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Abstract
There is considerable debate about the origin, mechanism, and
extent of humans’ capacity for recursive mindreading: the abil-
ity to represent beliefs about beliefs about beliefs (and so on).
Here we quantify the extent to which language exposure could
support this ability, using a Large Language Model (LLM)
as an operationalization of distributional language knowledge.
We replicate and extend O’Grady, Kliesch, Smith, and Scott-
Phillips (2015)’s finding that humans can mindread up to 7
levels of embedding using both their original method and a
stricter measure. In Experiment 2, we find that GPT-3, an
LLM, performs comparably to humans up to 4 levels of em-
bedding, but falters on higher levels, despite being near ceiling
on 7th-order non-mental control questions. The results sug-
gest that distributional information (and the transformer archi-
tecture in particular) can be used to track complex recursive
concepts (including mental states), but that human mentaliz-
ing likely draws on resources beyond distributional likelihood.
Keywords: theory of mind; large language models; recursive
mindreading; distributional statistics

Introduction
Humans keep track of others’ mental states: a phenomenon
known as mentalizing, mindreading, or theory of mind. Re-
cursive mindreading occurs when the tracked mental states
are themselves about others’ mental states (e.g. knowing that
Andy is embarrassed that Bella knows he likes Carl). While
it is well established that humans can can track beliefs at 1-
2 levels of recursive embedding (Apperly, 2012; Wellman,
Cross, & Watson, 2001), 1 there is considerable disagreement
about whether humans have the need or the capacity to pro-
cess more deeply embedded mental representations.

Theoretical arguments for deeply recursive ToM in hu-
mans point to our evolutionary origins and the pragmatic de-
mands of communication. Our social and cultural environ-
ment may have provided evolutionary incentives to develop
recursive mindreading, including social learning (Sperber,
2000), reputation management, and story-telling (Dunbar,
2009). Gricean pragmatic theories of communication (Grice,
1975) require constant monitoring of recursively embedded
mental representations (e.g. knowing0 that Bob knows1 that
you know2 that if he had meant3 all of the papers have been
graded he would have said ”all” and not ”some”.) Rational
Speech Act theory (Goodman & Frank, 2016) further formal-
izes these pragmatic principles, suggesting that listeners in-
terpret utterances using a probabilistic model of the speaker’s

1Following (O’Grady et al., 2015) we count levels excluding the
focal individual: i.e. I think0 Mary thinks1 John wants2 cake.

model of the listener’s interpretative process. Sperber and
Wilson (1986)’s relevance theory posits that everyday com-
municative interaction relies, in principle, on a 4th order re-
cursive mental representation (e.g. Peter believes0 that Mary
wants1 Peter to know2 that Mary wants3 Peter to know4 that
her glass is empty), extending to higher levels when listeners
are considering utterances about mental representations.

Others, however, have suggested that deeply recursive min-
dreading may be too cognitively demanding for human com-
prehenders. Sperber and Wilson (1986) suggest that recursive
mutual knowledge need not be deliberatively inferred in ev-
ery interaction, as long as it is mutually inferable. A variety of
simpler processes have been proposed that achieve the func-
tional effects of recursive mindreading without requiring ex-
plicit mental models, such as inferring shared attention from
eye contact (Gómez, 1994) and associating common ground
with speakers generically rather than specific speaker-listener
dyads (Shintel & Keysar, 2009). Heyes (2014) discusses a
range of generic spatial and attentional mechanisms she calls
’submentalizing’ that could explain apparent mind-reading
without explicit recursive representations. However, debates
around whether simpler mechanisms could account for com-
plex mindreading have proven challenging to resolve without
explicit models of these processes and their predictive power.

The debate over recursive mindreading relates to a wider
debate about the origins and mechanisms behind humans’
theory of mind. One dominant theory is that we have
an evolved biological endowment for mentalizing (Bedny,
Pascual-Leone, & Saxe, 2009). Our capacity to represent oth-
ers’ thoughts is likely to have been important for our evolu-
tion as a highly social species (Dunbar, 2009; Sperber, 2000).
Alternative theories argue that mindreading is acquired across
the lifetime based on our social experience (Hughes et al.,
2005), and in particular our exposure to language (de Villiers
& de Villiers, 2014; P. L. Harris, 2005). Language provides
a rich framework to both share and represent our inner men-
tal lives. Mental state verbs such as know and believe pro-
vide explicit cues to unobservable mental states (J. R. Brown,
Donelan-McCall, & Dunn, 1996), while syntactic structures
like sentential complements ( Sarah believes that X) allow
us to recursively embed others’ thoughts (Hale & Tager-
Flusberg, 2003). However, existing work has not quantified to
what extent language exposure alone could account for com-
plex mentalizing behavior such as recursive mindreading.
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Here, we address that question using a Large Language
Model (LLM) as a distributional baseline to ask: to what
extent can purely statistical information about the distribu-
tion of words in language be used to predict human men-
talizing behavior. The distribitional hypothesis (Firth, 1957;
Z. S. Harris, 1954) posits that human language comprehen-
sion is—in part—based on learning statistical relationships
about which words are likely to follow other words. LLMs
provide a computational operationalization of the distribu-
tional hypothesis; they learn to predict words on the sole basis
of distributional language statistics. They lack innate biases
and feedback from social interaction, allowing us to test the
sufficiency of language exposure alone to explain behavior.
Importantly, for this analysis we focus on base or “vanilla”
LLMs that have not been additionally fine-tuned using re-
inforcement learning from human feedback (RLHF; Ouyang
et al., 2022). Although RLHF may improve performance, it
constitutes an additional training signal beyond distributional
language statistics, complicating the inferences we can draw.

In spite of their conceptual simplicity and lack of access to
non-linguistic resources, LLMs have been shown to predict
diverse measures of human language comprehension (Chang
& Bergen, 2023) and brain activity (Michaelov, Coulson, &
Bergen, 2022). More specifically, LLMs have been found
to perform at above-chance levels on the False Belief task,
which measures 1st-order mindreading (Trott, Jones, Chang,
Michaelov, & Bergen, 2023). However, an ongoing debate
concerns whether these results reflect evidence of a general
mindreading capacity, or exploitation of cheaper statistical
shortcuts (Gandhi, Fränken, Gerstenberg, & Goodman, 2023;
Jones, Trott, & Bergen, to appear; Kim et al., 2023; Shapira
et al., 2023; Ullman, 2023). Evidence that LLMs can exploit
such shortcuts in instruments used to assess mindreading in
humans is especially germane to the discussion of submental-
izing above. We return to this issue in our general discussion.

In order to quantify the sufficiency of distributional in-
formation for recursive mindreading, we wanted to select a
task that accurately reflected human performance. Early em-
pirical evidence for recursive mindreading—mostly drawn
from the Imposing Memory Task (IMT)—indicated that hu-
man accuracy deteriorates at around 4 levels of embedding.
Kinderman, Dunbar, and Bentall (1998) found accuracy at
the IMT dropped from 85% to below 50% when the level
of recursion was increased from 4 to 5, despite the fact that
performance on control questions remained above 90% up to
6 levels of embedding. Stiller and Dunbar (2007) ran an ex-
tended version of the IMT, including questions up to 8 levels
of embedding, and found that the level at which participants
fail was normally distributed around a mean of 4.

O’Grady et al. (2015), however, identified various prob-
lems with the IMT—including unanswerable questions and
uncontrolled variance in syntactic complexity— and designed
a novel recursive mindreading task that addresses these prob-
lems. In their study, participants watched videos which had a
plot involving 7 levels of recursively-embedded mental rep-

resentation, and 7 levels of a non-mental recursive concept,
such as possession. For each of the levels of mental and non-
mental recursion, the authors also created two scenes to fol-
low the main story, only one of which was consistent with it.
Participants watched the scenes and had to select the one that
was consistent with the story. O’Grady et al. found that hu-
man comprehenders were successful at answering questions
that involved up to 7 levels of recursive embedding (the max-
imum level used in their task). Moreover, they did not find a
negative effect of embedding level on accuracy. We selected
this experiment as a model to measure recursive mindread-
ing in humans and LLMs because it addresses problems with
stimuli in previous studies and provides a strong human base-
line to which we can compare models.

In Experiment 1, we conducted a replication of O’Grady et
al. (2015) in a text-only format to check that their finding was
robust and to obtain human data that would be more compa-
rable to LLM responses. We also ran an extension with small
modifications to test potential confounding explanations for
participants’ strong performance in this task. In Experiment
2, we elicited responses to the same stimuli from GPT-3, an
LLM, and tested whether humans outperform models and the
extent to which their responses are correlated.

Experiment 1
O’Grady et al. (2015)’s finding of 7th-order mindreading is
striking and contrasts with previous literature: in itself pro-
viding motivation for replication. In addition, several fea-
tures of the design suggest potential alternative explanations
for participants’ strong performance. First, stimuli were pre-
sented as videos rather than text. As one of several differences
with previous work, it would be valuable to know whether
video presentation was necessary for participants’ success.
Second, questions were presented in a two-alternative forced
choice (2AFC) format, allowing participants to directly com-
pare proposed responses. For instance, a participant could
identify that the only difference between the choices in (1)
(Story 1’s level 5 mental question, emphasis ours) is whether
Stephen knows or does not know what Elaine knows.

(1) a. Megan knows that Stephen doesn’t know that
Elaine knows that Bernard feels that she doesn’t
know him well enough to date

b. Megan knows that Stephen knows that Elaine
knows that Bernard feels that she doesn’t know
him well enough to date

This could potentially simplify participants’ reasoning pro-
cess; they might only remember that Stephen didn’t know
something important about Elaine, prompting them to guess
‘a’ without fully processing the conceptual chain. Moreover,
participants could assume that whatever followed the differ-
ence (and is stated in both answers) must be true.

Finally, questions were designed such that they often con-
cerned different portions of the same conceptual chain. For
instance, (2) is the level 3 mental question for Story 1:



(2) a. Elaine doesn’t know that Bernard feels that she
doesn’t know him well enough to date.

b. Elaine knows that Bernard feels that she doesn’t
know him well enough to date.

The correct answer to (2), ‘b’, is contained in both versions of
(1), as well as the questions for levels 4, 6, & 7. Because par-
ticipants saw each story’s questions in a random order, they
were often exposed to the correct answer to (2) many times
before encountering the question itself. Participants could
have selected this answer through an explicit strategy to ex-
ploit this fact, or simply because it sounded more familiar.

In order to understand the extent to which these factors ac-
counted for performance in O’Grady et al’s original study, we
ran a replication and extension (preregistered here). The ex-
periment randomly assigned participants to two conditions.
In one they completed a close replication of O’Grady et al.
(using the 2AFC response format), except with all stimuli as
text. We used the data from this study to test 4 hypotheses.
We hypothesised (1) that we would replicate the main find-
ing that participant accuracy on mental questions would be
significantly above chance for all 7 embedding levels. How-
ever, we predicted that in the text-only format, there would
be (2) a negative effect of embedding level on question accu-
racy, and (3) a negative interaction between mental question
type and embedding level. Finally, we hypothesised that par-
ticipants would use information from earlier questions within
each block to answer later questions, so that (4) participant
accuracy would increase across trials within each block.

The second response format condition (TF) was identical,
except that participants only ever saw one possible answer to
each question and responded true or false (i.e. whether the
response was consistent with the story). In this condition,
participants could not compare responses to simplify reason-
ing, so we hypothesized that they would (5) be less accurate
overall and (6) show a larger negative effect of question level.
In addition, it was more difficult for them to infer answers to
later questions from earlier ones, so we hypothesized (7) that
they would improve less within blocks. Finally, we hypothe-
sized that even with these restrictions, participants would still
(8) perform above chance up to 7 levels of embedding.

Methods

The original materials and method are described in more de-
tail in O’Grady et al. (2015). All materials, data, and analysis
code are available on OSF here.

Materials The stimuli comprised 4 stories, whose plots in-
volved 7 levels of recursively embedded mental representa-
tion, and 7 levels of a recursively embedded non-mental con-
trol concept, such as possession. For each of the levels of
mental and non-mental recursion, the authors also created two
possible continuations, only one of which was consistent with
the main story. All stories and continuations were written in
two different formats: as dialogues and as narratives. In to-
tal there were 112 pairs of continuation passages. While the

original study recorded actors reading scripts, we presented
all stimuli as text. The dialogues were displayed with speak-
ing characters’ names in bold and stage directions in italics.
The stimuli were adapted from U.K. to U.S. English for U.S.
participants. In addition to the original 2AFC question for-
mat, we added a new condition (TF), in which participants
were presented with only one continuation and judged if it
was consistent or inconsistent with the main passage.

Participants We recruited 128 UC San Diego undergradu-
ate students (97 female, 23 male, 6 nonbinary, 2 prefer not to
say; mean age = 21.6, sd = 4.1), who completed the experi-
ment for course credit. We excluded 9 participants who indi-
cated they had taken notes, and 2 participants who failed 3/8
level 1 questions, indicating inattention. After exclusions, we
retained 117 participants (54 2AFC, 63 TF), who completed
6252 trials (2889 2AFC, 3363 TF).

Procedure The study was designed in jsPsych (De Leeuw,
2015) and hosted online. Participants were randomly as-
signed to either the TF or 2AFC condition (between subjects).
Participants first completed 2 practice questions, with feed-
back, to ensure task understanding. They then read 4 stories,
each followed by 14 questions (7 mental, 7 control) with dif-
ferent levels of recursive embedding (1-7) in a random order.
The format (implicit vs explicit) of the story and questions
was fully crossed within participant. Finally, participants
completed a debrief asking about strategies they employed.

Results

Figure 1: Mean accuracy by question type (control vs
mental), response format (2AFC vs TF) and depth of recur-
sive embedding (1-7). Dashed lines represent chance per-
formance. Participants in the 2AFC condition performed
slightly better (z=−2.21, p= 0.027), but participants in both
response format conditions performed significantly above
chance through all embedding levels (all p < 0.004).

We constructed linear mixed effects models with maxi-
mal random effects structures (Barr, Levy, Scheepers, & Tily,
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2013). Where models failed to converge, we iteratively re-
moved random effects in a prespecified order of theoretical
importance. We used lmertest (Kuznetsova, Brockhoff, &
Christensen, 2015) to estimate statistical significance.

Our first 4 hypotheses concerned the 2AFC data alone. (1)
We replicated the original finding that accuracy on mental
questions was significantly above chance at each embedding
level (all p < 0.004, see Figure 1). (2) In contrast to the origi-
nal study, we found a significant negative effect of embedding
level on mental question accuracy (β = −0.156, z = −4.05,
p < 0.001). (3) Contrary to our hypothesis, the effect of em-
bedding level was more negative for control vs mental ques-
tions (i.e. there was a positive interaction of mental question
type with question level). (4) Again contradicting our hypoth-
esis, we found no effect of “block trial index”—the order in
which participants completed items within blocks (β= 0.070,
z = 1.52, p = 0.129)—suggesting that participants’ high per-
formance cannot be explained by their learning across blocks.

The next 4 hypotheses pertained to comparisons between
the 2AFC and TF data. (5) Participants in the TF condi-
tion were significantly less accurate overall (81% vs 85%;
z =−2.21, p = 0.027). (6) Contrary to our hypothesis, there
was no negative interaction between response format and em-
bedding level within mental questions. (7) Again, in contrast
to our prediction, there was no interaction between response
format and block trial index, suggesting that participants did
not improve more within blocks in the 2AFC vs TF condi-
tions. Mean accuracy of TF participants on the first trial of
each block was 78.9%. (8) Finally, as predicted, TF par-
ticipants achieved an accuracy that was significantly above
chance at all embedding levels (all p < 0.001; see Figure 1).

Discussion
The results robustly confirm the primary result of (O’Grady et
al., 2015): comprehenders were able to track characters’ men-
tal states up to 7 levels of embedding using text-based stimuli,
and a more challenging response format that removed alterna-
tive routes to the correct answer. However, in contrast to the
original study, we saw a negative effect of embedding level on
accuracy within mental questions. This might be more con-
sistent with the prior expectation that increased embedding is
costly, but future work is needed to understand whether this
difference in results stems from the participant population,
video- versus text-based format, or other design differences.

We did not find support for our concerns that participants
were using shortcuts to answer questions without processing
recursive conceptual chains. Although there was a small ef-
fect of response format overall (z = −2.21, p = 0.027), TF
participants did not improve more within blocks and were sig-
nificantly above chance at all embedding levels. We therefore
used the 2AFC format and human data for Experiment 2.

Experiment 2
At a high level, language models are probability distributions
over sequences of words or word-parts called tokens. While
early language models directly used token frequencies or

static representations to learn transition probabilities between
sequences, the self-attention mechanism of the transformer
architecture allows LLMs to make predictions about upcom-
ing tokens in a highly context-sensitive way. An LLM’s rep-
resentation of each token in the input is influenced by the to-
ken’s relationship to every preceding token. This allows mod-
els to represent different meanings of polysemous words dif-
ferently (Trott & Bergen, 2023). It also theoretically allows
models to encode information about the state of a referent in
an unfolding situation description (Li, Nye, & Andreas, 2021;
Wang, Variengien, Conmy, Shlegeris, & Steinhardt, 2022).

This mechanism could be used to keep track of charac-
ters’ mental states. For instance, the model could learn that if
Bernard is described as overhearing that Elaine is upset, the
token ‘Bernard’ is more likely to be followed by sequences
describing his knowledge of this fact. Existing work suggests
that LLM’s contextual representations can track mental states
up to 1 or 2 levels of recursive embedding (Gandhi et al.,
2023; Trott et al., 2023). Here we investigate whether this
sensitivity extends to more deeply recursive embedding.

We tested 4 hypotheses, pre-registered here, about whether
LLMs could track mental states and the extent to which they
could explain this behavior in humans. We hypothesized that
GPT-3 accuracy on mental questions would be (1) signifi-
cantly above chance up to 7 levels of embedding but (2) sig-
nificantly below human accuracy overall. To test the stronger
claim that humans and GPT-3 use similar information to an-
swer questions, we asked (3) whether human and GPT-3 re-
sponses were correlated across items, and (4) whether human
accuracy was significantly above chance after controlling for
the likelihood that GPT-3 assigned to each response. In an
additional exploratory analysis of the importance of model
scale, we presented the stimuli to 4 smaller GPT-3 variants.

Methods

Materials We used the same story and question stimuli that
were presented to human participants. To test whether the
materials had been included in GPT-3’s training data, we
conducted a data contamination analysis using the guided in-
struction method (Golchin & Surdeanu, 2023). We used GPT-
3 to generate completions for the first half of each story either
with (guided) or without (unguided) a prompt prefix describ-
ing the origin of the data. We compared guided and unguided
generations to the reference completions and found no signif-
icant difference in either BLEURT (p = 0.91) or ROUGE-L
scores (p = 0.91), and no near-exact matches. These results
suggest that the materials were not in GPT-3’s training data.

Models For our main analysis, we used GPT-3 text-davinci-
002 (T. Brown et al., 2020), an autoregressive language model
with 175 billion parameters, pre-trained on 300bn tokens, and
additionally fine-tuned on instruction following data. Be-
cause we are interested in the sufficiency of distributional
information specifically, we did not use more recent models
(GPT-3.5 and GPT-4) that have been additionally fine-tuned
using (RLHF). Additionally, to investigate the role of model

https://osf.io/wh34s/


Figure 2: Mean accuracy by question type and embedding
level for human (black) and GPT-3 (red) responses. GPT-3
accuracy on mental questions was significantly above chance
for levels 1, 3, & 4, but deteriorated after level 5. GPT-3
accuracy remained high (> 80%) up to 7 levels of recursive
embedding for non-mental control questions.

scale, we perform the analyses on 4 pre-trained base GPT-
3 models with different numbers of parameters: ada (2.7B),
babbage (6.7B), curie (13B), and davinci (175B).

Procedure We operationalized the experiment as a lan-
guage modeling task, where the model predicted which of the
completions would be more likely to follow the main story.
For each question, we presented each potential response sepa-
rately and measured the probability assigned to each response
conditioned on the story. We presented all 4 combinations of
story and question format (implicit vs explicit). Because con-
tinuations varied considerably in length and other surface fea-
tures, we used PMIDC to control for the probability of the con-
tinuation independent of the story (Holtzman, West, Shwartz,
Choi, & Zettlemoyer, 2022). We scored the LLM as correct if
it assigned a higher probability to the consistent response, and
operationalized the LLM’s preference for the correct response
as the log-odds ratio (log(p([correct]))−log(p([incorrect])),
corrected with PMIDC.

Results
The results showed (1) that GPT-3 accuracy was significantly
above chance overall (z = 4.03, p < 0.001), and was above
chance for embedding levels 1, 3, & 4 (all p < 0.01). How-
ever, it was not significantly above chance for levels 2, 5,
6, & 7 (all p > 0.3). (2) Human accuracy on mental ques-
tions (85%) was significantly above GPT-3’s (73%, z = 3.42,
p< 0.001), with 87% of participants outperforming the LLM.
In a post-hoc exploratory analysis, we found GPT-3 accu-
racy on level 1-4 questions was not significantly different
from humans (86% vs 87%, z = 0.299, p = 0.765. (3) The
log-odds ratio between correct and incorrect responses was a
significant positive predictor of human accuracy (z = 2.095,

Figure 3: There was a small positive correlation between par-
ticipant accuracy on mental questions and the log-odds ratio
between the probabilities that GPT-3 assigned to correct and
incorrect options (r=0.14, z = 2.095, p = 0.036). However,
there was a large amount of variance in human responses that
was not explained by GPT-3 predictions.

p = 0.036, Figure 3). (4) Human accuracy was significantly
above chance at each embedding level, even after controlling
for the predictive effect of GPT-3 log-odds (all p < 0.03).

We also conducted a scaling analysis, presenting the same
stimuli to smaller GPT-3 variants. A model predicting mental
question accuracy on the basis of the log of the number of pa-
rameters showed a slight increase in scale from ada (63%) to
davinci (65%) (z = 3.06, p = .002). There was a much larger
gap in performance between the base davinci model and the
text-davinci-002 model used in our main analysis (73%, see
Figure 4). There was a more marked effect of scale on non-
mental control questions from ada 73% to davinci (95%).

Discussion
GPT-3 performed above chance at recursive mindreading
overall, specifically below 5 levels of embedding, where it
performed comparably to humans. To our knowledge, this is
the first result suggesting that LLMs exhibit behavior consis-
tent with recursive mindreading beyond 2 levels of embed-
ding. Accuracy at level 2 specifically was not significantly
above chance. However, given that accuracy was 75% and
that the model was more accurate at levels 3 and 4, this null
result could be due to insufficient power (16 observations).

The model’s performance dropped sharply at level 5, sug-
gesting that it is poor at tracking more deeply embedded men-
tal representations. Importantly, however, GPT-3 accuracy
remained above 80% through to 7 levels of recursion on non-
mental control concepts, implying that the model does not
struggle with complex recursive chains per se but that recur-
sive mentalizing specifically is particularly challenging.

There was a weak positive inter-item correlation between
GPT-3 predictions and human accuracy. However, a large



Figure 4: Accuracy for a subset of GPT-3 models. davinci
and the fine-tuned text-davinci-002 perform near ceiling on
control questions at all embedding levels, outperforming ada.
All models perform worse on Mental questions, especially
after 5 levels of embedding. However, the difference between
the smallest and largest models is less pronounced.

proportion of variation in human responses was not explained
by the model (see Figure 3), suggesting that humans and
LLMs used different information to respond to questions.
This was confirmed by the distributional baseline analysis;
human comprehenders were significantly above chance after
controlling for the distributional likelihood of responses as
measured by GPT-3. Even for question levels where humans
and GPT-3 had similar accuracy, human behavior was not ex-
plained by the probability that GPT-3 assigned to responses.

The scaling analysis showed a weak positive effect of
model scale, with a much more pronounced difference be-
tween davinci and text-davinci-002 on mental questions.
These models are the same size, but the latter was fine-tuned
on instruction following data. Unfortunately we do not know
exactly what this data comprised, but it indicates that data
quality may be more important than model scale for this task.

General Discussion
We ran a replication and extension of O’Grady et al. (2015) to
compare recursive mindreading in humans and distributional
language models. Our results provide a robust confirmation
of O’Grady et al.’s result that human comprehenders can track
mental states up to 7 levels of embedding. Not only did the
result replicate with text-only stimuli, but we found that par-
ticipants’ mindreading abilities could not be explained by ex-
ploiting information in the 2AFC answer format or learning
across blocks. Even in the first trial per block, mean accuracy
in the TF condition was 78.9%. The result is consistent with
claims that recursive mindreading is deeply engrained in hu-
man cultural and evolutionary history (Dunbar, 2009; Sper-
ber, 2000), and provides support for the plausibility of prag-
matic theories that require frequent recourse to deep mental

recursion (Grice, 1975; Sperber & Wilson, 1986).

GPT-3 also performed significantly above chance on the re-
cursive mindreading task overall, and performed comparably
to humans up to 4 levels of embedding. As has been noted
elsewhere (Trott et al., 2023), evidence that LLMs are suc-
cessful at a given task can be interpreted in multiple ways:
as evidence that the LLM has the construct which the task
is designed to measure (Kosinski, 2023); that the task is a
flawed measure of the construct (Bender & Koller, 2020); or
that the task has differential construct validity for humans and
LLMs (Ullman, 2023). The last interpretation relies on argu-
ing that LLMs solve the task in a superficial way that obviates
the processes implicated in theories of mentalizing. We ar-
gue that claims of differential construct validity must be sup-
ported by empirical evidence of systematic errors (McCoy,
Yao, Friedman, Hardy, & Griffiths, 2023). Mechanistic inter-
pretation could be especially helpful in resolving this debate
(Li et al., 2021; Lepori, Serre, & Pavlick, 2023). Evidence
that LLMs encode theoretically important intermediate rep-
resentations (e.g. mental states) could suggest they are not
using superficial shortcuts.

Finally, we were interested in quantifying the extent to
which distributional information learned by LLMs could ex-
plain human mindreading behavior. This question differs
from the previous one. LLMs could be found to solve a
task in a theoretically interesting way that nevertheless differs
from human cognitive mechanisms. We found scant evidence
to support this stronger claim and some evidence against it.
GPT-3 failed specifically at mental (but not control) questions
beyond 4 levels of embedding, while humans performed simi-
larly at both question types up to 7 levels. GPT-3 probabilities
were predictive of human accuracy, yet the correlation was
weak, and human accuracy was still high after accounting for
this correlation. If humans were using the same kind of dis-
tributional information as GPT-3 to solve these problems, we
would expect their responses to be better correlated. There-
fore, even where GPT-3 accuracy is comparable to humans,
the results suggest that it generates its responses in a differ-
ent manner than human comprehenders. In turn, this suggests
that humans draw on mechanisms beyond distributional lan-
guage statistics to reason about mental states.

Although larger models not tested here might perform bet-
ter, GPT-3 is arguably already overpowered with respect to
linguistic training data—being exposed to more than 1000x
as much text as a human (Warstadt & Bowman, 2022). In
fact, the large performance difference between text-davinci-
002 and davinci suggests that quality of data may matter
more for this task than scale. Many theories specify partic-
ular types of linguistic input thought to be most helpful for
learning to represent mental states, whether sentential com-
plements (de Villiers & de Villiers, 2014), mental state verbs
(J. R. Brown et al., 1996), or dialogue (P. L. Harris, 2005).
Future work could mimic training studies in humans (Hale
& Tager-Flusberg, 2003) by fine-tuning LLMs on different
types of language input and measuring the efficacy of each.
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Hughes, C., Jaffee, S. R., Happé, F., Taylor, A., Caspi, A., &
Moffitt, T. E. (2005). Origins of individual differences in
theory of mind: From nature to nurture? Child develop-
ment, 76(2), 356–370.

Jones, C. R., Trott, S., & Bergen, B. K. (to appear). Com-
paring Humans and Large Language Models on an Exper-
imental Protocol Inventory for Theory of Mind Evaluation
(EPITOME). Transactions of the Association for Compu-
tational Linguistics.

Kim, H., Sclar, M., Zhou, X., Bras, R. L., Kim, G., Choi,
Y., & Sap, M. (2023, October). FANToM: A Benchmark
for Stress-testing Machine Theory of Mind in Interactions
(No. arXiv:2310.15421). arXiv.

Kinderman, P., Dunbar, R., & Bentall, R. P. (1998, May).
Theory-of-mind deficits and causal attributions. British
Journal of Psychology, 89(2), 191–204. doi: 10.1111/
j.2044-8295.1998.tb02680.x

Kosinski, M. (2023, March). Theory of Mind May Have
Spontaneously Emerged in Large Language Models (No.
arXiv:2302.02083). arXiv. doi: 10.48550/arXiv.2302
.02083

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B.
(2015). Package ‘lmertest’. R package version, 2(0), 734.

Lepori, M. A., Serre, T., & Pavlick, E. (2023). Uncovering



Intermediate Variables in Transformers using Circuit Prob-
ing. arXiv e-prints, arXiv–2311.

Li, B. Z., Nye, M., & Andreas, J. (2021, June). Implicit
Representations of Meaning in Neural Language Models
(No. arXiv:2106.00737). arXiv.

McCoy, R. T., Yao, S., Friedman, D., Hardy, M., & Griffiths,
T. L. (2023, September). Embers of Autoregression: Un-
derstanding Large Language Models Through the Problem
They are Trained to Solve (No. arXiv:2309.13638). arXiv.

Michaelov, J. A., Coulson, S., & Bergen, B. K. (2022). So
cloze yet so far: N400 amplitude is better predicted by
distributional information than human predictability judge-
ments. IEEE Transactions on Cognitive and Developmen-
tal Systems.

O’Grady, C., Kliesch, C., Smith, K., & Scott-Phillips, T. C.
(2015, July). The ease and extent of recursive mindreading,
across implicit and explicit tasks. Evolution and Human
Behavior, 36(4), 313–322. doi: 10.1016/j.evolhumbehav
.2015.01.004

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., . . . others (2022). Training language models
to follow instructions with human feedback. Advances in
neural information processing systems, 35, 27730–27744.

Shapira, N., Levy, M., Alavi, S. H., Zhou, X., Choi, Y., Gold-
berg, Y., . . . Shwartz, V. (2023, May). Clever Hans or
Neural Theory of Mind? Stress Testing Social Reasoning
in Large Language Models (No. arXiv:2305.14763). arXiv.
doi: 10.48550/arXiv.2305.14763

Shintel, H., & Keysar, B. (2009). Less Is More: A Mini-
malist Account of Joint Action in Communication. Top-
ics in Cognitive Science, 1(2), 260–273. doi: 10.1111/
j.1756-8765.2009.01018.x

Sperber, D. (2000). Metarepresentations in an evolutionary
perspective. Metarepresentations: A multidisciplinary per-
spective, 10, 117–137. doi: 10.1093/oso/9780195141146
.003.0005

Sperber, D., & Wilson, D. (1986). Relevance: Communi-
cation and cognition (Vol. 142). Harvard University Press
Cambridge, MA.

Stiller, J., & Dunbar, R. (2007, January). Perspective-taking
and memory capacity predict social network size. Social
Networks, 29(1), 93–104. doi: 10.1016/j.socnet.2006.04
.001

Trott, S., & Bergen, B. (2023, March). Word meaning is both
categorical and continuous. Psychological Review. doi:
10.1037/rev0000420

Trott, S., Jones, C., Chang, T., Michaelov, J., & Bergen, B.
(2023). Do Large Language Models Know What Humans
Know? Cognitive Science, 47(7), e13309. doi: 10.1111/
cogs.13309

Ullman, T. (2023, March). Large Language Models
Fail on Trivial Alterations to Theory-of-Mind Tasks (No.
arXiv:2302.08399). arXiv.

Wang, K., Variengien, A., Conmy, A., Shlegeris, B., & Stein-
hardt, J. (2022, November). Interpretability in the Wild:

A Circuit for Indirect Object Identification in GPT-2 small
(No. arXiv:2211.00593). arXiv. doi: 10.48550/arXiv.2211
.00593

Warstadt, A., & Bowman, S. R. (2022, August). What Artifi-
cial Neural Networks Can Tell Us About Human Language
Acquisition (No. arXiv:2208.07998). arXiv.

Wellman, H. M., Cross, D., & Watson, J. (2001). Meta-
Analysis of Theory-of-Mind Development: The Truth
about False Belief. Child Development, 72(3), 655–684.
doi: 10.1111/1467-8624.00304


	Introduction
	Experiment 1
	Methods
	Results
	Discussion

	Experiment 2
	Methods
	Results
	Discussion

	General Discussion
	Acknowledgements
	References

