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A B S T R A C T   

Human languages are replete with ambiguity. This is most evident in homophony––where two or more words 
sound the same, but carry distinct meanings. For example, the wordform “bark” can denote either the sound 
produced by a dog or the protective outer sheath of a tree trunk. Why would a system evolved for efficient, 
effective communication display rampant ambiguity? Some accounts argue that ambiguity is actually a design 
feature of human communication systems, allowing languages to recycle their most optimal wordforms (those 
which are short, frequent, and phonotactically well-formed) for multiple meanings. We test this claim by con-
structing five series of artificial lexica matched for the phonotactics and distribution of word lengths found in 
five real languages (English, German, Dutch, French, and Japanese), and comparing both the quantity and 
concentration of homophony across the real and artificial lexica. Surprisingly, we find that the artificial lexica 
exhibit higher upper-bounds on homophony than their real counterparts, and that homophony is even more 
likely to be found among short, phonotactically plausible wordforms in the artificial than in the real lexica. 
These results suggest that homophony in real languages is not directly selected for, but rather, that it emerges as 
a natural consequence of other features of a language. In fact, homophony may even be selected against in real 
languages, producing lexica that better conform to other requirements of humans who need to use them. Finally, 
we explore the hypothesis that this is achieved by “smoothing” out dense concentrations of homophones across 
lexical neighborhoods, resulting in comparatively more minimal pairs in real lexica.   

1. Introduction 

Human languages are replete with ambiguity. This is most evident 
in homophony––where two or more words sound the same, but carry 
distinct meanings. For example, the wordform “bark” can denote either 
the sound produced by a dog or the protective outer sheath of a tree 
trunk. Estimates of the rate of homophony in English range from 7.4% 
(Rodd, Gaskell, & Marslen-Wilson, 2002) to over 15%1 (Baayen, 
Piepenbrock, & Gulikers, 1995). Dautriche (2015) estimates the average 
homophony rate across languages to be 4%, with considerable cross- 
linguistic variability, ranging from approximately 3% in Dutch to 15% 
in Japanese. The prevalence of homophony, like other kinds of ambi-
guity, is confounding on its face. Human languages are generally 
thought to be shaped by pressures for efficient, effective communica-
tion (Gibson et al., 2019; Zipf, 1949). Yet ambiguity increases both the 
effort required for comprehension and the likelihood of mis-
communication. A comparison between human and programming lan-
guages places this into relief. Programming languages, designed for 
efficient and errorless communication, generally abide no ambiguity at 

all. Why then do human languages insist on encoding distinct messages 
identically? Why are homophones so common? 

Part of the answer appears to be that human comprehenders are 
adept at disambiguating ambiguous input using various contextual cues 
(Ferreira, 2008; Levinson, 2000; Piantadosi, Tily, & Gibson, 2012;  
Wasow, Perfors, & Beaver, 2005). In the case of homophones, a wide 
array of cues to meaning are available, including the syntactic struc-
tures that words are embedded in (Dautriche, Fibla, Fievet, & 
Christophe, 2018), gestures that accompany speech (Holle & Gunter, 
2007; Holler & Beattie, 2003; Kidd & Holler, 2009), and statistical as-
pects of linguistic context (Aina, Gulordava, & Boleda, 2019). The 
human capacity for disambiguation thus creates a tolerant environment 
for ambiguous wordforms––explaining why as languages evolve, 
homophones might not be strictly selected against. 

But might homophones also be selected for? Zipf (1949) argues that 
ambiguity is a design feature of any human communication system, 
resulting from a direct pressure for efficiency. A growing body of evi-
dence is consistent with the claim that lexica are optimized for efficient 
communication between humans (Gibson et al., 2019; Piantadosi, Tily, 
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& Gibson, 2009), from the way they carve up semantic domains (Kemp 
& Regier, 2012; Kemp, Xu, & Regier, 2018; Regier, Kay, & Khetarpal, 
2007; Xu & Regier, 2014; Zaslavsky, Kemp, Regier, & Tishby, 2018) to 
the wordforms that they contain (Mahowald, Dautriche, Gibson, & 
Piantadosi, 2018; Piantadosi et al., 2012; Piantadosi, Tily, & Gibson, 
2011). This pressure for an efficient lexicon could result in a selective 
bias for wordforms that are particularly easy to produce and compre-
hend, where ease reflects properties such as a word's length, phono-
tactic plausibility, and frequency. Combined with a tolerance for am-
biguity, a bias for easy wordforms could exert a pressure on lexica to 
“recycle” particularly optimal wordforms for multiple meanings. This 
pressure, termed “unification” by Zipf (1949), would increase efficiency 
by reducing the number of unique wordforms that speakers need to 
learn and encode. Furthermore, by preferentially re-using the most 
optimal wordforms, such a lexicon would arguably involve less effort in 
speaking or writing than an unambiguous linguistic system. If such a 
pressure exists, it should produce concentrations of homophony in 
optimal regions of phonotactic space––the “easiest” wordforms should 
be the most ambiguous. Indeed, Piantadosi et al. (2012) find that 
English, German, and Dutch count more homophones among word-
forms that are short, frequent, and phonotactically well-formed. This 
finding is consistent with the idea that ambiguity arises out of a pres-
sure for efficiency. 

However, homophony could also emerge in a lexicon without being 
directly selected for, as an indirect consequence of other factors af-
fecting how words are distributed in a lexicon. Two indirect mechan-
isms could also partially (or even fully) account for the uneven dis-
tribution of homophony across a lexicon. 

First, the proportion of occupied phonotactic space (i.e., the ratio of 
actual wordforms to possible wordforms) for English and every other 
language we are aware of will always be higher for shorter wordforms 
than for longer wordforms. This is because the number of possible 
wordforms of a given length grows exponentially with each added 
syllable. If a language's phonotactics permit n unique syllables, then 
there are n possible monosyllabic wordforms, approximately n2 possible 
bisyllabic wordforms, approximately n3 possible trisyllabic wordforms, 
and so on. In contrast, the number of actual wordforms does not grow 
exponentially with word length (e.g., the CELEX set of English lemmas 
contains approximately 7706 monosyllabic words, 15,247 disyllabic 
words, and 11,379 trisyllabic words). This means that the proportion of 
occupied phonotactic space will always be greater among short word-
forms than long wordforms. Thus, even if words were randomly added 
to a lexicon, homophony would by chance be more likely to occur 
among short wordforms than long wordforms. 

Second, the existence of phonotactic constraints results in a lexicon 
that is not uniformly distributed across the space of possible wordforms. 
All languages appear to impose idiosyncratic constraints on sounds and 
their combinations––for example, English does not allow the velar nasal 
/ŋ/ in syllable onsets, unlike Vietnamese; but English does allow con-
sonant clusters like /st/, unlike Japanese. Phonotactic regularities 
narrow the space of possible wordforms considerably (Dautriche, 
Mahowald, Gibson, Christophe, & Piantadosi, 2017). By limiting the 
range of possible wordforms and biasing the formation and evolution of 
the lexicon, these phonotactic constraints could also increase the pre-
valence of homophones. Critically, they could do so even without a 
direct pressure to reuse entire wordforms. Even a pressure to merely 
statistically reuse certain phonological sequences more often would 
increase the likelihood of homophones overall, and particularly among 
the most phonotactically probable wordforms. 

Both of these mechanisms offer indirect causal pathways whereby a 
drive for efficiency could lead to increased homophony. For example, 
more phonotactically regular words could be easier to learn (Coady & 
Aslin, 2004; Gathercole, Willis, Emslie, & Baddeley, 1991; Jusczyk, 
Luce, & Charles-Luce, 1994; Munson, 2001), which would lead to more 
phonotactically probable words being more likely to be transmitted 
across generations, or less phonotactically words becoming more 

phonotactically probable through imperfect intergenerational trans-
mission. This in turn could result in increased homophony, particularly 
among highly probable wordforms. Once again, though, both phono-
tactics and the distribution of word lengths in a lexicon could in prin-
ciple lead to the emergence of homophony without a direct, selective 
pressure for the preferential reuse of specific, optimal wordforms (as 
hypothesized by Zipf, 1949). Furthermore, both factors should be most 
likely to produce homophones in exactly those regions of phonotactic 
space reported by Piantadosi et al. (2012): among short, phonotacti-
cally plausible wordforms. 

It is currently unknown, however, how much homophony exists due 
to these simple, distributional characteristics of languages alone. As a 
consequence, no evidence exists for or against an efficiency-motivated 
direct pressure for homophony, as hypothesized by Zipf. The current 
work asks two primary questions. First, to what extent is the amount of 
homophony found in real human lexica attributable to indirect and 
uncontroversial factors such as length and phonotactic regularities, 
without a direct pressure to reuse existing wordforms? And second, to 
what extent are these indirect factors responsible for the concentration 
of homophony within optimal regions of the lexicon? 

To answer these questions, we constructed five series of artificial 
lexica, designed to mirror the phonotactic regularities and word lengths 
of the real lexica of English, Dutch, German, French, and Japanese. The 
generative model was an adaptation of the model used by Dautriche 
et al. (2017), in which a language's phonotactics were learned by 
training an n-phone Markov Model on the set of unique wordforms in a 
lexicon. By observing the patterns of sounds and sound combinations in 
a language, such a model can learn to encode phonotactic rules about 
which sounds a word can start and end with, which sounds can occur in 
what sequence, and so on. For each language, this model was then used 
to generate 10 artificial lexica, all matched for the total number of 
words as well as the distribution of word lengths. For example, if the 
real lexicon has 5000 monosyllabic words, then each of the artificial 
lexica will also have 5000 monosyllabic words. Furthermore, the dis-
tribution of sounds within and across those words will approximate the 
phonotactics of the real language. These artificial lexica had no con-
straints regarding homophones, reflecting a general tolerance for am-
biguity; however, they also did not contain a parameter biasing them 
towards the reuse of existing wordforms. Each artificial lexicon thus 
represents one answer to the questions: 1) how much homophony can 
be expected to emerge in a lexicon as a function of just the real, ob-
served phonotactic regularities and the real, observed distribution of 
word lengths; and 2) where should we expect to find the largest con-
centrations of homophony as a function of these factors? They thus 
serve as a baseline characterization of the effects of indirect causes of 
homophony. Comparing the real lexica to these artificial ones reveals 
how much more or less homophony the real languages display—and 
how much more or less concentrated it is—than would be expected 
without any direct pressure for or against homophony.2 

Note that these artificial lexica are not intended to serve as plausible 
models of lexicon formation and change. Rather, as described above, 
they serve as statistical baselines in the attempt to understand which 
theoretical parameters are necessary to explain the existence and dis-
tribution of homophony in real lexica. For this reason, the artificial 
lexica are parameterized solely by each particular language's phono-
tactics and distribution of word lengths. 

The data and code to reproduce these analyses can be found on 
GitHub (https://github.com/seantrott/homophone_simulations). 

2 Note that our statistical models do not include a measure of frequency, even 
though this is included in the original model built in Piantadosi et al. (2012). 
This is because it would not be meaningful to estimate frequency for the words 
in the artificial lexica. 
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2. Current work 

2.1. Materials and methods 

2.1.1. Data 
The English, German, and Dutch lexica were sourced from the 

CELEX lexical database (Baayen et al., 1995). For French, we used the 
French Lexique (New, Pallier, Brysbaert, & Ferrand, 2004). For Japa-
nese, we used the Japanese CallHome Lexicon (Kobayashi et al., 1996). 
We restricted our analysis to lemma-only forms. Additionally, following  
Piantadosi et al. (2012), we also excluded any words containing spaces, 
hyphens, or apostrophes. This resulted in 41,887 entries for English 
(with 35,107 unique phonological forms), 51,719 entries for German 
(with 50,435 unique phonological forms), 67,477 entries for Dutch 
(with 65,260 unique phonological forms), 47,782 entries for French 
(with 37,278 unique phonological forms), and 51,147 entries for Ja-
panese (with 40,449 unique phonological forms). As in Piantadosi et al. 
(2012), words with multiple parts of speech were counted as homo-
phones.3 

2.2. Methods 

2.2.1. Estimating number of syllables 
Our primary determinant of word length was Number of Syllables 

(or Number of Morae, in the case of Japanese; see below). While the 
real lexica annotated this information for each lexical entry, it had to be 
estimated for the artificial lexica. To ensure a fair comparison, we ap-
plied the same estimation procedure to wordforms in the real lexica and 
wordforms in the artificial lexica. 

For English, Dutch, German, and French, Number of Syllables was 
estimated by counting the number of vowels occurring in a wordform's 
phonetic transcription. The set of possible vowel characters for a given 
language was transcribed by hand and can be found on the project's 
GitHub page.4 

Since Japanese has been characterized as a mora-timed, rather than 
syllable-timed language (Port, Dalby, & O'Dell, 1987), we calculated 
Number of Morae instead of Number of Syllables. In addition to 
counting the number of vowels in a Japanese wordform, we counted the 
number of nasal codas, as well geminate consonants (e.g., “kk” in 
Hokkaido, or “gg” in doggu). It should be noted that the results we report 
below––both the replication of Piantadosi et al. (2012), and the com-
parison to the artificial lexica––are qualitatively similar whether word 
length in Japanese is estimated using Number of Syllables or Number of 
Morae. 

2.2.2. Counting number of homophones 
Following Piantadosi et al. (2012), we defined Number of Homo-

phones as the number of lexical entries with an identical phonological 
form as some target entry.5 This means the smallest possible value for 
Number of Homophones would be 0 (i.e., there are no other words with 
the same form in a given lexicon), and the largest possible value would 
be one less than the size of the lexicon (i.e., all words share the same 
form). 

After identifying the number of homophones for each entry in a 
lexicon, we reduced each lexicon to the set of unique phonological 
wordforms (e.g., the 41,887 entries in English were reduced to 35,107 
unique forms). 

2.2.3. Building the phonotactic model 
In order to estimate the phonotactic plausibility of wordforms in a 

lexicon, as well as to generate phonotactically plausible novel word-
forms (see below), it was first necessary to model the phonotactics of 
each language. We adapted the procedure used in Dautriche et al. 
(2017),6 which is described briefly below. 

The phonotactics of a target language can be learned by observing, 
for all wordforms in that language, which phonemes appear in what 
position and in what sequence. Specifically, an n-phone model calcu-
lates the probability of observing some phoneme in position i given the 
previous n-1 phonemes. For example, a 2-phone (biphone) model would 
condition the probability of observing some phoneme as a function of 
the previous phoneme, i.e., p(Xi | Xi-1). We included special symbols for 
the START and END of a word so that the model would also learn which 
phonemes are most likely to begin and end a word in a given language. 
Note that unlike Piantadosi et al. (2012), these models were trained 
using the set of unique types (i.e., wordforms), rather than tokens (i.e., 
the actual instances of each wordform); this is because training on to-
kens conflates phonotactic probability with frequency. This is analo-
gous to the main approach taken in Dautriche et al. (2017). 

While previous work (Dautriche et al., 2017) found that a 5-phone 
model effectively captured phonotactic dependencies in English, Dutch, 
German, and French, we sought to independently determine the op-
timal n for each language, particularly because Japanese has notably 
shorter syllables than the other four languages. To do this, we followed 
a similar procedure as reported in Dautriche et al. (2017) and Futrell, 
Albright, Graff, and O'Donnell (2017). For each real lexicon, we first 
extracted the set of unique wordforms (e.g., 35,107 wordforms in 
English), then performed a series of train/test splits (75% train, 25% 
test). For each split, we trained a series of n-phone models ranging from 
n = 1 to n = 6 on the wordforms in the training set, then evaluated the 
probability of wordforms in the held-out test set. The basic motivation 
for this approach is as follows: the optimal n-phone model for a lan-
guage's phonotactics should be the model that, when trained on a set of 
real wordforms, maximizes the probability of held-out wordforms that 
also appear in that lexicon. Following Futrell et al. (2017), we ran a 
series of one-tailed two-sample t-tests on the set of log-likelihoods of 
held-out wordforms obtained from each successive n-phone mod-
el––i.e., the log-likelihoods obtained from the 2-phone model were 
compared to the 1-phone model, those from the 3-phone model were 
compared to the 2-phone model, and so on. The optimal n for a given 
lexicon was the smallest n that represented a significant improvement 
over the n-1 model for the same set of wordforms. Note that log10 was 
used to calculate log likelihoods (and subsequently, surprisal); the re-
sults are not qualitatively different when using log2 instead. 

The mean log-likelihood calculated for held-out wordforms in each 
language are visualized in Fig. 1 below. Critically, we found that for 
English, Dutch, and German, the 5-phone model represented a sig-
nificant improvement over the 4-phone model. That is, held-out 
wordforms were significantly more likely under the 5-phone model 
than the 4-phone model for English (t = 4.05, p  <  .001), Dutch 
(t = 3.55, p  <  .001), and German (t = 7.31, p  <  .001). However, the 
6-phone model either did not improve or actually decreased model fit 
(suggesting overfitting) in each language (all t ≤ 0). The 4-phone 
model was optimal for French (t = 8.67, p  <  .001) and Japanese 
(t = 4.08, p  <  .001). Thus, a 5-phone model was used to evaluate the 
probabilities of wordforms in English, Dutch, and German (and 

3 Importantly, this should only serve to inflate the estimated amount of 
homophony in naturally-occurring languages relative to the amount of homo-
phony in the artificial lexica. Thus, it would actually work against the effects 
reported below (i.e., the artificial lexica exhibiting more homophony than the 
real lexica). 

4 Link: https://github.com/seantrott/homophone_simulations. 
5 As pointed out by an anonymous reviewer, it is possible that the lexical 

resources we used, including CELEX, count as homophony some meanings that 
are actually polysemous. If this is the case, our estimates of homophony should 
actually be inflated for the real lexica, which would work against the effects 
reported below (i.e., the artificial lexica displaying higher incidences of 
homophony overall). 

6 Link to GitHub associated with Dautriche et al. (2017): https://github.com/ 
SbllDtrch/NullLexicons. 
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generate artificial lexica for those languages), and a 4-phone model was 
used for French and Japanese. 

This model allows us to evaluate the probability of a given word-
form, which can be defined as the product of all the transitional 
probabilities between each phoneme in that wordform (including the 
start and end symbols). The Surprisal of a given wordform is thus de-
fined as the negative log probability of observing that particular se-
quence of phonemes: Surprisal(word) = −log(p(word)). As in  
Piantadosi et al. (2012), we normalized this measure to the number of 
phonemes in a word to ensure that surprisal could be compared across 
words of different length: Normalized Surprisal = Surprisal(word) / 
Length(word). 

Once the model was built for each language, it was then used to 
generate novel wordforms in an iterative manner. For each word, the 
model began with the START symbol, then generated a phoneme con-
ditioned on that start symbol (i.e., one of the phonemes likely to occur 
at the beginning of the word). The next phoneme was then conditioned 
on the first phoneme and the START symbol, and so on, until the model 
produced the END symbol, signaling the end of the word. 

Finally, as in Dautriche et al. (2017), we assigned non-zero prob-
ability to unobserved phoneme sequences using an identical smoothing 
procedure; they report that “optimal smoothing was obtained with 
Laplace smoothing with parameter .01” (pg. 132), so this was the value 
we used in configuring the phonotactic model. 

2.2.4. Generating artificial lexica 
We generated 10 artificial lexica for each real lexicon. First, we 

identified the number of words in the real lexicon, as well as the dis-
tribution of their lengths, as measured by Number of Syllables (see 
above for the estimation procedure). Each artificial lexicon was con-
strained to have the same overall number of words (not wordforms) as 
the corresponding real lexicon, as well as the same distribution of word 
lengths. For example, since the real English lexicon has 7706 mono-
syllabic words, each artificial English lexicon was also constrained to 
have 7706 monosyllabic words. 

We then built a phonotactic model for the real lexicon as described 
above, and used this model to generate wordforms for each artificial 
lexicon. For each potential wordform, we estimated the Number of 
Syllables to determine whether to add it to the artificial lexicon––e.g., if 
the word had 1 syllable and the artificial lexicon still had fewer 
monosyllabic words than the real lexicon, the word was added to the 

lexicon; otherwise, it was discarded. No other constraints were placed 
on the generation of wordforms; we allowed the model to generate real 
wordforms, as well as wordforms that were homophonous with word-
forms already in the lexicon. This process continued until the artificial 
lexicon had the same number of words of each length as the real lex-
icon. 

Note that the models used to generate the artificial lexica were 
trained on the entire set of unique wordforms for the target lexicon; 
however, qualitatively similar results were obtained using a 50/50 split 
of the target lexicon to generate and evaluate wordform phonotactic 
probability (see Supplementary Analysis 5). 

2.3. Results 

2.3.1. Replication and extension of previous findings 
First, we replicated the primary analysis reported by Piantadosi 

et al. (2012) on the real lexica of English, Dutch, and German, and 
extended this analysis to two non-Germanic languages: French and 
Japanese. Using a Poisson regression, we asked whether a wordform's 
#Homophones (the number of additional, distinct meanings) was re-
lated to its length in syllables (#Syllables) and its phonotactic plausi-
bility (Surprisal). As in Piantadosi et al. (2012), we used the Normalized 
Surprisal measure described above, obtained by dividing a wordform's 
Surprisal by its length in phones. 

We found significant, negative relationships in the real lexica be-
tween #Homophones and #Syllables (or #Morae7 in Japanese) for 
English [β = −0.72, SE = 0.03, p  <  .001], German [β = −0.69, 
SE = 0.04, p  <  .001], Dutch [β = −1.11, SE = 0.03, p  <  .001], 
French [β = −0.35, SE = 0.02, p  <  .001], and Japanese [β = −1.01, 
SE = 0.01, p  <  .001]. That is, for all five languages, shorter word-
forms were more likely to have more homophones––consistent with the 
notion that lexica recycle short wordforms for multiple meanings. 

However, we found positive8 relationships between Normalized 
Surprisal and #Homophones across all real languages but Japanese, 
i.e., less phonotactically plausible wordforms (as measured by a 5- 
phone model or 4-phone model, as appropriate) were more likely to 
have more homophones. This was true for English [β = 0.78, 
SE = 0.03, p  <  .001], German [β = 0.86, SE = 0.06, p  <  .001], 
Dutch [β = 0.997, SE = 0.04, p  <  .001], French [β = 0.73, 
SE = 0.04, p  <  .001], but not Japanese [β = 0.0004, SE = 0.031, 
p = .99]. This is in contrast to the original result reported by Piantadosi 
et al. (2012), who found a negative relationship between Normalized 
Surprisal and #Homophones in German and Dutch. 

There are several possible explanations for the disparity between 
our results and those of Piantadosi et al. (2012). First, while Piantadosi 
et al. (2012) used a 3-phone model to determine phonotactic plausi-
bility, we used 4-phone and 5-phone models to estimate wordform 
probability, which were found to improve model fit over a 3-phone 
model (see Fig. 1). Second, our models were trained using lexical types, 
as opposed to tokens (which would conflate frequency with phonotactic 
probability). And third, our estimates were not calculated using held- 
out wordforms, as they were in Piantadosi et al. (2012). This final ex-
planation is explored in Supplementary Analysis 3; using 10-fold cross- 
validation to obtain our surprisal estimates, we found that the coeffi-
cients for Normalized Surprisal were closer to 0 for all the real lexica, 
and negative in Japanese. Thus, a likely reason for the disparity is that 

Fig. 1. Mean log-likelihood of held-out wordforms for each n-phone model, 
across languages. Higher values (i.e., less negative) indicate higher probability 
under that model. For English, Dutch, and German, increasing n up to 5 sig-
nificantly improved model fit over the 4-phone model; a 6-phone model did not 
improve fit. For French and Japanese, a 4-phone model was the highest n re-
presenting an improvement over the (n-1) model. 

7 Like syllables, a mora is a unit of timing, and is usually considered the basis 
of the sound system in Japanese. A single mora in Japanese is constituted by a 
vowel (or an onset and a vowel); nasal codas also constitute a separate mora, as 
does the first part of a geminate consonant. 

8 Note that negative relationships were obtained between the non-normalized 
Surprisal measure and Number of Homophones across each language; these 
results are described in Supplementary Analysis 2. However, this non-normal-
ized Surprisal measure conflates phonotactic plausibility with word length, 
which is why Normalized Surprisal may be a better measure overall. 
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the surprisal estimates given here were not calculated using held-out 
wordforms. 

However, the central question of the current work concerns the 
comparison between the real and artificial lexica. The results of these 
comparisons are described in detail below, both concerning the 
amount of homophony across the real and artificial lexica, as well as 
where those homophones are concentrated. 

2.3.2. Simulated lexica exhibit higher upper-bounds on homophony 
We operationalized the amount of homophony in three ways. First, 

we measured the Maximum Number of Homophones per word-
form––that is, in a given lexicon, how many homophones does the most 
homophonous wordform have? Second, we measured the Mean 
Number of Homophones per wordform. And third, we measured 
Homophony Rate: how many wordforms in a lexicon have at least 1 
homophone? In all cases, more positive values reflect a greater amount 
of homophony. For each measure in each language, we compared the 
distribution of values obtained from the simulated lexica to the value in 
the real lexicon. This enabled us to ask the question: to what extent can 
the amount of homophony in a language be attributed to a selective 
pressure for lexical ambiguity, as opposed to an emergent outcome of a 
language's phonotactics and distribution of word lengths? Note that for 
all of these measures, the values obtained for the real and artificial 
lexica were significantly different9 (p  <  .001), except where noted 
otherwise. 

Across all five languages, the simulated lexica had a significantly 
larger Maximum Number of Homophones on a single wordform (see  
Fig. 2 below). For example, the most homophonous wordforms in the 
real English lexicon had at most 7 homophones, while the most 
homophonous wordforms in the simulated English lexica had anywhere 
from 17 to 28 homophones (M = 19.8, SD = 3.3). This difference was 
particularly stark for Dutch: the most homophonous wordform in the 
Dutch lexicon had 5 homophones, while the maximum number of 
homophones per wordform in the simulated lexica ranged from 72 to 
116 (M = 97.1, SD = 15.13). 

As expected, there was considerable variability across the five lan-
guages in how much homophony was tolerated per wordform. For ex-
ample, the real Japanese lexicon exhibited a much higher upper-bound 
on homophony (33) than the real German lexicon (4); this is not sur-
prising, given the limited syllable inventory of Japanese (on the order 
of 100 possible syllables) relative to German (over 1000 possible syl-
lables, conservatively). Importantly, however, the simulated Japanese 
lexica still had more homophones per wordform than their real coun-
terpart, ranging from 71 to 92 (M = 81.6, SD = 6.67). In other words, 
despite inter-linguistic variability, the simulated lexica in each lan-
guage all exhibited higher upper-bounds on how much homophony was 
tolerated for a given wordform––the most homophonous wordforms 
were considerably more ambiguous, sometimes by an order of magni-
tude (e.g., in Dutch). 

Similarly, with the exception of Japanese (p = .5), wordforms in the 
simulated lexica had a significantly larger Mean Number of 
Homophones than wordforms from their real counterparts (see Fig. 3 
below for an illustration); in Japanese, the Mean Number of Homo-
phones per wordform was at least as high in the artificial lexica as it 
was in the real lexicon.10 For example, wordforms in English have on 

average 0.19 homophones; in contrast, the average number of homo-
phones per wordform in the simulated English lexica ranged from 0.22 
to 0.23 (M = 0.22, SD = 0.003). Again, there was considerable inter- 
linguistic variability; wordforms in the real Japanese lexicon have more 
homophones on average (0.26) than wordforms in the real German 
lexicon (0.02). However, in each language, the average number of 
homophones per wordform was at least as large in the simulated lexica 
as the real counterparts––and for four of the five languages, wordforms 
in the simulated lexica were, on average, more ambiguous than those in 
the real lexica. 

The results for the Homophony Rate (i.e., the proportion of word-
forms with at least one homophone) across real and simulated lexica 
were more mixed (see Fig. 4 below). 

In two languages (German and Dutch), the simulated lexica had 
significantly more homophonous wordforms, sometimes by a factor of 
2× or 3×; for example, the homophony rate in the real Dutch lexicon 
was 0.03, while the rate in the simulated lexica ranged from 0.108 to 

Fig. 2. For each language, the most homophonous wordforms in the artificial 
lexica (shown by the violin plots) have more homophones than the most 
homophonous wordforms in the real lexica (shown by the orange dots). The 
artificial lexica uniformly exhibit a higher upper-bound (Maximum Number of 
Homophones) on homophony. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. In every language but Japanese, wordforms in the artificial lexica 
(shown by violin plots) have more homophones (Mean Number of 
Homophones) on average than wordforms in the real lexica (shown by orange 
dots). In Japanese, the Mean Number of Homophones per wordform is at least 
as high in the artificial lexica (M = 0.27, SD = 0.002) as the real lexica (0.26). 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

9 Significance was determined by comparing a given test statistic for the real 
lexicon treal to the corresponding distribution of test statistics obtained from the 
artificial lexica, Tartificial. Each of these values was centered according to the 
mean of Tartificial, denoted here as T′artificial and t′real. We then conducted a two- 
tailed significance test, i.e., calculating the proportion of values in |T′artificial| 
that were greater than or equal to |t′real|. This proportion corresponds to a p- 
value; e.g., if all the values in |T′artificial| are less than |t′real|, p = 0. 

10 Note that for Japanese, the Mean Number of Homophones per wordform is 
actually higher in the artificial lexica than the real lexicon with the use of a 5- 
phone model, rather than a 4-phone model. 
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0.11 (M = 0.11, SD = 0.0004). On the other hand, the Homophony 
Rate in the real English lexicon (0.156) was significantly higher than 
the rate the simulated lexica (M = 0.143, SD = 0.002); similarly, the 
Homophony Rate for the real French and Japanese lexica were sig-
nificantly higher than that for the artificial lexica. 

Together, these results suggest that the amount of homophony in 
the five real lexica is not the result of a direct pressure for ambiguity. In 
fact, the real lexica actually display less homophony than the artificial 
ones in some measures, particularly the upper-bound of homophones 
tolerated for a given wordform and the mean number of homophones 
per wordform. This means that merely the pressure for highly probable 
phonotactic sequences, combined with the observed distribution of 
word lengths, can produce concentrations of homophony in a lexicon 
that are as dense or denser than in real lexica, without a direct pressure 
to recycle entire wordforms. 

2.3.3. Simulated lexica exhibit more efficient reuse of optimal wordforms 
We then asked whether homophones were more concentrated in 

optimal regions of phonotactic space in the simulated lexica or their 
real counterparts. That is, to what extent do the phonotactics of a 
language, as well as its distribution of word lengths, account for the 
finding that more optimal wordforms tend to have more homophones? 

In order to assess the degree to which homophony was optimally 
distributed in a lexicon, we regressed a wordform's #Homophones 
against two operationalizations of wordform optimality: its length 
(#Syllables) and its phonotactic plausibility (Normalized Surprisal). For 
each lexicon, we extracted the following information from the model: 
1) pseudo-R2, as a measure of overall model fit; 2) the coefficient for 
#Syllables; and 3) the coefficient for Normalized Surprisal. A larger, 
more positive value for (1) reflects more efficient reuse overall, and 
more negative values for (2) and (3) reflect more efficient reuse along 
those particular dimensions of wordform optimality. Then, for each 
language, we compared each of these test statistics from the real lexicon 
to the distribution of test statistics obtained from the corresponding 
simulated lexica. The significance for each of these comparisons was 
assessed in the same way as above. All of the comparisons described 
revealed significant difference. To preview the overall finding, in all 
cases, the simulated lexica exhibited stronger effects (i.e., more opti-
mally distributed wordforms) than their real counterparts. 

Across all five languages, the distribution of pseudo-R2 values ob-
tained from the simulated lexica was significantly higher than the 
pseudo-R2 value from the real lexicon (see Fig. 5 below). Pseudo-R2 

reflects a model's goodness-of-fit, i.e., how well the predictors in a 
model explain variance in the dependent variable. Thus, this indicates 
that two operationalizations of wordform optimality––its length, and its 
phonotactic plausibility––were better predictors of homophony across 
all of the simulated lexica than their real counterparts, for each lan-
guage. For example, the pseudo-R2 for the model constructed on the 
real English lexicon was 0.143, while the mean for the simulated lexica 
was 0.17 (SD = 0.004). Some differences were even starker: the 
pseudo-R2 for the real German lexicon was 0.09, while the distribution 
of pseudo-R2 values for the simulated German lexica averaged more 
than twice that (M = 0.231, SD = 0.003). Concretely, this means that 
homophony is better predicted by wordform optimality in the artificial 
than real lexica. 

Further evidence comes from direct comparison of the coefficients 
for both predictors (Number of Syllables and Surprisal) across the real 
and artificial lexica. As reported earlier, the real lexica all exhibited 
negative relationships between Number of Syllables and Number of 
Homophones––i.e., short wordforms have more homophones in all five 
languages. However, the simulated lexica exhibited significantly 
stronger relationships, as depicted in Fig. 6 below. 

Fig. 4. The artificial Dutch and German have a higher proportion of wordforms 
with at least one homophone (shown by the violin plots) than their real 
counterparts (shown by the orange dots). However, the artificial French, 
Japanese, and English artificial lexica have lower Homophony Rates than the 
real lexica. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 

Fig. 5. We built a series of Poisson regression models predicting #Homophones 
from #Syllables and Normalized Surprisal. In each language, the models con-
structed for the artificial lexica (shown by violin plots) exhibit better model fit 
(larger pseudo-R2) than the models constructed for the real lexicon (shown by 
orange dots). (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 

Fig. 6. Word length (as measured in #Syllables) is a better predictor of 
homophony in the artificial lexica (shown by the violin plots) than the real 
lexica (shown by orange dots). (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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For example, the coefficient for Number of Syllables in the real 
English lexicon was −0.717, but the coefficients for the simulated 
English lexica were approximately twice as large (M = −1.4, 
SD = 0.02). In some cases, the difference was even larger, as in French: 
here, the coefficients for the simulated lexica (M = −1.77, SD = 0.02) 
were approximately five times as large as the coefficient for the real 
lexicon (−0.35). 

Even more striking results were obtained for Surprisal: the real 
lexica actually exhibited positive relationships between Surprisal and 
Number of Homophones, while the artificial lexica all demonstrated 
negative relationships (see Fig. 7); these differences were significant for 
each language. In other words, the artificial lexica reused short, pho-
notactically plausible wordforms to a greater extent than did their real 
counterparts. 

3. General discussion 

In the current work, we asked whether the prevalence of homo-
phony across five languages––English, German, Dutch, French, and 
Japanese––could be plausibly attributed to a direct pressure to recycle 
optimal wordforms. We reasoned that even without a direct pressure for 
ambiguity, an absence of a pressure against ambiguity should result in 
some amount of homophony in a lexicon, simply as a result of a lan-
guage's phonotactic constraints and the distribution of words across 
different lengths. Under this view, the selective pressure is for well- 
formed phonotactic sequences as opposed to entire wordforms; the 
pressure to use well-formed sequences could result in homophony, 
particularly for the most phonotactically probable wordforms. 
Furthermore, given that the proportion of occupied phonotactic space 
will always be highest for short wordforms, homophony should also be 
most likely to occur in short words. 

We tested this view by simulating a series of artificial lexica for each 
of the five languages. Across all five languages, we found that word-
forms in the real lexica had either fewer or an equivalent number of 
homophones on average as wordforms in the artificial lexica (in every 
language but Japanese, wordforms in the artificial lexica were more 
ambiguous on average than those in the real lexica (see Fig. 2)). The 
real lexica also uniformly exhibited lower upper-bounds on the number 
of homophones tolerated per wordform (see Fig. 3). This was true de-
spite considerable cross-linguistic variability in the propensity towards 
homophony overall (e.g., Japanese vs. Dutch); in each language, the 
artificial lexica surpassed their real counterparts in terms of the degree 

to which a wordform could be saturated with many meanings. The main 
exception to this trend was Homophony Rate (the proportion of 
wordforms with at least one homophone): for English, French, and 
Japanese (but not German and Dutch), the real lexica had higher 
Homophony Rates than the artificial lexica. This will be discussed in 
more detail below. Finally, statistical analyses of where these homo-
phones were distributed revealed that homophones in the real lexica 
were concentrated less efficiently in “optimal” regions of phonotactic 
space: across all languages, word length and phonotactic plausibili-
ty––taken as operationalizations of wordform optimality––were better 
predictors of homophony in the artificial lexica than the real lexica (see  
Figs. 5–7). 

There are two conclusions to be drawn from these results. First, 
neither the amount of homophony in these five real languages, nor the 
apparent concentration of homophones among optimal regions of 
phonotactic space, requires explanation by a direct pressure to recycle 
entire wordforms. Rather, homophony appears to be a natural and 
perhaps inevitable consequence of other features of a language––i.e., its 
phonotactics and distribution of word lengths. Of course, these features 
may themselves be related to efficiency, as noted in the 
Introduction––but indirectly so. 

Second, real lexica may actually be the product of a pressure against 
homophony. The artificial lexica were modeled using only two para-
meters: the phonotactics of the target lexicon and a particular dis-
tribution of word lengths. They were not designed to explicitly select for 
homophony, nor did they contain a parameter selecting against homo-
phony. In other words, they reflect the consequence of allowing the 
phonotactics of a language to determine its space of realized word-
forms, under the assumption that the speakers of that language place no 
upper limit on how many homophones are tolerated per wordform. This 
resulted in considerably more homophones per wordform than ob-
served in real languages. For example, wordforms in the real Dutch 
lexicon had at most 5 homophones, whereas the average upper-bound 
in the Dutch lexica was 97––more than 16 times as high. Furthermore, 
homophony in the artificial lexica was more likely to be found among 
more optimal wordforms. 

One explanation for this result is that real lexica are subject to a 
pressure against oversaturating the same wordform with too many un-
related meanings––no matter how “optimal” it is. Clearly this pressure 
is not absolute: homophony does still exist (to varying degrees) in real 
languages––and in fact, some languages (French, English, and 
Japanese) had a higher proportion of wordforms with at least one 
homophone than their artificial counterparts. This suggests that the 
pressure is not against the existence of homophony per se, but rather, 
could reflect a constraint on the extent to which any given wordform 
can be saturated with distinct, unrelated meanings. Assigning too many 
unrelated meanings to the same signal could impede communication or 
learning (Casenhiser, 2005; though see Dautriche et al., 2018), and may 
thus be selected against. Such a pressure against oversaturation is 
roughly analogous to what others have termed diversification (Zipf, 
1949) or a pressure for clarity (Piantadosi et al., 2012). However, unlike  
Zipf (1949), we find no opposing pressure towards unification; instead, 
homophony appears to emerge naturally as a function of other pres-
sures (e.g., phonotactics), and is attenuated in particular wordforms 
(i.e., it does not reach the potential predicted by that wordform's 
phonotactics) due to a pressure against oversaturation. 

There are a number of explanations for how this direct or indirect 
pressure against over-saturation might come about. For example, the 
attenuation of homophony could manifest as a kind of smoothing of 
high-probability phoneme sequences across phonological neighbor-
hoods as opposed to being concentrated in a specific wordform. (A 
wordform's neighborhood is the set of wordforms differing from it in 
only one phoneme.) This could satisfy the pressure to reuse well-formed 
phonotactic sequences while also avoiding potential impediments to 
communication caused by overloading the same high-probability 
wordform with too many meanings. 

Fig. 7. Phonotactic Surprisal was more negatively correlated with Number of 
Homophones (i.e., more probable wordforms had comparatively more homo-
phones) in the artificial lexica (shown by violin plots) than real lexica (shown 
by orange dots). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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This account leads to testable predictions. If real lexica are subject 
to this smoothing process, they should have larger phonological 
neighborhoods than the artificial lexica, which were placed under no 
pressure against ambiguity. Indeed, previous work using an identical 
generative model (Dautriche et al., 2017) found exactly this: across four 
languages (English, German, Dutch, and French), real lexica exhibit 
more “clumpiness” (i.e., larger and more densely connected neighbor-
hoods) than ought to be expected merely as a function of those lan-
guages' phonotactics. We extended a subset of their analyses to the set 
of artificial lexica we constructed, counting as “neighbors” any two 
wordforms that could be converted into each other via one phoneme 
substitution, deletion, or insertion (Dell & Gordon, 2003; Luce & Pisoni, 
1998; Vitevitch & Luce, 1999). Under this definition of neighbor, the 
neighbors of the word cat would include rat (substitution), at (deletion), 
and cast (insertion). Consistent with prior work, and despite a different 
operationalization of neighborhoods from Dautriche et al. (2017), we 
found that wordforms in the real lexica had larger average neighbor-
hood sizes than wordforms in the artificial lexica (see Fig. 8 below). For 
example, wordforms in the real English lexica averaged 2.56 neighbors, 
whereas the mean neighborhood sizes in the artificial English lexica 
ranged from 2.23 to 2.32 (M = 2.28, SD = 0.03). This result is the 
inverse of our finding regarding homophony––wordforms in the artifi-
cial lexica have more homophones on average than wordforms in the 
real lexica. In other words, the artificial lexica appear to optimize for 
dense concentrations of homophony, while the real lexica appear to 
optimize for larger neighborhoods. This apparent trade-off can also be 
illustrated by comparing both the rank-distribution of homophone 
counts and rank-distribution of neighborhood sizes across the real and 
artificial lexica (see Fig. 9). 

Taken together, these findings are broadly consistent with the hy-
pothesis that real lexica could be subject to a pressure against over-
saturating the same wordform with too many meanings, and this se-
lection against homophony could instead result in the creation of lexical 
neighbors. Of course, a similar effect could be achieved not through 
selection against high levels of homophony but rather from a positive 
pressure towards large neighborhoods, i.e., a “clumpy” lexicon. As  
Dautriche et al. (2017) argue, dense lexical neighborhoods may have 
many beneficial consequences, e.g., for word learning (Coady & Aslin, 

2003; Storkel, Armbrüster, & Hogan, 2006; though see also Swingley & 
Aslin, 2007) and word production (Vitevitch, 2002; Vitevitch & 
Sommers, 2003). It is impossible to know from the current work whe-
ther the disparity between the real and artificial lexica is due to a direct 
pressure in real lexica against oversaturation that results in dense 
neighborhoods, or a positive selection for dense neighborhoods that 
results in less homophony. Future work could explore this potential 
trade-off at both the psychological level of explanation (e.g., whether 
learners make errors when learning homophones that lead to the 
creation of near neighbors), and by simulating such pressures during 
the lexicon generation process (e.g., whether a direct pressure in favor 
of large neighbors reduces the number of homophones, or whether a 
direct pressure against over-saturation increases neighborhood size). 

Homophones could conceivably be reduced in real lexica through 
other, more indirect mechanisms as well. Notably, many human lan-
guages have rich morphological structure, allowing them to flexibly 
combine existing morphemes to construct novel meanings. While the 
real lexica we analyzed excluded wordforms derived via inflectional 
morphology, they did not exclude derivational morphology (e.g., 
adding the suffix -ify to the adjective humid creates the verb humidify; 
adding the suffix -ness to the adjective happy creates the noun happi-
ness). Morphological compositionality allows speakers to convey new 
meanings without coining entirely new wordforms––but it also avoids 
the need to reuse existing wordforms for new, unrelated meanings (i.e., 
homophony). Thus, compositionality represents an efficient mechanism 
for recycling existing lexical materials that also avoids outright ambi-
guity. Clearly, wordforms in the artificial lexica were not constructed 
via processes of morphological composition. Future work could also 
explore whether parameterizing these artificial lexica according to the 
morphology of the underlying real lexicon would decrease the overall 
homophony, and if so, how. (See Supplementary Analysis 4 for further 
exploration of the relationship between derivational morphology and 
homophony in real lexica.) 

In addition to real lexica exhibiting a lower upper-bound on 
homophony overall, we found that their homophones were less opti-
mally distributed––that is, homophones were much more concentrated 
among short, phonotactically likely wordforms in the artificial lexica 
than in their real counterparts. This result is surprising on its face: why 
do real lexica apparently prefer (at least relative to the phonotactic 
baselines) to distribute their homophones across less optimal regions of 
the lexicon? Even if real lexica select against over-saturation, intuition 
suggests that the homophones that are preserved should be con-
centrated among short, phonotactically likely wordforms. One possible 
explanation for this result is that the pressures that ordinarily select 
against homophony are reduced for longer wordforms––there are at 
least two accounts as to why this may be the case. The first account is 
that longer wordforms might be more contextually discriminable than 
short wordforms and are thus more likely to be preserved in the lexicon. 
If this is true, the distinct senses of homophonous wordforms should be 
better disambiguated by contextual cues (e.g., some representation of 
the linguistic context) for longer wordforms. The second account holds 
that because longer wordforms are comparatively less common than 
short wordforms, they require less frequent disambiguation. Even if 
longer wordforms are no more contextually discriminable than short 
wordforms, they are encountered less often. If a frequent need to dis-
ambiguate is one of the factors that selects against homophony––e.g., 
because disambiguation may incur processing costs, no matter how 
marginal––homophones should be relatively more likely to be preserved 
among infrequent wordforms than frequent ones. Note that this does 
not predict that short wordforms have less homophones overall; past 
work (Piantadosi et al., 2012) has shown empirically that this is not the 
case. Rather, the penalty against accruing multiple meanings will be 
proportionately less for longer, less frequent wordforms. Therefore, less 
frequent wordforms should experience less of a reduction in their pro-
jected homophony (relative to their phonotactics) than more frequent 
ones. 

Fig. 8. Consistent with previous work (Dautriche et al., 2017), wordforms in 
the real lexica (shown by orange dots) have larger lexical neighborhoods (i.e., 
the set of words differing in exactly one phoneme) on average than wordforms 
in the artificial lexica (shown by violin plots). Note that this is true even in 
French, where the values are closest: wordforms in the real French lexicon have 
2.71 neighbors on average, whereas wordforms in the artificial lexica have 
approximately 2.66 neighbors on average (SD = 0.02). (For interpretation of 
the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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As noted above, the artificial lexica are intended as statistical 
baselines to determine which theoretical parameters are required to 
explain homophony, not as models of the many other pressures that real 
lexica are subject to. Thus, our work does not elucidate the develop-
mental or historical mechanisms by which homophones arise, nor the 
processes by which they might be selected against or be preserved in a 
lexicon. There are a number of known sources of homophony in real 
lexica, including sound change and lexical borrowing (Ke, 2006; Ogura 
& Wang, 2006). Despite some debate about the extent to which 
homophony-generating sound changes are avoided (Sampson, 2013;  
Sampson, 2015; Wedel, Kaplan, & Jackson, 2013; Yin & White, 2018), 
there are many attested examples of phoneme losses and mergers re-
sulting in homophony, such as knight and night in English, or as a 
consequence of the many phoneme mergers experienced in Middle 
Chinese (Ke, 2006; Sampson, 2013; Sampson, 2015). Similarly, lexical 
borrowing can lead to homophony; for example, the English words sheik 
and chic were both borrowed from different languages at different time 
points (16th century Arabic vs. 19th century French, respectively), and 
both have an identical phonological form (Ke, 2006). A satisfying ex-
planation of homophony at a mechanistic level should incorporate 
these generative processes––i.e., the mutations by which potential 
homophones are introduced into a lexicon. Such a model should also 
predict which potential homophones will be selected against (and what 
form this selection process takes, i.e., whether it is via the avoidance of 
homophony-inducing mergers (Wedel et al., 2013; Yin & White, 2018) 
or something else) and which will be preserved. Homophones should be 
more likely to survive in a lexicon if their meanings are systematically 
made sufficiently discriminable by context (Dautriche et al., 2018). A 
better understanding of this process would also yield insights into 
which sources of contextual information human speakers and compre-
henders routinely sample and deploy for disambiguation, and therefore 
influence language change. 

We began by asking why a system that appears to be optimized for 
efficient communication (Gibson et al., 2019) contains apparently in-
efficient properties such as lexical ambiguity. A series of simulations 
suggests no evidence for a direct selection pressure in favor of homo-
phones. Rather, the concentration of homophony among short, high- 
probability wordforms can be explained purely as a function of a lan-
guage's phonotactics and distribution of word lengths, which perhaps 
themselves are the result of a pressure for efficiency. In fact, real lexica 
may even select against dense concentrations of homophony. We have 
suggested one mechanism: they might “smooth out” high-probability 
phonotactic sequences across lexical neighborhoods instead of 

concentrating these sequences in a single wordform. The product is 
lexica that are slightly less optimal in phonotactic terms but may better 
conform to other requirements of humans who need to use them. 
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