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Abstract

Words in human languages cluster together in phonologi-
cal neighborhoods more closely than would be expected by
chance. But why? One explanation is that large neighbor-
hoods are directly selected for, possibly because they scaffold
word learning and production. But it’s also possible that they
emerge as a byproduct of other constraints or selection pres-
sures operating over real lexica. We advance one such selec-
tion pressure as a candidate explanation. A pressure to avoid
overloading unique wordforms with homophones may lead to
clusters of words that are not identical but similar. Using simu-
lated baselines, we test the viability of this alternative account.
We find that a pressure against loading too many meanings
on unique wordforms—paired with the phonotactics of a tar-
get language—produces lexica with neighborhoods that are at
least as large on average as those in real lexica. This does not
rule out the possibility of a pro-neighborhood pressure, but it
does demonstrate the viability of a parsimonious alternative ac-
count based on a pressure against homonymy for which there
is independent evidence.
Keywords: phonological neighborhoods; ambiguity; lan-
guage evolution; lexicon

Introduction
Why are human languages structured the way that they are?
One approach to finding evolutionary causes for contempo-
rary structure seeks to characterize the various selection pres-
sures that could plausibly account for the form and content
of languages (Richie, 2016). This approach has produced a
growing consensus that human lexica are shaped by a pres-
sure for cognitive and communicative efficiency (Gibson et
al., 2019; Levshina & Moran, 2021), both in terms of how
they carve up semantic domains (e.g., color) (Regier, Kay, &
Khetarpal, 2007; Kemp & Regier, 2012; Zaslavsky, Kemp,
Regier, & Tishby, 2018; Kemp, Xu, & Regier, 2018), and
in the wordforms they contain (Piantadosi, Tily, & Gibson,
2011; Mahowald, Dautriche, Gibson, & Piantadosi, 2018).

But one feature of language that has to date resisted ex-
planation in these terms is the presence of dense phono-
logical neighborhoods. Lexica are clumpy: they contain
dense pockets of wordforms differing in only one sound
(e.g., “cat”, “bat”, and “mat”)—typically called phonological
neighbors—while leaving vast swaths of phonological space
entirely unused (Dautriche, Mahowald, Gibson, Christophe,
& Piantadosi, 2017). From the perspective of communica-
tive efficiency, this clumpiness may be surprising; allow-
ing wordforms to cluster in particular regions of phonolog-
ical space–––instead of distributing them more evenly–––has
been found to increase the likelihood of misperceiving one

wordform for another, potentially even impairing comprehen-
sibility (Vitevitch & Luce, 1998).1 One explanation for the
prevalence of neighborhoods comes from phonotactics. Each
language has certain rules about which sounds can start and
end a word, which sounds can occur in which sequence, and
so on (Frisch, Large, & Pisoni, 2000; Bailey & Hahn, 2001;
Vitevitch & Aljasser, 2021). Phonotactic rules sharply con-
strain the space of legal words in a language, simplifying the
speaker’s task of selecting and producing words. And phono-
tactics may also account for some of the clumpiness oberved
in human languages. However, recent work (Dautriche et
al., 2017) has found that phonotactics alone cannot fully ac-
count for the neighborhood density of real human lexica:
across four languages (English, Dutch, German, and French),
phonological neighborhoods are still larger than one would
expect in a lexicon whose wordforms were determined purely
by the phonotactics of that language (Dautriche et al., 2017).
What accounts for this gap?

A natural explanation is that dense phonological neighbor-
hoods are directly selected for, i.e., they increase cognitive
or communicative efficiency in some way. Indeed, there is
some evidence that dense neighborhoods may facilitate both
word learning (Storkel, 2004; Storkel, Armbrüster, & Hogan,
2006; Coady & Aslin, 2003; Jones & Brandt, 2020; Four-
tassi, Bian, & Frank, 2020; Jones & Brandt, 2019) and word
production (Vitevitch, 2002; Vitevitch & Sommers, 2003).
If this interpretation is correct, it suggests that the possible
benefits of dense neighborhoods (facilitation of word learn-
ing and production) “outweigh” the challenges they may pose
for comprehension (Vitevitch & Luce, 1998). Thus, under
this view, neighborhoods are the result of a positive selection
pressure—above and beyond the phonotactics of a language.

Another possibility, however, is that dense neighborhoods
are the byproduct of other properties or selection processes
that operate over real human lexica. The fact that neighbor-
hoods appear to confer a benefit on lexical acquisition and
production does not entail that they were selected for this
function; there are numerous examples in evolutionary biol-
ogy of apparently adaptive traits that emerged at least par-
tially as a byproduct of other selection pressures (Gould &
Lewontin, 1979). Below, we introduce one such candidate

1Note that contradictory results have been obtained in Russian
and Spanish, in which dense neighborhoods may actually facili-
tate word perception (Vitevitch & Rodrı́guez, 2005; Arutiunian &
Lopukhina, 2020).



pressure—a selection pressure against homophony—and de-
scribe how it could result in lexica with dense phonological
neighborhoods, even without a direct selection pressure for
clumpiness.

Real Lexica Select Against Over-Saturation There has
been a good deal of attention recently on why ostensibly ef-
ficient communication systems would evolve to contain ho-
mophony, i.e., wordforms with distinct, unrelated meanings
(Piantadosi, Tily, & Gibson, 2012). Several papers (Trott &
Bergen, 2020; Caplan, Kodner, & Yang, 2020) have adopted
the approach of building phonotactic baselines (Dautriche
et al., 2017) to ask how much homophony one should ex-
pect to find purely as a function of a language’s phonotactics.
That is, if wordforms were randomly sampled (with replace-
ment) from phonotactic space, how frequently would differ-
ent meanings be assigned to the same wordform?

These phonotactic baselines have been able to account for
both the amount and distribution of homophony. But surpris-
ingly, real human lexica actually have fewer homophones per
wordform than their artificial, phonotactic counterparts (Trott
& Bergen, 2020), and this homophony is more evenly dis-
tributed across the lexicon, i.e., across longer and more ill-
formed wordforms, than one would expect (Trott & Bergen,
2020; Caplan et al., 2020).

A natural explanation for the gap in homophony is that real
lexica are subject to a pressure against saturating the same
wordform with too many meanings. A few notes of clarifica-
tion are required here. First, all spoken languages appear to
display homophony, so any hypothesized pressure against ho-
mophony must not be categorical (Sampson, 2013). Second,
what all languages studied to date share is an apparent resis-
tance to over-saturation, i.e., the number of meanings loaded
onto the same wordform, relative to what would be expected
from a phonotactic baseline. This is despite the fact that some
languages (English and Japanese in particular) have a higher
rate of homophony (i.e., more wordforms with at least one
meaning) than baselines (Trott & Bergen, 2020).2 Taken to-
gether, these facts suggest that real lexica may be subject to
a smoothing process: rather than concentrating many mean-
ings in the highest-probability wordforms—which could im-
pede communication—real lexica may distribute these mean-
ings more evenly across phonotactic space (Trott & Bergen,
2020), which could result in larger neighborhoods.

Could smoothing create larger neighborhoods? If real
lexica prefer wordforms with high phonotactic probability,
as they appear to, and if at the same time they also select
against over-saturating the same high-probability wordform,
then they should be more likely to instead select other high-
probability (but not overly homophonous) wordforms in ad-
jacent phonological space. Under this account, the distribu-
tion of wordforms across phonological space would be deter-
mined by two primary factors:

2This may also partially account for the mixed results reported
in more recent work (Pimentel, Meister, Teufel, & Cotterell, 2021).

1. A pressure to use well-formed phonological sequences,
i.e., those with high phonotactic probability.

2. A pressure against over-saturating the same wordform with
an excess of meanings.

Critically, this pair of pressures together could result
in larger phonological neighborhoods than either of them
would independently, even while not directly selecting for
dense neighborhoods. Instead of sampling the same high-
probability wordform (e.g., “gap”) many times, this pro-
cess would sample from similarly high-probability regions of
phonotactic space, which—simply because of the previously
established connection between phonotactic probability and
neighborhood density (Dautriche et al., 2017)—would select
wordforms that are more likely than chance to be neighbors
of existing words. In the aggregate, this would indirectly pro-
duce denser neighborhoods.

This explanation—a pressure against oversaturation of
individual wordforms increases neighborhood density—has
several things to recommend it a priori. First, the pressure
against oversaturation is itself independently motivated, as
described above. But second, it could also account for a
dissocation between homonymy and neighborhood size ob-
served in past work (Dautriche et al., 2017; Trott & Bergen,
2020). Across five languages tested (English, Dutch, Ger-
man, French, and Japanese) by two groups, real human lexica
consistently have larger neighborhoods but fewer homonyms
than their phonotactic baselines. Finding a single explanation
for both effects is desirable from the perspective of theoretical
parsimony; rather than positing multiple, distinct pressures
to explain different results—a pressure against homophony
(Trott & Bergen, 2020) and a pressure for denser neighbor-
hoods (Dautriche et al., 2017)—a single pressure could in
principle explain two apparently unrelated phenomena, i.e.,
“filling two needs with one deed”.3

Under this alternative account, dense neighborhoods may
still provide benefits to word learning and production
(Storkel, 2004; Storkel et al., 2006; Vitevitch, 2002). How-
ever, these advantages would not be causally responsible for
larger neighborhoods, but rather, would be a kind of “posi-
tive externality” created by a selection pressure against ho-
mophones.

Current Work
The central goal of the current work was to ask whether
a pressure against homophony—coupled with phonotactic
constraints—could explain the distribution of neighborhood
sizes observed in real lexica. To our knowledge, this account
has not been directly tested.

We followed the approach taken in past work (Dautriche
et al., 2017; Trott & Bergen, 2020; Caplan et al., 2020);

3In principle, a pressure for larger neighborhoods may also ex-
plain why real lexica have fewer homophones. This issue is explored
in the General Discussion.



for each language of interest, we simulated a series of base-
lines, matched for the phonotactics and distribution of word
lengths (as defined by number of syllables) of the target lex-
icon. Unlike past work, however, we also introduced novel
constraints for some of these baselines. Specifically, we in-
troduced an Anti-Homophone pressure, which prevented a
wordform from acquiring too many meanings and forced the
baselines to conform to the rank distribution of homophones
found in the real lexicon.4

We then compared two measures of neighborhood size
(Mean and Maximum Neighborhood Size) across the real
lexica and their baselines. Our question was to what ex-
tent these constraints—phonotactics, and a pressure against
homophony—were sufficient to account for neighborhood
density in real lexica. Critically, a demonstration of suffi-
ciency would not disconfirm the possibility that real lexica
are subject to a pro-neighborhood pressure. Rather, it would
serve as a proof-of-concept that there are alternative (and pos-
sibly more parsimonious) routes that could account for the
size of neighborhoods in real lexica.

All materials and code are available on GitHub: https://
github.com/seantrott/neighbors lexica.

Methods
Materials
We analyzed five languages: English, Dutch, German,
French, and Mandarin. To do this, we relied on lexical
resources that contained phonological information for each
lemma of a lexicon. We used CELEX (Baayen, Piepenbrock,
& Gulikers, 1996) for English, Dutch, and German; Lexique
(New, Pallier, Brysbaert, & Ferrand, 2004) for French; and
the Chinese Lexical Database for Mandarin (Sun, Hendrix,
Ma, & Baayen, 2018).

To ensure that our analyses were consistent with previous
work (Trott & Bergen, 2020; Piantadosi et al., 2012), we re-
stricted our analysis to lemmas. We also removed wordforms
containing hyphens, spaces, or apostrophes, as well as proper
nouns. The final number of lexical entries (i.e., lemmas) for
each real lexicon was: 41887 entries in English, 67583 en-
tries in Dutch, 51718 entries in German, 43782 in French,
and 45552 in Mandarin.

Building Phonotactic Models
To model the phonotactic rules of each language, we fit a se-
ries of n-phone Markov Models to each lexicon (Dautriche
et al., 2017; Trott & Bergen, 2020; Caplan et al., 2020). By
observing the entire set of wordforms in a language, an n-
phone model can learn statistical contingencies such as which
phonemes are most likely to start and end a wordform, and
which phonemes are most likely to follow the previous n - 1
phonemes.

4We did not attempt to model the specific cognitive or diachronic
mechanisms by which homophony avoidance might come about,
e.g., through the inhibition of homophony-producing sound changes
(Wedel, Kaplan, & Jackson, 2013; Wedel, Jackson, & Kaplan,
2013); this topic is explored more in the General Discussion.

Following past work (Trott & Bergen, 2020), we identi-
fied the optimal n for each lexicon using a cross-validation
procedure. For each lexicon, we performed a train/test split
(75% train, 25% test). Then, we fit a series of n-phone mod-
els ranging from n = 1 to n = 6 on the training set, and used
these trained models to calculate the phonotactic probability
of wordforms in the test set. Importantly, we performed this
procedure 10 times for each value of n, to ensure that the re-
sults were not too sensitive to a particular train/test split. The
optimal n was defined as the value that maximized the proba-
bility of wordforms in the held-out test set—i.e., large enough
to capture the appropriate dependencies, but not so large that
it overfit to the training set. This procedure resulted in n = 5
for English, Dutch, and German; and n = 4 for French and
Mandarin. (Note that tones were treated as phonemes in the
phonotactic model; exploratory analyses suggest that the n-
phone model captured statistical regularities in which tones
co-occurred with the internal structure of the corresponding
syllable, but future work could ask about the impact of condi-
tioning tones on particular segments of the preceding syllable
(Kirby, 2021).)

Finally, we fit an n-phone model to each lexicon using all
unique word types (rather than the 75% training set). (Word
types, rather than tokens, were chosen to be consistent with
past work (Piantadosi et al., 2012; Trott & Bergen, 2020),
and to avoid conflating phonotactic probability with word fre-
quency.)

Phonotactic Baselines

Following past work (Dautriche et al., 2017; Trott & Bergen,
2020; Caplan et al., 2020), we used the trained phonotactic
models to simulate a series of phonotactic baselines for each
language. Unlike past work, we built three different types of
baselines (described below), with ten versions for each base-
line (for a total of thirty baselines per language).

Neutral Baselines The procedure for generating Neutral
baselines was identical to the procedure adopted in past work
(Trott & Bergen, 2020). We first identified the number of
lemmas (not wordforms) per word length (e.g., the English
lexicon has 7,706 monosyllabic lemmas). Then, we used the
phonotactic model to generate novel wordforms; each artifi-
cial lexicon was constrained to have the same distribution of
words per word length as the real lexicon. For example, if an
artificial lexicon already had the maximum number of mono-
syllabic words allowed, future monosyllabic words generated
by the model would be discarded. This procedure was contin-
ued until the artificial lexicon had the same number as lemmas
(not necessarily wordforms) as the real lexicon. Importantly,
there was no constraint on the number of “meanings” a given
wordform could acquire (i.e., the same wordform could be
sampled an arbitrary number of times, provided more words
of that length were required).
Anti-Homophony Baselines The Anti-Homophony Base-
lines followed an identical procedure as the Neutral Base-
lines, with one additional constraint: no wordform was al-



lowed to acquire more meanings than the equivalently-ranked
wordform in the real lexicon’s rank distribution of homo-
phones. That is, if the most homophonous wordform in En-
glish had eight meanings, then no wordform in the baseline
would be allowed to acquire more than eight meanings—
and if the tenth most homophonous wordform had only three
meanings, then the tenth most homophonous wordform in the
baseline could acquire at most three meanings.

Conceptually, this pressure is akin to “blocking” new
meanings from being attached to overly homophonous word-
forms, and finding an alternative wordform instead. This is
similar (though not identical) to instead adding a new word to
the lexicon with some probability p, where p decays with the
number of meanings already assigned to that wordform.
Anti-Homophony+ Baselines Finally, we considered an al-
ternative implementation of an Anti-Homophony pressure.
Rather than simply discarding overly homophonous word-
forms, we applied a sound change to one of the phonemes in
the target wordform. First, we randomly selected a phoneme
in the target wordform to change. Then, we replaced it with
a random vowel or consonant (depending on the identity of
the phoneme). Finally, to ensure that the resulting word-
form was sensible, we evaluated its phonotactic probability; if
the wordform’s probability was higher than the least-probable
wordform in the real lexicon, we added it to the lexicon (pro-
vided it also did not have too many homophones).

The motivation for this procedure was that a pressure
against homophony may not manifest as “blocking” the
offending wordform entirely—overly homophonous word-
forms likely have many desirable properties as wordforms of
that language (i.e., they are short and well-formed). Thus,
this anti-homophony pressure would preserve many of these
desirable properties (most of the wordform remains intact)
while also avoiding an excess of ambiguity.

Note that this procedure could arguably be interpreted as
also implementing an indirect, pro-neighbor pressure, given
that offending wordforms are directly converted to minimal
pairs. However, this pro-neighbor pressure need not neces-
sarily be pro-neighborhood per se—if the offending homo-
phones are converted to existing wordforms, the distribution
of meanings across wordforms could change without altering
the distribution of neighborhood sizes.

Results

Replication of Homophony Results

Past work (Trott & Bergen, 2020; Caplan et al., 2020) found
that phonotactic baselines without a pressure against ho-
mophones exhibited a higher upper-bound of homophony:
the Maximum Number of Homophones (i.e., the number of
meanings assigned to the most homophonous wordform, mi-
nus one) was larger in the baselines than their real coun-
terparts. As depicted in Figure 1, we replicated this effect:
Neutral baselines consistently contained higher levels of ho-

Figure 1: Maximum Number of Homophones across the real
lexica and Neutral baselines. Red circles represent the values
for the real lexicon.

mophony than the real lexica.5

Comparing Neighborhood Sizes
We used two primary dependent variables to compare the rel-
ative density of neighborhoods across real and artificial lex-
ica: Mean Neighborhood Size and Maximum Neighborhood
Size.6 The neighborhood size of a given wordform was de-
fined as the number of wordforms that were exactly one edit
away, i.e., using either insertion, deletion, or substitution.
Thus, the Mean Neighborhood Size was the average phono-
logical neighborhood size across the entire lexicon, while the
Maximum Neighborhood Size was the size of the densest
neighborhood in a given lexicon.

Consistent with past work (Dautriche et al., 2017; Trott
& Bergen, 2020), the real lexica had larger Mean Neighbor-
hood Sizes and Maximum Neighborhood Sizes, compared
to the Neutral baselines. For example, the Mean Neighbor-
hood Size in English was 2.51, while the Neutral English
baselines ranged from 2.23 to 2.32 (M = 2.28,SD = 0.03).
Similarly, the Maximum Neighborhood Size in Dutch was
42, while the Neutral Dutch baselines ranged from 25 to 30
(M = 27.3,SD = 1.89). This demonstrates that phonotactics
alone cannot account for neighborhood density in real lexica.

Yet as depicted in Figure 2, this gap largely disappeared
(or in some cases, reversed) with the introduction of a
pressure against over-saturation. Across all languages, the
Mean Neighborhood Size was at least as large in the Anti-
Homophony baselines. For example, in English, the Mean
Neighborhood Size of the Anti-Homophony baselines ranged
from 2.52 to 2.59 (M = 2.54,SD = 0.03) (recall that the value
for the real English lexicon was 2.51). In some languages
(e.g., Dutch and German), the Anti-Homophone baselines ac-
tually had larger neighborhoods on average. The gap was
also attenuated for Maximum Neighborhood Size (see Figure
3). However, the largest neighborhoods in real lexica tended

5The Anti-Homophony and Anti-Homophony+ baselines are ex-
cluded from this figure, given that their levels of homophony were
constrained not to exceed the real lexicon.

6Equivalent results were obtained using the Total Number of
Minimal Pairs within a lexicon, as in past work (Dautriche et al.,
2017).



Figure 2: Mean Neighborhood Size as a function of language
and lexicon type. Red lines represent the value for each real
lexicon.

Figure 3: Maximum Neighborhood Size as a function of lan-
guage and lexicon type. Red lines represent the value for each
real lexicon.

to be slightly larger than the median value in the baselines
(with the exception of French).

Surprisingly, the Anti-Homophony+ baselines exceeded
both the Mean and Maximum Neighborhood Sizes of their
real counterparts, sometimes to a very large degree (e.g., in
French and Dutch). Further, the Anti-Homophony+ baselines
overestimated the average neighborhood size across all lan-
guages tested.

In order to quantify which baseline produced the best fit,
we calculated the Mean Error (ME) between the rank dis-
tribution of neighborhood sizes for each real lexicon and its
artificial baselines. ME is defined as:

ME =
∑

n
i=1 yi − xi

n

Where xi was the neighborhood size from the real lexicon,
and yi was the neighborhood size of an equivalently ranked
wordform from the baseline, i.e., the “predicted” neighbor-
hood size. Mean Error was used (rather than mean absolute or
squared error) to reveal the direction of the average error, i.e.,
whether a given baseline tended to underestimate or overes-
timate neighborhood sizes on average. As depicted in Figure
4, the Neutral baselines generally exhibited the worst fit (with
the exception of French), and tended to underestimate neigh-
borhood sizes. The Anti-Homophony baselines produced bet-
ter predictions, and in fact, had the best fit for every language

Figure 4: Mean Error (ME) for each baseline. Mean Error
was computed by comparing the neighborhood sizes across
each real lexicon and its artificial baselines; a score closer to
zero corresponds to better fit.

but French (in which the predicted neighborhood sizes were
too large on average). Finally, the Anti-Homophony+ base-
lines erred on the side of overestimating neighborhood sizes,
to an even greater degree than the Anti-Homophony base-
lines.

General Discussion
We asked whether the distribution of neighborhood sizes in
real lexica could be explained by the combination of phono-
tactic constraints and a pressure against homophony. Past
work (Dautriche et al., 2017) found that phonotactics alone
were insufficient to account for neighborhood sizes in real
lexica, suggesting that real lexica are shaped by a posi-
tive selection pressure for larger neighborhoods. This pro-
neighborhood pressure would also be consistent with evi-
dence that dense neighborhoods confer benefits on learning
(Coady & Aslin, 2003; Storkel, 2004; Fourtassi et al., 2020)
and production (Vitevitch, 2002). The current work repli-
cated this effect, as well as the finding that phonotactics alone
tends to overestimate the degree of homophony compared to
real lexica (Trott & Bergen, 2020).

Critically, however, we found that introducing a pressure
against homophony in the baselines resulted in substantially
larger neighborhood sizes on average—eroding or even re-
versing (in French and Dutch) the gap between the real lex-
ica and their baselines (see Figure 2). This also resulted
in a larger upper-bound on neighborhood sizes in the base-
lines, though not always larger than the real lexica (see Fig-
ure 3). Finally, a pressure that converted overly homophonous
wordforms to minimal pairs resulted in larger neighborhoods
across the board—surpassing the Mean Neighborhood Size of
real lexica, and attaining or surpassing the Maximum Neigh-
borhood Size of real lexica.

Thus, a pressure against homophony was in many cases
sufficient to account for average neighborhood sizes. This
means that an explanation for average neighborhood sizes
in real lexica need not posit a direct selection pressure for



these neighborhoods: the distribution of neighborhood sizes
observed in real languages may be the sole result of phonotac-
tics and a pressure against over-saturation. Additionally, the
Anti-Homophone+ pressure actually overestimated neighbor-
hood sizes in many cases.

While these results cannot rule out the possibility that
neighborhoods are directly selected for (see below), they do
demonstrate that a pro-neighborhood pressure may not be a
necessary part of an explanation. Importantly, this would not
be inconsistent with evidence that dense neighborhoods pro-
vide benefits to learning and production—but under this ac-
count, these benefits would simply be “positive externalities”
of a causally unrelated pressure against over-saturation.

Limitations and Future Work
The work described here is limited in certain ways. First, the
languages tested represent a limited subset of the world’s lan-
guages. The sample was biased towards Indo-European lan-
guages (English, Dutch, German, and French), with one Sino-
Tibetan language (Mandarin), and did not include languages
from other major language families such as Austronesian or
Niger-Congo. The languages reflect a convenience sample;
they are the languages for which we could obtain lexical re-
sources that contained phonological information at the level
of individual lemmas.

A second limitation lies in the measures of neighborhood
density used. We used the average and maximum neighbor-
hood size in a lexicon. However, past work (Dautriche et
al., 2017) also used more sophisticated measures of the net-
work structure in a lexicon, such as the degree of transitivity.
Future work in this vein could better quantify how exactly
neighborhoods distribute across the lexicon, using tools from
network analysis.

Third, as in past work (Dautriche et al., 2017; Caplan et
al., 2020; Trott & Bergen, 2020), we used an n-phone model
to learn the phonotactics of the target language. Recent work
has used more sophisticated approaches, such as a genera-
tive model (Futrell, Albright, Graff, & O’Donnell, 2017) or
LSTM neural network (Pimentel et al., 2021). Future work
could ask how adopting an alternative approach to modeling
phonotactics changes the distribution of neighborhood sizes
in the baselines. That said, recent work (Trott & Bergen,
2022) did find comparable results using an LSTM and n-
phone approach.

Fourth, our approach cannot cannot directly disconfirm the
theory that real lexica are shaped by a pro-neighborhood pres-
sure. At best, the baselines demonstrate the sufficiency of a
particular set of constraints in explaining the distribution of
neighborhood sizes, absent a direct pro-neighborhood pres-
sure; there may still be a priori reasons to prefer a theory that
posits such a pressure. The results do suggest that a pressure
against homophony can in principle explain two seemingly
independent facts—namely, that real lexica have fewer ho-
mophones, and larger neighborhoods, than predicted by their
phonotactics—but they do not rule out the possibility of al-
ternative explanations.

A fifth, related limitation is that the baselines do not illu-
minate the causal mechanisms by which an anti-homophony
pressure could operate, either at the level of individual com-
municative constraints or diachronic language change. Fu-
ture research would benefit from experimental work directly
probing these causal mechanisms, e.g., whether errors made
during learning homophones (Casenhiser, 2005) could re-
sult in minimal pairs. Similarly, researchers could build
computational models of how these local pressures interact
with changes operating over longer timescales, such as sound
change (Wedel, Jackson, & Kaplan, 2013).

Sixth, this work did not consider other important variables,
such as frequency—both of individual wordforms, and of the
distinct lemmas conveyed by those wordforms. This is in
part due to limitations of the simulation method used. Em-
ploying a different approach, recent work (Trott & Bergen,
2022) discovered several relevant findings: homophony re-
sistance is positively correlated with the frequency of par-
ticular wordforms, though not necessarily with the relative
frequency of their meanings; and further, homophony resis-
tance is highest among wordforms with high neighborhood
density—consistent with the results presented here.

Finally, these analyses made two simplifying assumptions.
First, meanings were implicitly assumed to be discrete units,
with no relation between them. However, meanings are
likely at least partially continuous (Elman, 2009; Trott &
Bergen, 2021; Li & Joanisse, 2021); further, some mean-
ings are more related (as in polysemy) than others (as in
homonymy). Second, forms were assumed to be arbitrarily
related to meanings—however, there is considerable evidence
(Blasi, Wichmann, Hammarström, Stadler, & Christiansen,
2016; Gutiérrez, Levy, & Bergen, 2016) that form-meaning
relationships may be less arbitrary than previously thought.
Future work could integrate both lines of thought by using
a continuous representation of the meaning space, and ex-
ploring different ways of assigning form-meaning pairings in
either systematic or arbitrary ways.

Conclusion
Why do real lexica have such large phonological neighbor-
hoods? One explanation is that real lexica are subject to a
selection pressure for dense neighborhoods, possibly because
dense neighborhoods facilitate word learning (Storkel, 2004;
Coady & Aslin, 2003) and production (Vitevitch, 2002; Vite-
vitch & Sommers, 2003). We pursued another possibility—
that dense neighborhoods emerge from the interaction of
other constraints operating over real lexica, namely phono-
tactics and a pressure against individual wordforms acquiring
too many meanings (Trott & Bergen, 2020). We tested the
sufficiency of this latter account using simulated baselines.
Crucially, the combination of phonotactic constraints and an
anti-homophony pressure was sufficient to account for aver-
age neighborhood sizes in real human lexica—demonstrating
that a direct selection pressure for neighborhood density is
not a necessary part of an explanation.
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