Today

- HW4 due (for reals)
- Next reading presentations: Weds, Feb 16 (R19)
- Experimental methods (through the example of discourse coherence)

Today

- Developing an experiment
 - Defining a research question
 - Operationalizing it
 - Design details

Defining a research question (you already know this)

Your research question is what you want to know. It should be:

- Novel (don't waste a year in the lab to save an hour in the library)
- Answerable
- Interesting (because it bears on some broader issue)

Defining a research question

- A sample question:
 How do people interpret pronouns?
- This would be a good research question (in 2002):
 - Novel: existing research didn't answer it
 - Answerable: using self-paced reading
 - Interesting: answering it could distinguish among three theories of pronoun processing

Defining a research question

- Centering Theory: Comprehenders assume that pronouns refer the the subjects of preceding sentences
 - Ann thanked Bob, and she congratulated Carl. (easier)
 - Ann thanked Bob, and he congratulated Carl. (harder)
- Parallel Preference Account: Comprehenders assume that pronouns refer to antecedents in the same position in preceding sentences
 - Ann thanked Bob, and Carl congratulated him. (easier)
 - Ann thanked Bob, and Carl congratulated her. (harder)
- Discourse Coherence Account: Comprehenders try to figure out the logical relation between the clauses, and interpret pronouns accordingly
 - Ann promoted Sue because she worked hard. (cause-effect)
 - Ann promoted Sue because she had a vested interest. (cause-effect)
 - Ann promoted Sue and Liz showed her the ropes. (resemblance)
 - Ann promoted Sue but Liz tried to sabotage her. (resemblance)

- To answer your research question
 - you have to transform it into a question about causation, namely, does X cause Y?
 - X is something that you can manipulate
 - Y is something that you can measure, like how long it takes someone to read a word or how often they pick one word or the other, etc.
 - Then you can ask whether manipulating X in a particular way causes differences in measurements of Y

 Do people have different levels of difficulty in processing pronouns, depending on the coherence relations between clauses?

Independent variables and dependent variables

- The thing you manipulate and that might affect the dependent variable is an independent variable or factor
 - Age, gender, handedness, etc. of the speaker
 - Native language of the experimental subject
 - Whether an image and a verb match
- A potentially affected thing, which can be directly and reliably measured, is a dependent variable or dependent measure
 - Time to press a button.
 - Reading time for a word or sentence
 - Number of words remembered
 - Number of times a particular word is used

Variables can be treated as continuous or categorical

- Categorical variables have more than one level or condition
 - Whether the second clause is related to the first one through causeeffect or resemblance
 - Whether the pronoun reference is parallel or not
- Continuous variables are measured on a scale
 - The reaction time (in miliseconds) to press a button

- Resemblance, Parallel Reference
 Fiona complimented Craig and similarly James congratulated him after the match but nobody took any notice.
- Resemblance, Nonparallel Reference Fiona complimented Craig and similarly James congratulated her after the match but nobody took any notice.
- Cause-Effect, Parallel Reference
 Fiona defeated Craig and so James congratulated him after the
 match but nobody took any notice.
- Cause-Effect, Nonparallel Reference
 Fiona defeated Craig and so James congratulated her after the match but nobody took any notice

Once you know your variables, you can rephrase your research question as a pair of hypotheses.

- Experimental hypothesis: the claim you want to test the likelihood of that the independent variable measurably and significantly influences the dependent variable.
- *Null hypothesis:* no relation between the variables.

You are testing for evidence for the experimental hypothesis and against the null hypothesis.

Design details

Any experiment is conducted with a number of

- participants (the people taking part)
- items (the things they're exposed to)

Participants

- Shouldn't know the intent of the experiment (it's OK to lie, as long as it hurts no-one and you clear it up afterwards).
- Must agree to participate, and be informed of any risks and anonymity procedures http://irb.ucsd.edu/
- Must not differ in important ways across conditions (so you shouldn't have all old people in one condition and young people in another condition if that's not what you're testing.)
- Must be representative of the population you're interested in generalizing over