this game, player 2 is uncertain about whether player 1 is actually playing (Nature’s

choice), and about what his choice is if he is playing. Her information set, therefore, includes

all three of her decision nodes. Of course, since player 1 observes Nature’s choice, he only

has one information set, and it is a singleton.

Example 4. (Matching Pennies Variant A.) Suppose that before playing Matching Pennies,

players roll a die to determine who will go first: If the number is less than 3, then player 1

goes first (they play Fig. 5 (p. 10), a), otherwise player 2 goes first (the play Fig. 5 (p. 10), b).

This is shown in Fig. 7 (p. 11).
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Figure 7: A Game of Uncertainty, Variant A.

Example 5. (Matching Pennies, Variant B1) Before playing Matching Pennies, players roll

the die to determine whether player 1 will pay 1 or 2 dollars if the pennies match. If the die

shows a number less than 3, he pays 2 dollars, otherwise, he pays 1 dollar. Player 1 observes

the outcome of the roll but player 2 does not, and players move simultaneously.

Example 6. (Matching Pennies, Variant B2) In this variant, suppose that player 2 ob-

serves the outcome of the roll but player 1 does not, and players move simultaneously.
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Figure 8: A Game of Uncertainty, Variant B1.
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Figure 9: A Game of Uncertainty, Variant B2.

Example 7. (Matching Pennies, Variant B3) In this variant, suppose that neither player

observes the outcome of the roll, and players move simultaneously.

2/31/3

N

TH

T

1,−1

H

−2,2

T

−2,2

H

1,−1

TH

T

1,−1

H

−1,1

T

−1,1

H

1,−1

1

2

Figure 10: A Game of Uncertainty, Variant B3.

Example 8. (Two-Way Division.) Two people use the following procedure to share two

desirable identical nondivisible objects. One of them proposes an allocation, which the other

one either accepts of rejects. In the event of rejection, neither person receives either of the

12



objects. Each person cares only about the number of objects he receives. This is shown in

Fig. 11 (p. 13).
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Figure 11: The Two-Way Division Game, Perfect Information.

Example 9. Suppose we wanted to model a situation, in which player 2 had to accept or

reject the proposal without knowing what this proposal is. In effect, this transforms the

game into one of imperfect information, as shown in Fig. 12 (p. 13).
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Figure 12: The Two-Way Division Game, Imperfect Information, I.

The game tree in Fig. 13 (p. 13) is equivalent to the tree in Fig. 12 (p. 13) (the payoffs

still specify player 1’s payoff first and then player 2’s payoff). This is important: a strategic

situation can have more than one extensive form representation.
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Figure 13: The Two-Way Division Game, Imperfect Information, II.

3 Pure Strategies

Player i’s strategy, si, is a complete rule of action that tells him which action ai ∈ Ai to

choose at each of his information sets. That is, a strategy specifies what the player is going
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to do every time it is his turn to move given what he knows. A player’s strategy space

(sometimes also called a strategy set), Si = {si}, is the set of all possible strategies.

A strategy is a complete contingent plan of action. That is, a strategy in an extensive form

game is a plan that specifies the action chosen by the player for every history after which

it is his turn to move, that is, at each of his information sets. This is a bit counter-intuitive

because it means that the strategy must specify moves at information sets that might never

be reached because of actions specified by the player’s strategy at earlier information sets.

Definition 4. Let Γ be a game in extensive form. A pure strategy for player i ∈ I is a

function si : H →A such that si(h) ∈ Ai(h) for all h ∈H .

Let’s list the strategies for the two players in Myerson’s Card Game in Fig. 3 (p. 5). Player

1 has two information sets, labeled “b” and “c”, with A1(b) = {R, F} and A1(c) = {r , f},

so his strategy must specify two actions, ab ∈ A1(b) and ac ∈ A1(c). We shall write his

strategy as an ordered set: s1 = (ab, ac), with the first element denoting the action to take at

information set “b” and the second denoting the action to take at information set “c”. This

gives four pure strategies for player 1:

S1 = {(R, r), (R, f ), (F, r), (F, f )}.

For example, (R, f ) is the strategy “raise if the card is black, and fold if the card is red.”

Player 2 knows that she won’t see the color and will only get to choose if player 1 raises, in

which case she will either have to meet or pass. There is only one information set for player

2, so her pure strategy must simply specify the action, a0 ∈ A2(0) = {m,p}, she is to take at

this information set. Thus,

S2 = {m,p}.

The strategy m is then “meet if player 1 raises.”

Let’s do several other examples. Consider the game in Fig. 11 (p. 13). Player 1 takes action

only after the initial history ∅, and so his strategy consists of only three possible actions:

S1 = {(2,0), (1,1), (0,2)}. Player 2, on the other hand, gets to move after three different

histories, and so her strategy must specify what to do after each of these histories. That

is, a strategy for player 2 must be a triple where each member specifies what to do after a

particular history. We can use the triple (abc) to represent player 2’s strategy, with a being

the action to take after history (2,0), b being the action to take after history (1,1), and c

being the action to take after history (0,2). For example, (yyn) is a strategy that specifies

acceptance of the offers (2,0) and (1,1), and rejection of (0,2). We interpret the strategy as

a contingent plan of action: if player 1 chooses (2,0), then player 2 will choose a; if player 1

chooses (1,1), then player 2 will choose b, and if player 1 chooses (0,2), then player 2 will

choose c.

Thus, player 2 has 8 available strategies (2 actions to be taken at 3 possible contingencies,

or 23 = 8 total strategies):

S2 =
{

(yyy), (yyn), (ynn), (yny), (nyy), (nyn), (nny), (nnn)
}

.

Remember that a strategy is a contingent plan of action. For example, the strategy (nny)

reads “reject if player 1 offers (2,0), reject if player 1 offers (1,1), accept if player 1 offers

(0,2).” Also, remember that it is a complete plan of action, and so player 2’s strategy must

tell her what to do for each and every possible move by player 1.
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Here’s an example of a simple game where player 1 gets to move both before and after

player 2 has moved. Note that you can draw game trees in just about any direction you want.

Usually, left-to-right and up-to-down are the preferred directions (at least for us as people

whose languages are written in these directions).

B

A

1,1

1 d

c

−1,1

2 F
3,2

E

4,0

1

Figure 14: Extensive Form Game with Four Outcomes.

Let’s examine Fig. 14 (p. 15) a little more closely. It has two players, i ∈ {1,2}. The

game also has seven histories: H = {(∅), (A), (B), (B, c), (B,d), (B,d, E), (B,d, F)}. Recall

that Hi denotes the set of information sets for player i, and Ai(h) denotes the set of

available actions at information set h for all h ∈ Hi. At the information set ∅, player

1 has two actions available: A1(∅) = {A,B}. At the information set (B,d), he has two

actions available A1(B,d) = {F, E}. Player 2 only gets to move at the information set B,

and has two actions available there: A2(B) = {c,d}. There are four terminal histories:

Z = {A, (B, c), (B,d, E), (B,d, F)}.

Since a strategy is a complete contingent plan of action, it must specify the actions to be

taken at every information set. Player 1 has two information sets in the game, and therefore

his strategy will have 2 components: an action to take at the first information set, and an

action to take at the second information set. Since in both cases he has two actions available,

he has a total of four different strategies:

S1 = {(AE), (AF), (BE), (BF)} .

Player 2 has only one information set, with two actions there, and so she has only two possible

strategies:

S2 = {c,d} .

This game illustrates a point that is worth emphasizing. It is extremely important to remem-

ber that a strategy specifies the action chosen by a player for every information set at which

it is his turn to move, even for information sets that are never reached if the strategy is

followed. That is, in the game in Fig. 14 (p. 15), the first two strategies, (AE) and (AF) specify

actions after the history (B,d) even though they specify action A at the initial node (which

means that when the strategy is followed, history (B,d) will never be realized, and the second

information set will never be reached). In this sense, a strategy differs from what we naturally

consider a plan of action. In this instance, every-day language is misleading. We may say that

we “plan to choose B” and since the game will end, there is no reason to plan what to do if

we played A instead. However, here we want to know whether B is better than A for player

1. To decide whether this is the case, we need to know what the consequences of choosing

A are (otherwise we cannot compare the two actions). But to evaluate the consequences of

A, we need to take into account what he would optimally do at his last information set and

incorporate this into player 2’s expectations to infer what she will do at her information set.

Choosing B can only be optimal in the context of expectations about what would happen if the
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player chose action A instead. It is because we want to find optimal strategies that we must

engage in these comparisons and it is for that reason that we must specify the full strategy

in what appears to be a redundant fashion. This will become clearer when we analyze some

games later on.
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Figure 15: An Extensive Form Game with Three Players.

Let’s specify the strategies for the game in Fig. 15 (p. 16). There are three players. Player

1 has one information set following the history ∅ and has two choices available to him

there: A1(∅) = {U,D}. Player 2 has two information sets, one following the history U and

another following the history D. She has two actions available at each information set, with

A2(U) = {A,B} and A2(D) = {C,E}. Player 3 also has two information sets: one following

the history (U,A), and another following the histories (U, B) and D,C . He also has two

actions at each information set with A3(U,A) = {R,T} and A3(U, B) = A3(D,C) = {P,Q}.

The strategies then are as follows:

S1 = {U,D}

S2 = {AC,AE, BC, BE}

S3 = {RP,RQ,TP, TQ}

Note again that player 3’s actions at both decision nodes in his second information set must

be the same because the player does not know at which decision node he really is.

Consider the game in Fig. 16 (p. 17). In this game, player 1 has two information sets, one

following the history ∅, and another following the history A. At the first information set,

player 1 has three actions, and so A1(∅) = {A,B,C}. At the second information set, player 1

has two actions, and so A1(A) = {W,Z}.

Player 2, on the other hand, has only one information set, following either the history B or

the history C . She has two actions available at this information set, and so A2(B) = A2(C) =
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Figure 16: An Extensive Form Game with Two Players and Imperfect Information.

{X,Y}. The strategies then are as follows:

S1 = {AW,AZ,BW,BZ,CW,CZ}

S2 = {X,Y}

Again, remember that a strategy specifies a complete plan of action for every information set,

even ones that are not reached if the strategy itself is followed. Hence, the pairs of strategies

for player 1 with either B or C as the action at the initial information set.

More generally, for a finite game we can determine the number of pure strategies each

player has by multiplying the number of actions at each of his information sets. Letting Hi

denote the collection of information sets for player i, the number of pure strategies he has is

#Si =
∏

h∈Hi

# (Ai(h))

In the example in Fig. 16 (p. 17), this calculation is #S1 = #(A1(∅)) × #(A1(A)) = 3 × 2 = 6,

while for the game in Fig. 11 (p. 13), the calculation is #S2 = #(A2(2,0)) × #(A2(1,1)) ×

#(A2(0,2)) = 2× 2× 2 = 8, just as we saw.

These examples all assume finite games, so how would one go about specifying a pure

strategy if a player has (a) infinitely many actions at some information set; (b) infinitely many

information sets; or (c) a combination of both. Consider a game where player 1 must propose

a division of some pie of size π and assume that the pie is infinitely divisible. That is, a

proposal consists of division (x,π −x) where x ∈ [0, π] denotes player 1’s share and π −x

denotes player 2’s share. As before, player 2 observes this proposal and can either accept or

reject it, with acceptance resulting in a split and rejection ending the game with both players

receiving nothing. In this game, player 1 has infinitely many proposal from which to choose

from, and player 2 has infinitely many information sets at which she must decide between

acceptance and rejection. Clearly, it is impossible to enumerate the strategies the way we

have been doing so far.

Fig. 17 (p. 18) shows an extensive form representation of this game. To indicate the fact

that player 1 has infinitely many actions at his information set, we connect the branches

representing the minimum, 0, and maximum, π , proposals with an arc. This represents the

notion that any share between these two is admissible. Since player 2 has infinitely many

information sets (one after each possible proposal), we indicate an arbitrary proposal with

the branch labeled x and then show player 2’s information set following that proposal. The

idea is to represent her actions upon seeing player 1’s action. Since in each case she can

only accept or reject, we only need to specify one exemplar: the payoffs obviously depend

on the precise proposal being made if she accepts. (If she had different sets of actions at
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Figure 17: Division of a Pie with Infinitely Many Possible Splits.

different information sets, then this representation would not be sufficient to describe the

game.) To write player 2’s strategy as a function of the history of the game, we need to

specify her decision rule to encompass all possible information sets. One such rule would be

“accept all offers regardless of what player 1 proposes.” Another would be “reject all offers

regardless of what player 1 proposes.” A more sophisticated rule would be “accept all offers

that give player 2 at least some y share, and reject all others.” Clearly, there are infinitely

many strategies here that one can think of. As we shall see later on, equilibrium analysis will

be able to tell us which of these we can safely ignore.

Suppose, for instance, that players only care about the size of their own share of the pie—

the larger the better. Then it is trivial to prove that if some player prefers to accept some

share, say, x ∈ [0, π], then he will also accept any shares that are at least as large: x̂ ≥ x.

This means that we can ignore strategies that do not obey this rule. That is, all possibly

optimal strategies will have the form “accept any offer at least as large as y ,” and we shall

then only have to figure out what this y is. If, on the other hand, preferences are more

complicated—e.g., players care about larger shares but only up to a point, either for dietary

or equity reasons—then we would have to take this into account and the strategies we have

to consider will be more complicated. In that case, potentially optimal strategies may have

the form “accept any offer at least as large as y but no larger than z,” and we shall then

have to figure out what y and z must be. In either case, we can reduce the infinite number

of strategies to something more manageable. For now, just remember that a strategy must

specify what a player should do in every possible contingency. If there are infinitely many

of these, the strategy would have to handle all of them. When we do the actual analysis, we

shall learn how to manage that complexity.

A strategy profile, s = (s1, s2, . . . , sn), is an ordered set of strategies consisting of one

strategy for each of the n players in the game. One extraordinarily useful piece of notation

can let us focus on player i’s strategy si in the profile s. We can partition the strategy profile

s as:

(si, s−i) ≡ s,

where si is player i’s strategy, and s−i is the set of strategies for all other players. For

example, if s = (s1, s2, s3, s4, s5), and we specify (si, s−i) for player i = 3, then si = s3, and

s−i = (s1, s2, s4, s5). Let S = S1 × S2 × . . .× Sn denote the set of strategy profiles.

Because a strategy profile specifies what each player is going to do at every point in the

game where it is his turn to move, it in effect describes how the game will be played and what

its outcome will be if the players follow the strategies in the profile. In other words, each
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strategy profile will yield:

• one outcome if that there are no moves by chance; or

• a probability distribution over outcomes if there are moves by chance and the strategies

are consistent with information sets where Nature moves.

Some people define players’ preference orderings over strategy profiles, but I find this con-

fusing even though it is equivalent to defining them over outcomes. It is confusing because

one may think that players actually care about the strategies being played apart from the

outcomes they produce. (If this is the case, then this fact must be reflected in the payoffs as-

sociated with the outcomes.) We shall define them over outcomes. A player’s payoff, ui(s), is

the expected utility that player i receives from the outcome produced by the strategy profile

s ∈ S. Thus, each player i’s goal in a game is to choose si ∈ Si that maximizes ui(si, s−i).

4 The Strategic (Normal) Form

Every strategy profile s induces an outcome of the game: a sequence of moves actually taken

as specified by the strategies and a probability distribution over the terminal nodes of the

game. If the game is one of certainty (no moves by Nature), then s specifies one outcome with

certainty. Otherwise, more than one outcome may occur with positive probability. The point

is that we can calculate the expected payoffs of all players. Sometimes, it is useful to analyze

the game in its strategic form, which includes only the players, their actions, and the payoffs

in its description.

Putting things a little more formally, let n be the number of players. For each player i,

denote the strategy space by Si. (We shall sometimes write sj ∈ Si to reflect that strategy sj
is a member of the set of strategies Si.) Let (s1, s2, . . . , sn) denote a strategy profile, where s1
is the action of player 1, s2 is the action of player 2, and so on. Let S = S1 × S2 × . . . × Sn
denote the set of strategy profiles.

For each player i, define the vNM expected utility function Ui : S → R so that for each s ∈ S

that players choose, Ui(s) is player i’s expected payoff from outcome s.

Definition 5. For a game with I = {1, . . . , n} players, the strategic (normal) form repre-

sentation G = {I, S,U} specifies for each player i a set of strategies Si and a payoff function

Ui : S → R, where S = ×Si, and U = (U1, . . . , Un).

When we analyze these games, we often assume that players choose their strategies si-

multaneously, and hence we call them simultaneous-move games. However, this does not

require that players strictly act at the same time. All that is necessary is that each player

acts without knowledge of what others have done. That is, players cannot condition their

strategies on observable actions of the other players.

Of course, this ignores the information about timing of moves explicitly specified by the

extensive form. The question boils down to whether we think such questions are essential

to the situation we are trying to analyze. If they are not, then it should not matter greatly if

we simplify our description to exclude such information. In an important sense, the strategic

form is a static model because it dispenses with the dynamics of timing of moves completely.

This may not be as controversial (or useless) as it sounds. First, as we shall see, there

are great many situations that we might profitably analyze without reference to the timing of

moves. Second, the simplified representation is actually considerably easier to analyze, so we
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can benefit from dispensing with information that is not essential. We shall, of course, also

see that there are many, many situations where ignoring timing has crucial consequences and

our solutions based on the normal form will be quite suspicious precisely because they will

discard such information. The question (again) will boil down to the choice of representation,

which a researcher has to make based on her skill and experience.

von Neumann and Morgenstern suggested a procedure for simplifying games in extensive

form by constructing the strategic form G of any Γ . This is done in an algorithmic way. First,

we find all pure strategies for the players. Next, we construct the expected outcomes for

all strategy profiles. Finally, we redefine the utility functions on the outcomes to be utility

functions on the profiles with expected outcomes.

Consider the following scenario. The two players are going to play Myerson’s Card Game in

Fig. 3 (p. 5) tomorrow and today they have to plan their moves in advance. Player 1 does not

know the color that he will draw but he can condition his strategy on the card color because

he knows that he will see it before choosing whether to raise or fold. As we have seen, he has

four pure strategies, S1 = {Rr,Rf , Fr , Ff}. Player 2, on the other hand, will only ever get to

move if player 1 raises, so her pure strategies are S2 = {m,p}. The strategy profiles are:

S = S1 × S2 =

{

〈Rr,m〉 ,
〈

Rr,p
〉

,
〈

Rf ,m
〉

,
〈

Rf ,p
〉

, 〈Fr ,m〉 ,
〈

Fr ,p
〉

,
〈

Ff ,m
〉

,
〈

Ff ,p
〉

}

.

We now have to define the expected utility functions for the player. Recall that originally,

we defined the utility functions directly in terms of the outcome. However, even if we knew

here which strategy profile will be realized (that is, what strategy each player has chosen),

we cannot predict the actual outcome of the game because it will depend on the color of the

card, which is a chance move. For example, suppose player 1 has chosen the strategy Fr and

player 2 has chosen m, and so the strategy profile is 〈Fr ,m〉. The outcome will be folding

by player 1 if the card is black, and raising by player 1 and meeting by player 2 if the card is

red. Player 1’s payoff will be −1 if the card is black, and 2 if the card is red.

So what payoff should player 1 expect from the profile 〈Fr ,m〉? Its expected payoff, of

course. Choosing the strategy Fr given that player 2 will be choosing m is equivalent to

choosing a lottery, in which player 1 would get −1 with probability 0.5, and 2 with probability

0.5. We know how to compute the expected utility in this case:

U1(Fr ,m) = 1/2×u1(black, F)+ 1/2×u1(red, r ,m) = 1/2× (−1)+ 1/2× (2) = 0.5.

In analogous manner, we would compute player 2’s expected payoff:

U2(Fr ,m) = 1/2×u2(black, F)+ 1/2×u2(red, r ,m) = 1/2× (1)+ 1/2× (−2) = −0.5.

Continuing in this way, we define the expected utility functions for the two players on all

strategy profiles, and arrive the the normal form representation of this game of uncertainty

shown in Fig. 18 (p. 21).

The strategic game in Fig. 18 (p. 21) describes how the utilities of the players depend on

the strategies they choose at the beginning of the game. We know from our expected utility

theorem that a player would choose the strategy that yields the highest expected payoff

because this would be consistent with his preferences. In other words, players will make

choices that maximize their expected payoff.

In general, given any extensive form game Γ , its normal form representation G can be

constructed as follows. The set of players remains the same. For any player i ∈ I , let the set
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Player 1

Player 2

m p

Rr 0,0 1,−1

Rf −0.5,0.5 1,−1

Fr 0.5,−0.5 0,0

Ff 0,0 0,0

Figure 18: The Strategic Form of the Game from Fig. 3 (p. 5).

of strategies Si in the normal form game be the same as the set of strategies in the extensive

form. For any strategy profile s ∈ S and any node x in the tree of Γ , define P(x|s) to be the

probability that the path of play will go through node x, when the path of play starts at the

initial node, and at any decision node in the path, the next node is determined by the relevant

player’s strategy in s, and, at any node where nature moves, the next node is determined by

the probability distribution given in Γ . At any terminal node z ∈ Z, let ui(z) be player i’s

payoff from outcome z. Then, for any strategy profile s ∈ S and any i ∈ I , let Ui(s) be:

Ui(s) =
∑

z∈Z

P(z|s)ui(z).

That is, Ui(s) is player i’s expected utility if all players implement the strategies according to

s. If G is derived from Γ in this way, it is called the strategic (normal) form representation

of Γ .

To make things more concrete, let’s construct the strategic form of the two extensive-form

games from Fig. 19 (p. 21).
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(b) Perfect Information

Figure 19: Two Simple Games.

In the imperfect information variant 19(a), player 1 and player 2 have two strategies each:

S1 = {U,D}, and S2 = {L,R}. There are four outcomes,

S = S1 × S2 =
{

〈U,L〉 , 〈D,L〉 , 〈U,R〉 , 〈D,R〉
}

.

Without chance moves, there is no need to transform the utility functions. The strategic form

of 19(a) is in Fig. 20 (p. 22).

The situation in Fig. 19(b) (p. 21) is very different. Although player 1 still has two pure

strategies, S1 = {U,D}, player 2 can condition her choice on player 1’s. She has two infor-

mation sets, and her strategy must specify two actions: aU ∈ A2(U) = {L,R} is the choice

after player 1 chooses U , and aD ∈ A2(D) = {l, r} is the choice after player 1 chooses D. We

shall write player 2’s strategy as the ordered pair (aU , aD). Hence, the strategy set for player
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Player 1

Player 2

L R

U 2,2 4,0

D 1,0 3,1

Figure 20: The Strategic Form of the Game from Fig. 19(a) (p. 21).

2 consists of four pure strategies; S2 = {(L, l), (L, r), (R, l), (R, r)}. The game now has eight

strategy profiles:

S = S1 × S2 =
{

〈U, (L, l)〉 , 〈U, (L, r)〉 , 〈U, (R, l)〉 , 〈U, (R, r)〉 ,

〈D, (L, l)〉 , 〈D, (L, r)〉 , 〈D, (R, l)〉 , 〈D, (R, r)〉
}

.

Because there are no moves by chance, there is no need to transform the utility functions, so

the strategic form is given in Fig. 21 (p. 22).

Player 1

Player 2

(L, l) (L, r) (R, l) (R, r)

U 2,2 2,2 4,0 4,0

D 1,0 3,1 1,0 3,1

Figure 21: The Strategic Form of the Game from Fig. 19(b) (p. 21).

A seemingly innocuous change in the information structure of the extensive form led to

two distinct normal form representations.

4.1 Examples of Converting Extensive to Strategic Form

Going back to the extensive form game in Fig. 11 (p. 13), we can convert the game to its normal

form equivalent by specifying the players’ pure strategies and the payoffs. We already know

the strategies:

S1 = {(2,0), (1,1), (0,2)},

and

S2 = {(yyy), (yyn), (ynn), (yny), (nyy), (nyn), (nny), (nnn)},

which give 3 × 8 = 24 strategy profiles. Because there are no moves by chance, we do not

have to redefine the utility functions, and so we get the strategic form in Fig. 22 (p. 22).

Player 1

Player 2

yyy yyn ynn yny nyy nyn nny nnn

(2,0) 2,0 2,0 2,0 2,0 0,0 0,0 0,0 0,0

(1,1) 1,1 1,1 0,0 0,0 1,1 1,1 0,0 0,0

(0,2) 0,2 0,0 0,0 0,2 0,2 0,0 0,2 0,0

Figure 22: The Strategic Form of the Game from Fig. 11 (p. 13).

Although there is only one way of converting an extensive form game to a strategic form

game, this does not mean that we would get different strategic games from different extensive

forms. Recall that Fig. 12 (p. 13) and Fig. 13 (p. 13) described the same strategic situation
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Player 1

Player 2

y n

(2,0) 2,0 0,0

(1,1) 1,1 0,0

(0,2) 0,2 0,0

Figure 23: The Strategic Form of the Games from Figures 12 and 13.

using different trees. Both of these have the same strategic form representation shown in

Fig. 23 (p. 23).

Note how the game in Fig. 22 (p. 22) differs from the game in Fig. 23 (p. 23). This is because

the two describe two radically different extensive form games. In particular in the first case

player 2 has three information sets, while in the second case she only has one (with three

decision nodes in it). Intuitively, however, it does make sense that the two extensive-form

games from Fig. 12 (p. 13) and Fig. 13 (p. 13) should have the same strategic form because

they do describe equivalent strategic situations.

4.1.1 Several Chance Moves

Let’s now do an example with a more than one chance move, as in Fig. 24 (p. 23).

1/21/2

N

FR

1

p

1,−1
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2,−2
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2/3

0,0
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1/3

1,−1
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N
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1

p

1,−1

z6

m

−2,2

z5

1/4

0,0

z8

3/4

−1,1

z7

N

2

Figure 24: A Card Game in Extensive Form With Two Chance Moves.

The first step is to calculate the probability distribution over the terminal nodes. That

is, calculate the probability distributions over outcomes that is induced by each strategy

profile. To do this, we take each strategy profile and calculate the probabilities with which

it produces various outcomes. For example, if players use 〈Rr,m〉, then with probability 1/2
player 1 will end up at the left information set and choose R which will then be followed

by m by player 2, leading to the outcome z1. If, on the other hand, player 1 ends up at his

second information set, which can happen with probability 1/2 as well, then he would play r ,

followed by player 2’s m, leading to the outcome z5. Hence, with this strategy profile, two

outcomes are possible, z1 and z5, each of which can occur with probability 1/2.

Consider now
〈

Rf ,p
〉

. With probability 1/2 player 1 would have to play R, which will

then be followed by p, leading to the outcome z2. With the same probability, player would

have to play f , in which case chance determines the outcome, and it will be either z7 (with

probability 3/4) or z8 (with probability 1/4). Hence, this strategy profile can result in one of
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three possible outcomes. The probabilities are Pr[z2] = 1/2, Pr[z7] = 1/2 × 3/4 = 3/8, and

Pr[z8] = 1/2 × 1/4 = 1/8. Since this must be a valid probability distribution (one of these

outcomes must occur for sure and they are mutually exclusive), it follows that the sum of

these probabilities should be one, which we can easily verify to be the case. Continuing in this

fashion, we can generate the probability distributions over outcomes for each of the strategy

profiles, as shown in Tab. 1 (p. 24).

Outcome Probability, P(z|s)

Profile z1 z2 z3 z4 z5 z6 z7 z8 U1(s) U2(s)

〈Rr,m〉 1/2 0 0 0 1/2 0 0 0 0 0
〈

Rr,p
〉

0 1/2 0 0 0 1/2 0 0 1 −1
〈

Rf ,m
〉

1/2 0 0 0 0 0 3/8 1/8 5/8 −5/8
〈

Rf ,p
〉

0 1/2 0 0 0 0 3/8 1/8 1/8 −1/8
〈Fr ,m〉 0 0 1/6 2/6 1/2 0 0 0 −5/6 5/6
〈

Fr ,p
〉

0 0 1/6 2/6 0 1/2 0 0 2/3 −2/3
〈

Ff ,m
〉

0 0 1/6 2/6 0 0 3/8 1/8 −5/24
5/24

〈

Ff ,p
〉

0 0 1/6 2/6 0 0 3/8 1/8 −5/24
5/24

Table 1: Probability Distributions Over Outcomes.

Clearly, the sum of all columns for each row should equal 1 (that is, each profile will

produce some outcome with certainty). The expected utilities for each profile are calculated

in the usual manner. That is, to calculate the expected payoff from a profile, we take the

probabilities of the outcomes and multiply those by the corresponding payoffs, then sum

over them. For example, as we have seen 〈Rr,m〉 yields z1 or z5 with equal probability.

Hence,

U1 (〈Rr,m〉) = 1/2u1(z1)+ 1/2u1(z5) = 1/2(2)+ 1/2(−2) = 0

U2 (〈Rr,m〉) = 1/2u2(z1)+ 1/2u2(z5) = 1/2(−2)+ 1/2(2) = 0,

and these give us the last two columns in Tab. 1 (p. 24). Let’s calculate the expected payoffs

for the other profile we looked at:

U1

(〈

Rf ,p
〉)

= 1/2u1(z2)+ 3/8u1(z7)+ 1/8u1(z8) = 1/2(1)+ 3/8(−1)+ 1/8(0) = 1/8

U2

(〈

Rf ,p
〉)

= 1/2u2(z2)+ 3/8u2(z7)+ 1/8u2(z8) = 1/2(−1)+ 3/8(1)+ 1/8(0) = −1/8.

Continuing in this way, we compute the remaining expected payoffs. Using Tab. 1 (p. 24), we

can now construct the strategic form representation of the game in Fig. 24 (p. 23), as shown

in Fig. 25 (p. 24).

Player 1

Player 2

m p

Rr 0,0 1,−1

Rf 5/8,−5/8 1/8,−1/8
Fr −5/6, 5/6 2/3,−2/3
Ff −5/24, 5/24 −5/24, 5/24

Figure 25: The Strategic Form of the Game from Fig. 24 (p. 23).
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4.1.2 Three Players

Consider the strategic form of the game in Fig. 26 (p. 25). We have not seen games with three

players in strategic form, but the principles are the same. Player 1 has one information set

with two actions, so he has two pure strategies, S1 = {U,D}. Player 2 has two information

sets with two actions at each, hence four pure strategies, S2 = {(A,C), (A, E), (B, C), (B, E)}.

Player 3 has two information sets with two actions at each, or four pure strategies, S3 =

{(R, P), (R,Q), (T , P), (T ,Q)}. This gives us 2 × 4 × 4 = 32 strategy profiles. Fortunately,

there are no chance moves here, so we won’t have to redefine the utility functions.

D

U

1

E 3,0,1

C

2

B

A

2
T 1,2,0

R 0,1,2

3

Q 0,2,1

P 1,0,0

Q 0,0,0

P 2,2,1

3

Figure 26: An Extensive Form Game with Three Players.

There are two ways to write the strategic form with three players. One is to write out as

many separate games between players 1 and 2 as there are pure strategies for player 3. In

each of these 2-player games, player 3 is choosing a particular pure strategy. In our example,

this would give us 4 2-player matrices with 2× 4 = 8 cells each. Of course, the total number

of cells will still be 32.

The other way is to write out one big payoff matrix, as we now do here. Player 3’s strate-

gies form the rows, while player 1 and player 2’s strategies jointly determine the columns.

This payoff matrix has 4 rows and 8 columns. The payoffs are listed as ordered triples,

(u1, u2, u3), where ui is player i’s payoff from the relevant outcome. The strategic form is

in Tab. 2 (p. 25).

Player 1

U D

Player 2 Player 2

(A,C) (A, E) (B,C) (B, E) (A,C) (A, E) (B,C) (B, E)

Player 3

(R, P) (0,1,2) (0,1,2) (1,0,0) (1,0,0) (2,2,1) (3,0,1) (2,2,1) (3,0,1)

(R,Q) (0,1,2) (0,1,2) (0,2,1) (0,2,1) (0,0,0) (3,0,1) (0,0,0) (3,0,1)

(T , P) (1,2,0) (1,2,0) (1,0,0) (1,0,0) (2,2,1) (3,0,1) (2,2,1) (3,0,1)

(T ,Q) (1,2,0) (1,2,0) (0,2,1) (0,2,1) (0,0,0) (3,0,1) (0,0,0) (3,0,1)

Table 2: The Strategic Form with Three Players.

Often we would not even have to specify the extensive form before going to the strategic

form. Let’s see several canonical examples of games in normal form.
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4.2 Examples in Strategic Form

Let’s model a situation where two players, i ∈ {1,2}, want to decide between two types of

entertainment to which they want to go together but the decision must be made without

knowledge of what the other will do (say they are in their offices and the phones are down

so they cannot communicate beforehand). The two available pieces of entertainment for

the night are a boxing match (fight) and a ballet. For each player then, the set of actions

consists of (1) go to the fight, or (2) go to the ballet. Note that the actions are exhaustive and

mutually exclusive. This means that each player has two pure strategies, so the set is called

the strategy space for the player.

Continuing with the example, the strategy profile then consists of one strategy for each of

the two players. This gives us four different strategy profiles: (1) player 1 goes to the fight,

player 2 goes to the fight; (2) player 1 goes to the fight, player 2 goes to the ballet; (3) player

1 goes to the ballet, player 2 goes to the fight; and (4) player 1 goes to the ballet, player 2

goes to the ballet. We shall specify an outcome (strategy profile) by listing first the strategy

for player 1 and then the strategy for player 2. Thus, the four outcomes above can be written

as (1) (Fight, Fight); (2) (Fight, Ballet); (3) (Ballet, Fight); and (4) (Ballet,Ballet).

Since each strategy profile produces a different outcome in this game, the game has 4

possible outcomes, in 2 of which the players go together to the same place, and 2 in which

they fail to coordinate. Each player has (ordinal) preferences over these four outcomes. In

other words, each player ranks these outcomes according to their desirability using some

criterion. As we know, if preferences are rational, we can represent them numerically. Hence,

we use appropriate numbers whose ordinal ranking represents the preferences as payoffs.

Each outcome then consists of two elements which specify the payoff for each player for this

outcome. This is often called the payoff vector.

Let’s say that player 1 is a man, who prefers going to the fight to seeing Swan Lake. And

let’s say that player 2 is a woman who prefers the culture of ballet to the somewhat less

elegant bashing of heads. However, both prefer to go together regardless of the type of

entertainment. Their worst outcome is when they end up alone at any of the places and it

does not matter which place they happen to be at. Thus, the man’s ordering is:

(F, F) ≻ (B, B) ≻ (F, B) ∼ (B, F)

and the woman’s ordering is:

(B, B) ≻ (F, F) ≻ (F, B) ∼ (B, F)

Now that we have specified the ordinal rankings, we need to choose a payoff function to

represent the orderings. Denote the man’s utility function by u1, and the woman’s utility

function by u2. We need two functions such that:

u1(F, F) > u1(B, B) > u1(F, B) = u1(B, F)

u2(B, B) > u2(F, F) > u2(F, B) = u2(B, F).

One possible and simple specification is

u1(F, F) = u2(B, B) = 2

u1(B, B) = u2(F, F) = 1

u1(F, B) = u1(B, F) = u2(F, B) = u2(B, F) = 0.
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A convenient way of describing the (finite) strategy spaces of the players and their payoff

functions for two-player games is to use a bi-matrix,6 as illustrated in Fig. 27 (p. 27).

Player 1

Player 2

F B

F 2,1 0,0

B 0,0 1,2

Figure 27: Battle of the Sexes.

In this figure the two rows represent the two possible actions for player 1 (the man), and

the columns represent the two possible actions for player 2 (the woman). Each box represents

a possible outcome from these action, and the numbers in each box are the players’ payoffs

to the action profile to which the box corresponds. The first number is player 1’s payoff, and

the second number is player 2’s payoff.

Note: the Battle of the Sexes game represents a situation where players must coordinate

their actions but where they have opposed preferences over the coordinated outcomes. We

shall see two other types of coordination games: pure coordination (where players only care

about coordinating) and Pareto coordination (where both strictly prefer one of the coordi-

nated outcomes to the other).7

Recall that although we call this a simultaneous-moves game, it is not necessary for players

to actually act at the same time. All that is required is that each player acts with no knowledge

about how the other player acts. In our BoS game, this can be achieved by requiring the

players to make their choices without having access to a communication device.

Perhaps the most celebrated example of a cooperative strategic situation is the Prisoners’

Dilemma. Two suspects are arrested and charged for a crime. The authorities lack enough

evidence to convict them unless at least one confesses. The police put the suspects in sep-

arate cells and the DA comes to talk to them separately. The DA gives the same spiel to

both: If neither suspect confesses, then both will be convicted of a minor offense and will

spend 1 month in jail. If both confess, they will be sentenced to jail for 6 months. Finally,

if one confesses and the other does not, the one who confesses is granted immunity and is

released immediately, while the other will get a year (the 6 months for the crime and 6 more

for obstructing justice).8

Let’s say that a prisoner cooperates, C , with the other inmate if he remains silent, and he

defects, D, if he spills the beans to the prosecution. Clearly, the most preferred outcome for

a prisoner is to go free, which is only possible if he defects while the other cooperates. The

next best outcome is for both of them to cooperate and get the shortest sentence. This is

followed by the medium-length sentence resulting from both defecting. The absolute worst

is for a prisoner to cooperate when the other defects. The preference ordering then is:

Prisoner 1 : (D,C) ≻ (C,C) ≻ (D,D) ≻ (C,D)

Prisoner 2 : (C,D) ≻ (C,C) ≻ (D,D) ≻ (D,C),

6This is just like a regular matrix except each entry consists of two numbers instead of one.
7There is now a more politically-correct version of the BoS game, called Bach or Stravinsky, which involves

two sexless players deciding between concerts of music by the two composers. Because it seems to lose some

of the punch, I prefer the original formulation. If this bothers you, you can assume the woman likes boxing

and the man likes ballet instead.
8Law and Order ’s McCoy was a master of the Prisoner’s Dilemma.
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where, as before, the strategy profile lists player 1’s choice first and player 2’s choice second;

so (C,D), for example, means prisoner 1 cooperates and prisoner 2 defects, which would

result in the former getting the stiff sentence, and the latter going Scott-free. As before,

the easiest way to represent these preferences is to start with a payoff of 0 for the worst

outcome, and then work our way up adding 1 for each next best outcome. In this way, we

can represent this game using the payoff matrix in Fig. 28 (p. 28).

Prisoner 1

Prisoner 2

C D

C 2,2 0,3

D 3,0 1,1

Figure 28: Prisoner’s Dilemma, I.

It is worth repeating that the payoffs are only meant to represent the ordinal rankings of

the outcomes. For example, using the length of sentence as payoff we can construct a game

that is strategically equivalent:

Prisoner 1

Prisoner 2

C D

C −1,−1 −12,0

D 0,−12 −6,−6

Figure 29: Prisoner’s Dilemma, II.

The situation is absolutely the same because the ordinal ranking of the payoffs is the same

as in Fig. 28 (p. 28). The PD has been extensively studied in many different settings. Two

of the most celebrated applications are to the arms race between the US and USSR and the

“tragedy of the commons” where a common resources is overconsumed.

Another common game is the Stag Hunt suggested by Jean-Jacques Rousseau. It is very

similar to PD except each player prefers the outcome in which both cooperate to the one in

which one defects. The original story is as follows. There are two hunters and each has two

options. He can catch a hare for sure or participate in the hunt for a stag. If both pursue the

stag, they are sure to catch it and then share equally. This share is bigger than the hare. If

either one goes for the hare while the other is pursuing the stag, the catcher of the hare gets

to take it home while the other goes empty-handed. Each prefers to hunt for the hare alone.

The arms race situation is perhaps better modeled as a Stag Hunt instead of a Prisoners’

Dilemma because acquiring arms is expensive and useless if the other one has disarmed. In

this situation, arming is costly, so both countries most prefer the outcome where neither

one arms. The next-best outcome is unilateral armament because it provides security (and

perhaps can be used to extract concessions). The third-best outcome is for both to arm.

Although this does not change the military balance, it is expensive, so both suffer the costs

of doing so. The worst outcome is to fail to arm while the other arms unilaterally. In this

case, the other side can extract huge concessions. Using the labels C for cooperate (meaning

“do not arm”) and D for defect (meaning “arm”), the preference orderings are:

US : (C,C) ≻ (D,C) ≻ (D,D) ≻ (C,D)

USSR : (C,C) ≻ (C,D) ≻ (D,D) ≻ (D,C).
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Using our now-familiar way of assigning payoffs to represent these preferences, we can con-

struct the payoff matrix. Fig. 30 (p. 29) shows the Stag Hunt strategic situation applied to the

security dilemma.

US

USSR

C D

C 3,3 0,2

D 2,0 1,1

Figure 30: Stag Hunt modeling the Security Dilemma.

Comparing this with the Prisoner’s Dilemma in Fig. 28 (p. 28) makes the difference quite

clear. We shall see later how the solutions to these two games differ and why. For now, one

should keep in mind that choosing which of these two is a “better” representation of the

arms race is up to the analyst. The relevant question is: which game captures the strategic

situation with less distortion of reality. There is no unambiguous answer to this, especially

once you get into more sophisticated models where the choices are not so simple.

The point of these examples is to convey the idea that games really describe strategic

settings which may be the same across various actual applications. The abstract model can

thus capture the underlying incentives in these settings. The idea here is to understand that

we don’t care much about labels (we can have players, hunters, countries, prisoners). We also

don’t really care about the verbal description of a particular situation. What we are interested

in is the strategic environment: available actions and payoffs.

4.3 Reduced Strategic Form

Consider the (Little Horsey) game in Fig. 14 (p. 15). Player 1 has four pure strategies and

player 2 has only two, resulting in a 4 × 2 payoff matrix. The strategic representation of

this game is given in Fig. 31 (p. 29), and shows an important aspect of the definition of

pure strategies: The pure strategy space may be unnecessarily large in the sense that it

may contain pure strategies that are “equivalent” because they have the same consequences

regardless of what the opponent does. In this example, the strategies AE and AF for player

1 are equivalent.

Player 1

Player 2

c d

AE 1,1 1,1

AF 1,1 1,1

BE −1,1 3,2

BF −1,1 4,0

Figure 31: The Normal Form of the Game from Fig. 14 (p. 15).

Two pure strategies are equivalent if they induce the same probability distribution over

the outcomes for all pure strategies for the opponents. Or, putting it a bit more formally:

Definition 6. Given any strategic form game G = {I, S,U}, for any player i and any two

strategies s1, s2 ∈ Si, the strategies s1 and s2 are payoff-equivalent if, and only if,

Uj(s1, s−i) = Uj(s2, s−i), ∀s−i ∈ S−i, ∀j ∈ I.
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That is, no matter what all other players do, no player cares whether i uses s1 or s2. Let’s

parse this expression. To see whether two strategies for player 1 are payoff-equivalent, we

take each strategy of player 2 in turn and compare the payoffs that player 1 obtains from

playing s1 and s2 against that, then we compare the payoffs that player 2 obtains from player

1 playing s1 and s2 against her strategy. If either of these two comparisons produces a

difference, stop: the two strategies are not payoff-equivalent. If, on the other hand, they

yield the same payoffs in both cases, proceed to the next strategy for player 2 and repeat the

process. If you exhaust all strategies for player 2 in this way and the comparisons have not

yielded any differences, then the two strategies for player 1 are payoff-equivalent.

In our example from Fig. 31 (p. 29), the two pure strategies AE and AF always lead to

the same outcome because the game ends when the first action is taken and so the second

information set is never reached. This happens regardless of what player 2 does at her

information set. That is, fix player 2’s strategy to be c, then: (i) player 1’s payoff from AE

is 1, which is the same as his payoff from AF ; (ii) player 2’s payoff from player 1 choosing

AE is 1, which is the same as her payoff from him choosing AF . So neither player cares if

player 1 chooses AE or AF if player 2 chooses c. Next, fix player 2’s strategy to be d, then:

(i) player 1’s payoff from AE is 1, which is the same as his payoff from AF ; (ii) player 2’s

payoff from player 1 choosing AE is 1, which is the same as her payoff from him choosing

AF . Hence, neither player cares if player 1 chooses AE or AF if player 2 chooses d. Since

there are no more strategies for player 2 to check against, we are done: no player cares what

player 1 does regardless of what player 2 chooses. Observe that in these comparisons we had

to check whether player 1 himself would care, not just whether his opponent would. We can

now simplify the normal form representation by removing all but one strategies from every

class of equivalent strategies.

Definition 7. The purely reduced normal form of an extensive form game is obtained by

eliminating all but one member of each equivalence class of pure strategies.

Therefore, we can remove either AE or AF (but not both) to obtain the reduced normal

form shown in Fig. 32 (p. 30). The “new” strategy for player 1 is called A.

Player 1

Player 2

c d

A 1,1 1,1

BE −1,1 3,2

BF −1,1 4,0

Figure 32: The Reduced Normal Form of the Game from Fig. 12 (p. 13).

The example we just did may be a bit misleading because the payoffs for the players are

always the same in all the outcomes regardless of what player 2 chooses. This need not be

the case. To see that, consider the strategic form game in Fig. 33 (p. 31).

To decide whether U and D are payoff-equivalent, we first fix player 2’s strategy at L and

observe that players get (3,1) no matter which of the two pure strategies under consideration

player 1 chooses. We then fix player 2’s strategy at R and observe that players get (−2,0)

regardless of whether player 1 chooses U or D. Hence, the two are payoff-equivalent, and

we can eliminate one of them. Observe that a player can get different payoffs depending on

whether player 2 chooses L or R from strategies that are payoff-equivalent (i.e., player 1 can

get either 3 or −2) but this is not the relevant comparison to make. For example, both players
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Player 1

Player 2

L R

U 3,1 −2,0

M 4,3 4,3

D 3,1 −2,0.

Player 1

Player 2

L R

U 3,1 −2,0

M 4,3 4,3

Figure 33: Reducing a Game with Different Payoffs.

get (4,3) if player 1 chooses M regardless of player 2’s action. However, this does not mean

that L and R are payoff-equivalent (because players would get different payoffs against either

one of these if player 1 chooses a different strategy.)

b
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e
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.5 0,8
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.5 8,0
N
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Figure 34: Another Game from Myerson (p. 55).

For practice, let’s find the reduced normal form of the extensive-form game in Fig. 34

(p. 31). Player 1 has two information sets, with A1(∅) = {a,b} and A1(b) = {c,d, e}. He has

six pure strategies:

S1 =
{

(a, c), (a,d), (a, e), (b, c), (b,d), (b, e)
}

.

Player 2 has only one information set, and therefore just two pure strategies:

S2 = {x,y}.

There are 12 pure-strategy profiles. Of these, exactly two involve chance moves: 〈(b, e), x〉

and
〈

(b, e),y
〉

. We have to calculate the expected utilities for these:

U1((b, e), x) = (0.5)(0)+ (0.5)(6) = 3

U1((b, e),y) = (0.5)(8)+ (0.5)(6) = 7.

Analogously, for player 2:

U2((b, e), x) = (0.5)(8)+ (0.5)(0) = 4

U2((b, e),y) = (0.5)(0)+ (0.5)(0) = 0.
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Player 1

Player 2

x y

(a, c) 6,0 6,0

(a,d) 6,0 6,0

(a, e) 6,0 6,0

(b, c) 8,0 0,8

(b,d) 0,8 8,0

(b, e) 3,4 7,0

Figure 35: The Strategic Form of the Game from Fig. 34 (p. 31).

We are now ready to construct the strategic form representation of this extensive form game.

The result is in Fig. 35 (p. 32).

It is fairly obvious that the strategies (a, c), (a,d), and (a, e) are payoff equivalent to one

another because regardless of what player 2 does, the outcome from all three is the same.

In other words, player 1 does not care what player 2 does if he chooses any of these three

strategies. We can therefore merge these three strategies into a new one, called A, with the

resulting payoff matrix in Fig. 36 (p. 32).

Player 1

Player 2

x y

A 6,0 6,0

(b, c) 8,0 0,8

(b,d) 0,8 8,0

(b, e) 3,4 7,0

Figure 36: The Purely Reduced Strategic Form of the Game from Fig. 34 (p. 31).

We can reduce this game further, but to do this, we need to introduce the concept of mixed

strategies.

5 Mixed Strategies in Strategic Form Games

So far, we have considered only strategies that involve playing a selected action with prob-

ability 1. We called these pure strategies to emphasize this. We now consider randomized

choices.

Definition 8. A mixed strategy for player i, denoted by σi, is a probability distribution

over i’s set of pure strategies Si. Denote the mixed strategy space for player i by Σi, where

σi(si) is the probability that σi assigns to the pure strategy si ∈ Si. The space of mixed

strategy profiles is denoted by Σ = △Σi.

Thus, if player i has K pure strategies: Si = {si1, si2, . . . , siK}, then a mixed strategy for

player i is a probability distribution σi = {σi(si1), σi(si2), . . . , σi(siK)}, where σi(sik) is the

probability that player i will choose strategy sik for k = 1,2, . . . , K. Since σi is a probability

distribution, we require that σi(sik) ∈ [0,1] for all k = 1,2, . . . , K and
∑K
k=1σi(sik) = 1. That

is, the probabilities must be non-negative and not larger than 1, and should sum up to 1. You

can think of a mixed strategy as a lottery whose “outcomes” are pure strategies.
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Each player’s randomization is statistically independent of those of his opponents,9 and

the payoffs to the mixed strategy profile are the expected values of the corresponding pure

strategy payoffs.10 You should now see why we needed Expected Utility Theory. Player i’s

payoff from a mixed strategy profile σ ∈ Σ in an n-player game is

Ui(σ) =
∑

s∈S





n
∏

j=1

σj(sj)



ui(s)

Let’s parse this expression. The mixed strategy profile σ is a list of mixed strategies, one

for each player: σ = {σ1, σ2, . . . , σn}. Each of these mixed strategies, e.g. σi, is a list of

probabilities associated with player i’s set of pure strategies. To find the probability of an

outcome, we need to calculate the probability that all players choose the pure strategies that

produce this outcome. Thus, if the pure strategy profile s ∈ S produces the outcome we are

interested in, the probability of this outcome is the product of probabilities that each player

chooses the pure strategy in this profile (because of independence).

Consider first an example from a game without chance moves, like Matching Pennies. To

make things specific, let’s use the mixed strategy profile σ = 〈(1/3H, 2/3T), (1/4H, 3/4T)〉. In

this profile, player 1’s mixed strategy specifies playingH with probability 1/3 and T with prob-

ability 2/3, and player 2’s mixed strategy strategy specifies playing H with probability 1/4, and

T with probability 3/4. There are four pure strategy profiles: S = {(H,H), (H, T), (T ,H), (T , T)}

that produce the four outcomes of the game.

As usual, the strategy profile σ induces a probability distribution over the outcomes. The

probability of each outcome is the product of the probabilities that each player chooses

the relevant strategy. For example, the probability of the pure strategy profile (H,H) being

played is (1/3) (1/4) = 1/12. Analogously, the probabilities of the other pure strategy profiles

being played are Pr(H, T) = 1/4, Pr(T ,H) = 1/6, and Pr(T , T) = 1/2. (You should verify that

these sum to 1, which they must because they are probabilities of exhaustive and mutually

exclusive events.) Fig. 37 (p. 33) shows the probability distribution over the four possible

outcomes induced by the two mixed strategies.

H T

H 1/12
1/4

T 1/6 1/2

Figure 37: The probability distribution over outcomes induced by σ .

Player 1’s payoffs from these outcomes are u1(H,H) = u1(T , T) = 1 and u1(H, T) =

u1(T ,H) = −1. Multiplying the payoffs by the probability of obtaining them and sum-

ming over (the expected utility calculation we have done before) yields an expected payoff of
1/12(1)+1/2(1)+1/4(−1)+1/6(−1) = 1/6. Thus, player 1’s expected payoff from the mixed strat-

egy profile σ as specified above is 1/6. Note how we first did the multiplication term and then

summed over all available pure strategy profiles, while multiplying by the utility of each. This

is exactly what the expression above does. Recalling that S = {(H,H), (H, T), (T ,H), (T , T)},

9That is, the joint probability equals the product of individual probabilities.
10In all cases where we shall calculate mixed strategies, the space of pure strategies will be finite so we do

not run into measure-theoretic problems.
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we can write:

U1(σ) =
∑

s∈S





2
∏

j=1

σj(sj)



u1(s)

= σ1(H)σ2(H)u1(H,H)+ σ1(H)σ2(T)u1(H, T)

+ σ1(T)σ2(H)u1(T ,H)+ σ1(T)σ2(T)u1(T , T)

= (1/3)(1/4)(1)+ (1/3)(3/4)(−1)+ (2/3)(1/4)(−1)+ (2/3)(3/4)(1)

= 1/6.

Consider now an example from a game that does involve chance moves, like the Card Game,

whose strategic form is in Fig. 18 (p. 21). Suppose we wanted to know player 2’s expected

payoff from the mixed strategy profile σ = 〈(1/3, 1/4, 5/12,0), (1/3, 2/3)〉. That is, for player 1,

σ1(Rr) = 1/3, σ1(Rf) = 1/4, σ1(Fr) = 5/12, and σ1(Ff) = 0, whereas for player 2, σ2(m) = 1/3
and σ2(p) = 2/3. So,

U2(σ) =
∑

s∈S





2
∏

j=1

σj(sj)



u2(s)

= σ1(Rr)σ2(m)u2(Rr ,m)+ σ1(Rr)σ2(p)u2(Rr ,p)

+ σ1(Rf)σ2(m)u2(Rf ,m)+ σ1(Rf)σ2(p)u2(Rf ,p)

= σ1(Fr)σ2(m)u2(Fr ,m)+ σ1(Fr)σ2(p)u2(Fr ,p)

+ σ1(Ff)σ2(m)u2(Ff ,m)+ σ1(Ff)σ2(p)u2(Ff ,p)

= (1/3)(1/3)(0)+ (1/3)(2/3)(−1)+ (1/4)(1/3)(0.5)+ (1/4)(2/3)(−1)

= (5/12)(1/3)(−0.5)+ (5/12)(2/3)(0)+ (0)(1/3)(0)+ (0)(2/3)(0)

= −5/12.

If you wanted to compute the probability distribution over the outcomes induced by σ , you

should get the result in Tab. 38 (p. 34).

m p

Rr 1/9 2/9
Rf 1/12

1/6
Fr 5/36

5/18

Ff 0 0

Figure 38: The probability distribution over outcomes for Fig. 18 (p. 21) induced by σ .

As the last example showed, there is no requirement that a mixed strategy puts positive

probabilities on all available pure strategies. The support of a mixed strategy σi is the set

of strategies to which σi assigns positive probability. This means that we can think of a

pure strategy si as a degenerate mixed strategy that assigns probability 1 to si and 0 to all

remaining pure strategies (i.e. the support of a degenerate mixed strategy consists of a single

pure strategy). A completely mixed strategy assigns positive probability to every strategy in

Si.
11

11Completely mixed strategies are important because a strategy profile of completely mixed strategies assigns

positive probability to every possible outcome in the game. As we shall see later, the fundamental solution
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As mentioned in the previous section, we can further reduce some strategic form games.

Consider the game in Fig. 36 (p. 32). Although no other pure strategies are payoff-equivalent,

the strategy (b, e) is redundant in an important sense. Suppose player 1 were to choose

between the strategy A and (b,d) with a flip of a fair coin. The resulting randomized strategy

can be denoted with σ = 0.5[A]+ 0.5[b,d], and would give the expected payoffs:

U(σ,x) = (0.5)(6,0)+ (0.5)(0,8) = (3,4)

U(σ,y) = (0.5)(6,0)+ (0.5)(8,0) = (7,0).

In other words, we could get the payoffs from (b, e) from randomizing between the strategies

A and (b,d). We formalize this notion as follows:

Definition 9. A strategy ŝi ∈ Si is randomly redundant if and only if there exists a mixed

strategy σi ∈ Σi such that σi(ŝi) = 0 and

Uj(ŝi, s−i) =
∑

si∈Si

σi(si)uj(si, s−i) ∀s−i ∈ S−i, ∀j ∈ I.

That is each player’s payoffs from the profiles involving ŝi can be expressed as the expected

payoffs from a mixed strategy for player i that does not have ŝi in its support. In other words,

ŝi is randomly redundant if there is some way for player i to mix his other pure strategies

such that no matter what combination of strategies the other players choose, every player

would get the same expected payoff whether i uses ŝi or mixes in this way.

Definition 10. The fully reduced normal form of an extensive form game Γ is obtained

from the purely reduced representation of Γ by eliminating all randomly redundant strate-

gies.

The fully reduced normal form representation of the extensive form game from Fig. 34

(p. 31) (whose purely reduced normal form is in Fig. 36 (p. 32)) is given in Fig. 39 (p. 35).

Player 1

Player 2

x y

A 6,0 6,0

(b, c) 8,0 0,8

(b,d) 0,8 8,0

Figure 39: The Fully Reduced Strategic Form of the Game from Fig. 34 (p. 31).

Consider the example in Fig. 40 (p. 36): how are we to approach something like this to

decide whether there are any strategies that are randomly redundant? Obviously, the only

possibilities must involve strategies for player 1, but which one(s)? We can begin by simple

elimination by asking whether any two strategies can be mixed to eliminate a third one. We

cannot eliminate A by any mixture of two or more of the remaining three pure strategies

because player 1’s payoff against L is negative if he plays A and non-negative otherwise.

Since any mixture of B, C , and D must yield a non-negative payoff against A as well, there is

no way to match the payoff from A. It is also impossible to eliminate B with any combination

concept (Nash equilibrium) will not produce any odd results in that situation. Problems with Nash equilibrium

(in the sense of unreasonable predictions about optimal behavior) might only occur when the strategy profile

induces zero probability for one or more of the possible outcomes.
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of the other three strategies: player 1’s payoff against L is 3, which is strictly greater than

any of the other payoffs he could get against L. This means that any mixture of A, C , and D

must yield player 1 an expected payoff strictly less than 3, so they cannot match B. It is also

impossible to eliminate C ; this time, note that player 2’s payoff against C when she plays L is

−1, which is strictly less than any of her payoffs against the other three strategies for player

1. This means that any mixture of A, B, and D must give player 2 a payoff strictly better than

−1 when she chooses L, so it will not be possible to match C .

Player 1

Player 2

L R

A −1,0 −1/3, 1/2
B 3, 1/2 −1, 9/8
C 0,−1 1,0

D 3/4,−1/4 0, 1/2

Figure 40: Less Obvious Example.

All of this means that if there is any randomly redundant strategy for player 1, it would

have to be D. What mixture of some combination of A, B, and C can work? First, note that it

cannot be a mixture between A and B by themselves: player 2’s payoff from L would be non-

negative and she must get −1/4 to match her payoff against D. Can it be a mixture between

B and C by themselves? Looking at player 1’s payoffs against R, we can see that he gets −1

from B and 1 from C . There is only one way to match the payoff of 0 he obtains from D:

mix B and C with equal probabilities. But then player 2’s payoff against the mixture would

be 9/16 when she chooses R, which does not match her payoff of 1/2 against D. Hence, it is

not possible to eliminate D with a mixture of B and C alone.

This leaves us with just one more possibility: mix A, B, and C to eliminate D. If D is

randomly-redundant, then the following system of equations must have a unique solution:

−σ1(A)+ 3σ1(B) = 3/4

−1/3σ1(A)− σ1(B)+ σ1(C) = 0

1/2σ1(B)− σ1(C) = −1/4
1/2σ1(A)+ 9/8σ1(B) = 1/2,

such that σ1(A) + σ1(B) + σ1(C) = 1 and σ1(a) ∈ (0,1) for all a ∈ {A,B,C}. From the

last equation, we obtain σ1(A) = 1 − 9/4σ1(B). Plugging this into the first equation and

multiplying both sides by 4 then gives us −4+ 9σ1(B)+ 12σ1(B) = 3, which then yields the

solution σ1(B) = 7/21 = 1/3. Plugging this into the third equation yields 1/6−σ1(C) = −1/4, so

σ1(C) = 5/12. Finally, plugging these two into the second equation reduces it to −1/3σ1(A)−
1/3 + 5/12 = 0, which implies σ1(A) = 1/4. Of course, since we know the probabilities must

sum up to 1, we could have just computed σ1(A) = 1 − σ1(B) − σ1(C) to obtain the same

result. This way, however, we can verify that the sum is unity, so we have not messed up any

of our calculations. We now have the mixed strategy σ1 = (1/4, 1/3, 5/12,0) which yields the

same expected payoffs to either player as D does against L, and the same expected payoffs

to either player as D does against R. Hence, D is randomly redundant and we can safely

eliminate it without losing anything in the process.

One question you may have at this point is what happens if there are more than one

randomly-redundant strategies: would it matter which one gets eliminated first? What if we
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use some pure strategy to eliminate another and then eliminate that pure strategy itself: does

that mean we have to restore the one we originally eliminated or is it possible to eliminate it

without using that pure strategy? As it turns out, it does not matter which order you do the

elimination in: if you can eliminate a pure strategy d by a mixed strategy that has s, s′, and

s′′ in its support and then s itself gets eliminated by another mixed strategy with only s′ and

s′′ in its support, then it is possible to eliminate d with a mixed strategy that only has s′ and

s′′ in its support. Let’s see an example that illustrates this, so consider Fig. 41 (p. 37).

L R

A 1,2 −2,0

B 0,3 −1/2,2

C −1,4 1,4

D −1/4, 13/4 −1/8, 5/2

L R

A 1,2 −2,0

B 0,3 −1/2,2

C −1,4 1,4

L R

A 1,2 −2,0

C −1,4 1,4

Figure 41: Order of Elimination Does Not Matter.

The mixed strategy σ = (1/4, 1/4, 1/2,0) makes D randomly-redundant in the original game

on the left, producing the reduced normal form in the middle. But then σ ′ = (1/2,0, 1/2)

makes B randomly-redundant in that intermediate form, producing the fully reduced form

on the right. The question then is: since we used B to eliminate D in the first step, would we

still be able to eliminate D now that we B itself is gone? That is, do we need B to keep D out?

The claim is that since B can be eliminated by A and C , then it should be possible to eliminate

D with only these two strategies as well. What is the appropriate mixture then? Since mixing

A and C with equal weights eliminates B, let’s distribute the weight on B in the original σ

evenly to A and C and check if the result can eliminate D. That is, add 1/8 to the probabilities

σ assigns to A and C to consider σ ′′ = (3/8,0, 5/8,0) in the original game. It is straightforward

to verify that this strategy makes D randomly redundant: against L player’s expected payoff

is 3/8 − 5/8 = −2/8 = −1/4 and player 2’s expected payoff is 3/8(2) + 5/8(4) = 26/8 = 13/4;

analogously, against R, player 1’s expected payoff is 3/8(−2) + 5/8 = −1/8, and player 2’s

expected payoff is 5/8(4) = 5/2. This means that we can use σ ′′ to eliminate D and then σ ′ to

eliminate B, yielding the same fully reduced form.

It is sometimes quite tricky to identify randomly redundant strategies. It may be worth

your while to try anyway because by reducing the number of strategies to consider for the

analysis, you will greatly simplify your task (you will see what I mean when we begin solving

the games next time). Unless we explicitly state otherwise, we shall take the reduced strategic

form representation to mean the fully reduced form.

You might wonder why we are eliminating redundant strategies: after all, the ones we

remove from considerations do, in fact, specify ways to play the game and reach possibly

different outcomes. For instance, in the reduced strategic form in Fig. 41 (p. 37), there are

no outcomes 〈D,L〉 or 〈D,R〉, which were both available in the original specification. Aren’t

we losing something when we do not consider them? If there are several redundant strate-

gies, does it not matter which ones we eliminate? The answer is that for the analysis of

the game, it will not matter. When we find solutions that involve a strategy that has other

payoff-equivalent ones in the original game, then we will immediately know that the original

game has more solutions: we would obtain those by replacing the strategy with the payoff-

equivalent ones we eliminated. Thus, suppose for instance that in the reduced form we

found solutions in which A and C are played with probability 1/2 each. Because we know that

this mixed strategy is payoff equivalent to the pure strategy B, we immediately know that
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there are solutions in which player 2’s strategy is the same but player 1 plays B instead of

that particular mixed strategy. If, however, the solution involved A and C with some other

probabilities, then there will be no solutions that involve B. Thus, when we want to provide

a substantive interpretation for the solution, we have to remember the payoff-equivalent

strategies.

6 Mixed and Behavior Strategies in Extensive Form Games

Unlike strategic form games, extensive form games admit two distinct types of randomiza-

tion: a player can either randomize over his pure strategies or he can randomize over the

actions at each of his information sets.

As in the normal form game, a mixed strategy for player i is a probability distribution

over i’s set of pure strategies.12 That is, a mixed strategy specifies the probabilities with

which pure strategies are played but each pure strategy specifies a definite action at each

information set.

The other type of randomizing strategy is the behavior strategy, which specifies a proba-

bility distribution over actions at each information set. These distributions are independent.

That is, a behavior strategy specifies the probabilities with which actions are chosen at ev-

ery information set. Thus, a pure strategy is a special kind of behavior strategy where the

distribution at each information set is degenerate.

To help illustrate the difference between the two types of randomization, Luce and Raiffa

(1957) offer the following analogy: A pure strategy is a book of instructions, where each page

tells how to play at a particular information set. The space of pure strategies is a library of

these books. A mixed strategy is a probability distribution over this library (i.e. it specifies

the probability with which books are chosen). A behavior strategy is a single book where each

page prescribes a random action. Thus, a player may randomly select a pure strategy or he

might plan a set of randomizations, one for every point at which he has to take action.

An example may be helpful. Consider the game in Fig. 14 (p. 15) and recall that player

1 has four pure strategies: (AE), (AF), (BE), and (BF). A mixed strategy is a probability

distribution over these four strategies. For example, a mixed strategy σ = (1/4, 1/4, 1/4, 1/4)

specifies that player 1 will play each of his pure strategies with equal probability of 1/4.

Another mixed strategy might be σ = (1/3,0, 1/6, 1/2), which specifies that player 1 should

play AE with probability 1/3, AF with probability 0, BE with probability 1/6, and BF with

probability 1/2. You can see the close correspondence with mixed strategies in normal form

games.

On the other hand, a behavior strategy for player 1 would specify probabilities for actions

at all information sets. Because player 1 has two information sets, the strategy must specify

two probability distributions, one for each information set. For example, β = (1/4, 1/4) means

that player 1 will choose A at his first information set with probability 1/4 (and choose B

with complementary probability 3/4), and he will choose E with probability 1/4 at the second

information set. Another behavior strategy might be β = (0, 1/2), which specifies that player

1 should choose B with probability 1 at the first information set and play E and F with

equal probability at the second information set. Just like a pure strategy will have as many

elements as there are information sets at which the player must move, the behavior strategy

will also have as many elements as there are information sets. The difference is that the pure

12In extensive form games of perfect information little is added by considering mixed strategies. We will not

see them until later, when we learn about games of incomplete information.
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strategy will prescribe a certain action for each information set whereas the behavior strategy

prescribes a probability distribution over the actions at this set. (Of course, the number of

elements in a mixed strategy equals the number of pure strategies.) As we noted, a pure

strategy is a behavior strategy with degenerate distributions at each information set. So, for

example, the pure strategy BE is the behavior strategy β = (0,1) just as it is the degenerate

mixed strategy σ = (0,0,1,0).

As you probably already suspect, the two types of randomizing strategies are closely re-

lated. We shall call two strategies equivalent if they induce the same probability distributions

over outcomes for all strategies of the opponents.13 Intuitively, two strategies are equivalent

if they have the same consequences regardless of what the other players do.

6.1 Mixed Strategy Equivalent to a Behavior Strategy

Let’s see how we can generate a mixed strategy that is equivalent to some arbitrary behavior

strategy βi for player i. Let βi(hi)(ai) denote the probability with which action ai ∈ Ai(hi) is

taken (that is the probability with which an action is chosen from the set of actions available

after history hi). Let si(hi) denote the action specified by the pure strategy si at the infor-

mation set hi (and so si specifies one action for all information sets where player i gets to

move). Define the mixed strategy σi to assign the following probability to each pure strategy

si:

σi(si) =
∏

hi∈H

βi(hi) (si(hi)) . (1)

That is, the probability with which the pure strategy is chosen is simply the product of prob-

abilities assigned by the behavior strategy to the action the pure strategy prescribes at each

information set. Note that we made use of the assumption that the behavior randomizations

are independent across information sets.14

Let’s ask ourselves about the intuition behind this. Essentially, a pure strategy, si, gives

a “path” of play through the game: given what other players are doing, this strategy tells

i what to choose at each of his information sets until the game tree reaches a terminal

node. This means that σi would have to assign to that “path” a probability that equals

the probabilities with which each of its separate components is taken by i’s choice. Since βi
gives the probability of the action prescribed by si for each information set, the probability

of the entire “path” is just the product of the probabilities that i picks the relevant actions

that constitute that path.

Consider the (Little Horsey) game in Fig. 14 (p. 15). A behavior strategy for player 1 has

two elements, a probability distribution over his two actions {A,B} at his first information

set, and another probability distribution over the actions {E, F} at his second information

set. Consider some fixed (possibly mixed) strategy for player 2, σ2 such that σ2(d) > 0,

and consider the outcome after history (B,d, F). Denote this outcome by z4. The only pure

strategy for player 1 that can produce this with positive probability is s1 = (B, F). That is

Pr[z4|s1] = σ2(d). Observe now that a (non-degenerate) behavior strategy will put positive

probabilities on both B and F but will not choose them with certainty. Hence, the probability

of z4 will be Pr[z4|β1] = β1(∅)(B)×σ2(d)×β1(Bd)(F). That is, it multiplies the probabilities

13This is the same concept of equivalence we used when we discussed the reduced normal form representa-

tion of extensive games in the previous section.
14This holds for all games of perfect recall. In games of imperfect recall, it is possible to have behavior

strategies that cannot be duplicated by any mixed strategy.
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it assigns to the actions specified by s1 at each information set: Pr[z4|β1] = β1(∅)(s1(∅))×

σ2(d)×β1(Bd)(s1(Bd)), where we note that s1 = (B, F) is, if we were to use to full definition

of a pure strategy as a function that takes an information set and returns an action, equivalent

to s1(∅) = B and s1(Bd) = F . Now, a mixed strategy for player 1 can also produce z4 with

positive probability as long as σ1(BF) > 0. In particular, since we want σ1 to produce z4 with

the same probability as β1, it must be the case that in that mixed strategy the probability

of player 1 choosing both B and F at the respective information sets must be the same

under σ1 as it is under β1. Under β1, we have seen that the probability of choosing B and

F is β1(∅)(B) × β1(Bd)(F), which would give z4 with probability σ2(d). Since the only way

to reach this outcome must involve playing s1, the mixed strategy must assign this exact

probability to that pure strategy: σ1(s1) = β(∅)(s1(∅)) × β1(Bd)(s1(B,d)), that is, exactly

as in (1). The probability of reaching z4 using σ1 is also σ2(d).

Let’s now consider a specific example. To check equivalence, we first need to specify the

distribution over outcomes. The Little Horsey game in Fig. 14 (p. 15) has four outcomes.

Let the probability distribution (z1, z2, z3, z4) denote the associated probabilities for the out-

comes (1,1), (−1,1), (3,2), and (4,0). Finally, let σ2(c) denote the probability with which

player 2 chooses c and σ2(d) = 1 − σ2(c) denote the probability with which she chooses d.

The behavior strategy β = ((1/4, 3/4) , (1/4, 3/4)), where player 1 chooses A and E with probabil-

ity 1/4, induces the probability distribution over outcomes (1/4, 3/4σ2(c), 3/16σ2(d), 9/16σ2(d)).

(We obtained the probabilities for z3 and z4 by multiplying the the probability of each action

specified by the behavior strategy by the probability that the initial action is B. You should

verify that the distribution over outcomes is valid: i.e. all probabilities sum to 1.) Now, using

our Equation 1, we can define the mixed strategy σ as follows:

σ(AE) = β(∅)(A)× β(Bd)(E) = 1/4× 1/4 = 1/16

σ(AF) = β(∅)(A)× β(Bd)(F) = 1/4× 3/4 = 3/16

σ(BE) = β(∅)(B)× β(Bd)(E) = 3/4× 1/4 = 3/16

σ(BF) = β(∅)(B)× β(Bd)(F) = 3/4× 3/4 = 9/16

(We again verify that this is a valid probability distribution by noting that the probabilities all

sum to 1.) Is this mixed strategy equivalent to the original behavior strategy? That is, does

it induce the same probability over outcomes regardless of what the other player does? The

probability of outcome z1 equals the probability that player 1 chooses A, which he does in

two of his strategies, and so it is σ(AE)+σ(AF) = 1/4. The probability of z2 is the probability

that player 1 will choose B, which is σ(BE) + σ(BF) = 3/4, multiplied by the probability

that player 2 chooses c. This yields 3/4σ2(c). The probability of z3 is the probability that

player 1 chooses both B and E multiplied by the probability that player 2 chooses d, which

yields σ(BE)σ2(d) = 3/16σ2(d). Finally, the probability of z4 is the probability that player 1

chooses both B and F , σ(BF), multiplied by the probability that player 2 chooses d, which

yields 9/16σ2(d). To summarize, the probability distribution over outcomes induced by the

mixed strategy σ as defined above is (1/4, 3/4σ2(c), 3/16σ2(d), 9/16σ2(d)), which is the same

as the probability distribution induced by the behavior strategy β. We have now seen how to

generate an equivalent mixed strategy from an arbitrary behavior strategy. But there is more

to equivalence than this!
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6.2 Equivalence of Mixed and Behavior Strategies

An important result is that in a game of perfect recall, mixed and behavior strategies are

equivalent.

Theorem 1 (Kuhn 1953). In a game of perfect recall,

• every behavior strategy is equivalent to every mixed strategy that generates it;

• every mixed strategy is equivalent to the unique behavior strategy it generates.

That is, different mixed strategies can generate the same behavior strategy even though

each mixed strategy either generates exactly one behavior strategy or else infinitely many

behavior strategies. To make this a bit more concrete, two different mixed strategies can

generate the same behavior strategy (we shall see an example below). The first part of the

claim is that this behavior strategy is going to be equivalent to each of the two different

mixed strategies that generate it. The two mixed strategies are behaviorally equivalent.

Further, every mixed strategy has at least one behavioral representation, and it may have

many. It may have many if there are information sets that the mixed strategy does not reach

with positive probability: In this case it does not matter what probability distribution the

behavior strategy specifies for that information set. If, however, the mixed strategy reaches

all information sets with positive probability, then it will generate a unique behavior strategy.

The second part of the claim states the these will be equivalent.

Finally, note that we can generate a mixed strategy σi from a behavior strategy βi as shown

above in (1). In this case, σi is the mixed representation of βi, and they are equivalent.

Further, it is not hard to show that if σi is the mixed representation of βi, then βi is the

behavioral representation of σi.

To see how the theorem works, let’s derive a behavior strategy for some given mixed strat-

egy. Let σi be a mixed strategy for player i. For any history hi, let Ri(hi) denote the set

of player i’s pure strategies that are consistent with hi. That is, for all si ∈ Ri(hi), there

is a profile s−i for the other players that reaches hi. We shall call the strategies in Ri(hi)

consistent with the history hi. For example, in the Little Horsey game from Fig. 14 (p. 15),

all four pure strategies for player 1 are consistent with his first information set, ∅ for the

simple reason that the initial information set is always reached regardless of what players

are going to do from that point on. On the other hand, the information set (Bd) can only

be reached for some strategy by player 2 (in this case, d) provided player 1 chooses B at his

first information set. There are only two pure strategies that involve such a choice: (BE) and

(BF). Therefore, R1(Bd) = {BE, BF}, and neither AE nor AF is consistent with the history

Bd.

Now let πi(hi) be the sum of probabilities according to σi of all the pure strategies that

are consistent with hi:

πi(hi) =
∑

si∈Ri(hi)

σi(si).

Intuitively, this is the probability with which the game will reach hi provided i (and the other

players) choose actions consistent with this history. It answers the question: “Suppose all

other players use pure strategies that are on the path toward hi. What is the probability

of reaching hi if player i uses σi?” In our example, π1(∅) = σ1(AE) + σ1(AF) + σ1(BE) +

σ1(BF) = 1, and π1(Bd) = σ1(BE) + σ1(BF). In either case, we are supposing that player 2
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is choosing d in the sense that she is not playing a strategy that would make reaching Bd

impossible no matter what player 1 does.

Let π(hi, ai) denote the sum of probabilities according to σi of all pure strategies that are

consistent with hi followed by action ai ∈ Ai(hi). So we have

πi(hi, ai) =
∑

si∈Ri(hi)∧si(hi)=ai

σi(si).

Intuitively, this is very similar to πi(hi) except that it asks “What is the probability of

reaching hi and choosing ai at that information set?” (Again, provided the other play-

ers use strategies that do not preclude reaching that point in the game.) In our example,

π1(∅, A) = σ1(AE) + σ1(AF) because each of AE and AF is both consistent with the initial

history ∅ and prescribes A as the action at that set. Similarly, π1(∅, B) = σ1(BE)+ σ1(BF).

At the second information set, we have π1(Bd, E) = σ1(BE) because even though both BE and

BF are consistent with this history, only BE involves choosing E at the second information

set. Analogously, π1(Bd, F) = σ1(BF).

We now have the two components we need. Observe that πi(hi, ai) is the probability of

reaching hi and playing ai. However, to define β(hi)(ai), we need to find the probability

of playing ai provided hi has been reached. This requires us to condition πi(hi, ai) on

the probability of reaching hi, which is πi(hi). If σi assigns positive probability to some

si ∈ Ri(hi), define the probability that the behavior strategy βi assigns to ai ∈ Ai(hi) as the

probability of taking action ai conditional on reaching the information set hi:

βi(hi)(ai) =
πi(hi, ai)

πi(hi)
.

Intuitively, the probability of picking ai at the information set hi is the probability of reaching

hi and picking ai conditioned on the probability of reaching hi. In our example, β1(∅)(A) =

σ1(AE)+σ1(AF) and β1(∅, B) = σ1(BE)+σ1(BF). At the second information set, β1(Bd, E) =

σ1(BE)/ [σ1(BE)+ σ(BF)]; that is, the probability the behavior strategy must assign to the

action E is the probability σ1 assigns to it conditional on reaching this information set if σ1

is followed. Finally, β1(Bd, F) = σ1(BF)/ [σ1(BE)+ σ1(BF)]. How we define βi(hi)(ai) if

πi(hi) = 0 is immaterial.15 One possible specification is to assign the probabilities given by

the mixed strategy: βi(hi)(ai) =
∑

si(hi)=ai σi(si), but anything will do. In either case, the

βi(·)(·) are nonnegative, and
∑

ai∈Ai(hi)

βi(hi)(ai) = 1,

because each si specifies an action for player i at the information set hi. In other words, βi
specifies a valid distribution for each information set hi. If πi(hi) > 0 for all histories, then

the mixed strategy will generate a unique behavior strategy.

Let’s look at concrete example. Consider the game in Fig. 42 (p. 43). We want to find the

behavior strategy for player 1 that is equivalent to his mixed strategy in which he plays (B,R)

with probability 0.4, (B, L) with probability 0.1, and (A, L) with probability 0.5.

We have σ1(B,R) = 0.4, σ1(B, L) = 0.1, σ1(A, L) = 0.5, and (since the mixed strategy is a

probability distribution), σ1(A,R) = 0. Player 1 has two information sets: one after the ∅

history, and another after the histories (A,M) and (A,D). The behavior strategy will thus

specify two probability distributions, one for each information set.

15Since hi cannot be reached under σi, the behavior strategies at hi are arbitrary in the same sense that

Bayes’ Rule does not determine posterior probabilities after 0-probability events.
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Figure 42: A Game for Kuhn’s Theorem, I.

Since h1 = ∅ is the initial history, all pure strategies are consistent with it. (This is trivially

true: there is no pure strategy for player i such that this history cannot be reached.) Thus,

R1(h1) = {(A, L), (A,R), (B, L), (B,R)}, which also means π1(h1) = 1. Since there are two

possible actions player 1 can take at h1, we must calculate π1(h1, A) and π1(h1, B). There

are two pure strategies s1 such that s1 ∈ R1(h1) ∧ s1(h1) = A, and these are (A, L) and

(A,R). Therefore, π1(h1, A) = σ1(A, L)+ σ1(A,R) = 0.5. Also, there are two pure strategies

such that s1 ∈ R1(h1) ∧ s1(h1) = B, and these are (B, L) and (B, L). This means π1(h1, B) =

σ1(B, L) + σ1(B,R) = 0.5. We now have β1(h1)(A) = π1(h1, A)/π1(h1) = 0.5/1 = 0.5 and

also β1(h1)(B) = π1(h1, B)/π1(h1) = 0.5.16 So, β1(h1)(A) = β1(h1)(B) = 0.5.

Now consider h2 = {(A,M), (A,D)}. The only pure strategies for player 1 that are con-

sistent with this history are the ones that specify A for the move at the first information

set. (That is, there exists no strategy for player 2 such that h2 is reached if player 1

chooses B at the first information set.) Therefore, R1(h2) = {(A, L), (A,R)}, which means

that π1(h2) = σ1(A, L) + σ1(A,R) = 0.5. Since player 1 has two possible actions at h2,

we must also calculate π1(h2, L) and π1(h2, R). There is only one pure strategy such that

s1 ∈ R1(h2)∧ s1(h2) = L, and it is (A, L). Therefore, π1(h2, L) = σ1(A, L) = 0.5. Also, there

is only one pure strategy such that s1 ∈ R1(h2) ∧ s1(h2) = R, and it is (A,R), which means

π1(h2, R) = σ1(A,R) = 0. We now have β1(h2)(L) = π1(h2, L)/pi1(h2) = 0.5/0.5 = 1, and

we also have β1(h2)(R) = π1(h2, R)/pi1(h2) = 0/0.5 = 0.17

We conclude that the mixed strategy σ1 has an equivalent behavior strategy β1, which is as

follows:

β1(h1)(A) = 0.5

β1(h1)(B) = 0.5

β1(h2)(L) = 1

β1(h2)(R) = 0

Let’s check the equivalence claim. Let σ2 denote a mixed strategy for player 2. Using the

16We verify that β1(h1)(A) = 1− β(h1)(B), which is indeed the case.
17We again verify that the distribution is valid, which it is because β1(h2)(L)+ β1(h2)(R) = 1.
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mixed strategy σ1, the probabilities of reaching the outcomes are as follows:

z1 : [σ1(A, L)+ σ1(A,R)]σ2(U) = 0.5σ2(U)

z2 : σ1(A, L)σ2(M) = 0.5σ2(M)

z3 : σ1(A,R)σ2(M) = 0

z4 : σ1(A, L)σ2(D) = 0.5σ2(D)

z5 : σ1(A,R)σ2(D) = 0

z6 : σ1(B, L)+ σ1(B,R) = 0.5

The distribution over outcomes using σ1 is then (0.5σ2(U),0.5σ2(M),0,0.5σ2(D),0,0.5).

Using the behavior strategy β1, the probabilities of reaching the outcomes are as follows.

z1 : β1(h1)(A)σ2(U) = 0.5σ2(U)

z2 : β1(h1)(A)σ2(M)β1(h2)(L) = (0.5)σ2(M)(1) = 0.5σ2(M)

z3 : β1(h1)(A)σ2(M)β1(h2)(R) = (0.5)σ2(M)(0) = 0

z4 : β1(h1)(A)σ2(D)β1(h2)(L) = (0.5)σ2(D)(1) = 0.5σ2(D)

z5 : β1(h1)(A)σ2(D)β1(h2)(R) = (0.5)σ2(D)(0) = 0

z6 : β1(h1)(B) = 0.5

This yields the distribution over outcomes (0.5σ2(U),0.5σ2(M),0,0.5σ2(D),0,0.5) that is

the same as the one given by the mixed strategy. Therefore, we have shown that σ1 and β1

are equivalent.

6.2.1 A Mixed Strategy Can Generate Many Behavior Strategies

Now let’s illustrate the claim that a mixed strategy may generate more than one behavior

strategy. Consider the same game and suppose σ1(A, L) = σ1(A,R) = 0, σ1(B, L) = 0.5, and

σ1(B,R) = 0.5. As before, we have R1(h1) = {(A, L), (A,R), (B, L), (B,R)}, and π1(h1) = 1.

Further, we have π1(h1, A) = 0 (because the mixed strategy assigns probability zero to all

pure strategies with s1(h1) = A), and π1(h1, B) = 1. Thus, we get β1(h1)(A) = 0 and

β1(h1)(B) = 1.

We now have to specify the probability distribution for the information set following h2 =

{(A,M), (A,D)}. Note that R1(h2) = {(A, L), (A,R)} and π1(h2) = 0. Further, π1(h2, L) =

σ1(A, L) = 0 and π1(h2, R) = σ1(A,R) = 0. Hence, we cannot use the conditional formula to

define β1(h2)(L). As noted before, in this case we could use any probability distribution, so

let’s say β1(h2)(L) = x and β1(h2)(R) = 1 − x, with x ∈ [0,1]. Clearly, there is an infinite

number of possible specifications here.

Let’s check equivalence. Under the mixed strategy, the probability distribution over out-

comes is:

z1 : [σ1(A, L)+ σ1(A,R)]σ2(U) = 0

z2 : σ1(A, L)σ2(M) = 0

z3 : σ1(A,R)σ2(M) = 0

z4 : σ1(A, L)σ2(D) = 0

z5 : σ1(A,R)σ2(D) = 0

z6 : σ1(B, L)+ σ1(B,R) = 1.
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Under the behavior strategy, the probability distribution is:

z1 : β1(h1)(A)σ2(U) = 0

z2 : β1(h1)(A)σ2(M)β1(h2)(L) = (0)σ2(M)x = 0

z3 : β1(h1)(A)σ2(M)β1(h2)(R) = (0)σ2(M)(1− x) = 0

z4 : β1(h1)(A)σ2(D)β1(h2)(L) = (0)σ2(D)x = 0

z5 : β1(h1)(A)σ2(D)β1(h2)(R) = (0)σ2(D)(1− x) = 0

z6 : β1(h1)(B) = 1.

That is, the two distributions are the same. Note that this holds for any value of x we might

have chosen. Thus, one mixed strategy can generate more than one behavior strategy. It

should be obvious, however, that if the mixed strategy reaches all information sets with

positive probability, then it must necessarily generate a unique behavior strategy. Hence,

a mixed strategy either generates a unique behavior strategy or else generates an infinite

number of behavior strategies.

6.2.2 Different Mixed Strategies Can Generate the Same Behavior Strategy

Now let’s illustrate the claim that different mixed strategies can generate the same behavioral

strategy. Consider the game in Fig. 43 (p. 45). Let h1 denote the history following action U

by player 1, let h2 denote the history following D. Since there are two information sets, with

two actions at each, player 2 has four pure strategies: (A,C), (A,D), (B,C), and (B,D).
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Figure 43: A Game for Kuhn’s Theorem, II.

Now consider two mixed strategies σ2 = (1/4, 1/4, 1/4, 1/4) and σ̂2 = (1/2,0,0, 1/2). Both of

these generate the behavior strategy β2, where β2(h1)(A) = β2(h1)(B) = 1/2 and β2(h2)(C) =

β2(h2)(D) = 1/2.18 To see that σ2, σ̂2, and β2 are equivalent, note that they all yield the

same distribution over the terminal nodes for any arbitrary mixed strategy for player 1.

For example, the probability of reaching z1 equals σ1(U)/2 regardless of whether we calcu-

late it under σ2, where it equals σ1(U)[σ2(A,C) + σ2(A,D)], or under σ̂2, where it equals

σ1(U)[σ̂2(A,C)+ σ̂2(A,D)], or under β2, where it equals σ1(U)β2(h1)(A). As you probably

18You should verify this. In our notation, R2(h1) = R2(h2) = {AC,AD,BC, BD}. That is, all strategies for

player 2 are consistent with these histories. This is trivially true because she has no move to determine which of

these histories is reached. We then calculate the probability associated with each history, which, given that all

strategies are consistent with it, is simply π2(h1) =
∑

s2∈R2(h1) σ2(s2) = 1. Next, we calculate the probability of

taking action A after h1: π(h1, A) =
∑

s2∈R2(h1)∧s2(h1)=A σ2(s2) = σ2(AC)+ σ2(AD) = 0.5. Finally, we calculate

the behavior strategy β2(h1)(A) = π2(h1, A)/π2(h1) = (0.5)/(1) = 0.5. We can generate the other strategy in

a similar way.
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already see, there will be an infinite number of mixed strategies that generate this behavior

strategy: All σ2 such that σ2(A,C)+σ2(A,D) = 1/2 and σ2(A,C)+σ2(B,C) = 1/2 will do that.

Although it is important to distinguish between the two types of probabilistic strategies,

in practice we shall use behavior strategies throughout the rest of this class. Because it is

cumbersome to refer to them as such all the time, whenever we refer to a mixed strategy of

an extensive form game, we shall always mean a behavior strategy (unless explicitly noted

otherwise). To this end, we shall also retain our σ -notation for mixed strategies: Let σi(ai|hi)

denote the probability with which player i chooses action ai at the information set hi.
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