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INTRODUCTION

The phonology of a language must provide a phonetic representa-
tion for each of the infinitely many sentences generated by the
syntax. Hence the phonology as well as the syntax is a finite device
that accounts for an infinite set of cases. To be sure, the phonology
differs in several important respects from the syntax. Where the
phrase-structure component takes a single symbol S as initial input
and responds with one of an infinite set of alternative outputs, the
phonology behaves as a mapping device accepting any of an
infinite set inputs and responding in each case with one or at most
a small set of alternative outputs. Under current views of syntax,
the transformations too constitute a mapping device, though of a
radically different sort from the phonology.

A phonological theory must characterize precisely the form of
phonologies and the way they process strings. Among the results
of such a theory will be a prediction as to what sorts of mappings
can be effected by the phonologies of natural languages. Such a
prediction would be analogous to a hypothesis in syntax that all
natural languages are, say, context-sensitive. Although it has
proven difficult to formulate and sustain strong hypotheses of this
sort in syntax, we will try to show that in phonology we are
somewhat more fortunate.

When confronted with several phonological formalisms with
the same mapping capacity, there are several lines of action we
could take. We could simply regard the formalisms as empirically
equivalent and choose one of them on the basis of practical
convenience. The standard view, however, is that formal theories
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of phonology carry an empirical burden far greater than the mere
prediction of phonologically possible mappings and that there are
therefore additional and perhaps even more important criteria for
choosing among them. In particular, it has been held that the
naturalness or plausibility of a phonological process ought to be
reflected formally by a corresponding simplicity of formulation.
Though this kind of consideration is much less well-defined than
mapping capacity, it has played a central role in most discussions
of notational devices in phonology and will serve as an important
guide to our present investigation.

Our first step will be to examine, in Chapter 2, certain me-
chanisms for characterizing sets of phonological strings. Although
the major focus of our attention will be on how such sets should
be represented in the contextual portions of rules, some incidental
consideration will be given to the problem of representing mor-
pheme structure. The major result of Chapter 2 will be that the
familiar schematic notation formalized in Chomsky and Halle
(1968) is quite restricted in its capacity to represent sets of strings
and consequently reflects a strong empirical claim concerning the
nature of such sets as they occur in phonology. Specifically, we
shall see that schemata can represent just the regular sets in the
technical sense of automata theory. In Chapter 3 we consider some
notational devices which do not add to the representational
capacity of schemata but which seem to be necessary for linguistic-
ally satisfactory formulations. Most of these devices are already
familiar from the literature, but we introduce them systematically
to show how they fit into a formal system and to establish the
notation to be employed in subsequent chapters. One new depar-
ture is suggested: the use of bracket notation to represent set
intersection.

It is not until Chapter 4 that rules are formally introduced.
There we consider some properties of two diametrically opposed
types of rule, the iterative and the simultaneous. Our conclusion
is that the iterative type is excessively powerful, being able to effect
virtually any computable mapping, while the simultaneous type
is highly restricted indeed, being able to effect only the sort of
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mapping known in automata theory as a finite-state transduction.
Thus to confine phonological rules to the simultaneous type is to
make another strong claim about phonology, a claim that is
essentially correct as far as I can tell.

In Chapter 5 we consider some rule types that are equivalent
to the simultaneous in mapping capacity but yield superior for-
mulations in many cases. These new types of rules are called right-
linear and left-linear. A body of empirical evidence is considered
which leads us to the conclusion that right-linear and left-linear
rules should both be allowed in phonological descriptions, although
the simultaneous type can apparently be dispensed with.

Linear rules are formalizations of processes which proceed from
left-to-right or from right-to-left through a string. Two other ways
of formalizing these processes, the restricted iterative and the
cyclic, are considered in Chapter 6 and rejected after a review of
some empirical evidence.

Distinctive features, originally introduced in Chapter 3, are
assumed to be binary up through Chapter 6. In Chapter 7 we
consider the effects of allowing integers as feature coefficients. It
seems clear that integer coefficients are necessary with at least
certain prosodic features. The formal consequence is that certain
rules are not strictly finite state and therefore stand as exceptions,
albeit of a highly restricted nature, to one of our assertions in
Chapter 4. A right-linear tone rule is discussed which manipulates
an integrally-valued pitch feature, and it is shown that this rule
cannot possibly be formulated with the standard notational de-
vices if simultaneous application is presupposed; a right-linear
formulation, on the other hand, seems quite satisfactory. We
continue with a discussion of the stress feature, also integrally
valued. Our general conclusion is that when stress is a culminative
feature, being placed on at most one vowel in any given rule
application, then it is either the rightmost or leftmost vowel fitting
the structural description of the rule that is affected. Thus in par-
ticular we consider unnecessary the complex ordering relations
among the subcases of the English Main Stress Rule as given by
Chomsky and Halle. It is shown that an alternative formulation,
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due to Ross, fits quite neatly into the more restricted formalism
that we propose.

Certain general conventions to be used throughout should be
taken note of. We use 0 to designate the null string; thus XQY =
XY for all strings X and Y. Also, if X isany string then X0 =
and X! = X1-1X for each positive integer i. Thus Xj = X,
X% = XX, X3 = XXX, and so on. It is important to keep in
mind that the notational devices just discussed will not be thought
of as actually occurring in expressions that appear in phonological
descriptions. Rather, they are part of the metalanguage we use to
talk about such expressions. This practice is different from that
of Chomsky and Halle (1968, Appendix to Chapter 8), who regard
0 and superscript and subscript integers as part of the notation
of phonological rules.

Certain portions of the text can be skipped without loss of
continpity. The beginning and end of such a portion is signaled
by (* and *), respectively.

2

SCHEMATA

We will assume that the phonology of any natural language can
be described in terms of a fixed universal alphabet of phonological
units. For simplicity of exposition we will usually assume that all
phonological units are segments, boundary symbols being usually
excluded from consideration. A string of phonological units will
be called a phonological string.

It is generally accepted that the phonological component of a
generative grammar consists wholly or largely of rules which
rewrite phonological strings. Each of these rules operates by
appropriately altering short substrings (usually single segments)
that satisfy certain conditions. Some of these conditions are
contextual: a segment will be rewritten in the specified way only
if the substring to the left belongs to a certain set (the left environ-
ment) and the substring to the right belongs to a certain set (the
right environment). Consider, for example, the Sanskrit rule which
changes a dental n into a retroflex n when the n is

(a) preceded somewhere in the same word by a retroflex con-
tinuant without an intervening palato-alveolar, retroflex, or
dental consonant, and

{b) followed immediately by a sonorant.!

1 For other descriptions of the Sanskrit nasal retroflexion rule see Allen
(1951), Emeneau and van Nooten (1968:7), Langendoen (1968: 84), and
Whitney (1889: 64-66). Our way of representing vowels and semivowels in
underlying forms is similar to that of Zwicky (1965). I wish to thank Professor
Murray Emeneau for personally clarifying certain points of Sanskrit grammar,
Any errors that remain are entirely my own.
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(a) characterizes the left environment of the rule, (b) the right
environment. Now suppose that the segments which may appear
in phonological representations when this rule applies fall into the
classes indicated in the following table. l

CONSONANTAL SEGMENTS

Palato-  Retro-
Velar  alveolar  flex Dental  Labial

k c t t P
kh ch th th ph
¢} g j d d b Noncontinuant
gh jh dh dh bh
n i n n m
. : } Continuant

NONCONSONANTAL SEGMENTS

a i u h

Then some instances of the left environment of the rule will be

us... (e.g. usnam becomes uspam)
ksubhaa... (e.g. ksubhaanaam becomes ksubhaanaam)
draui... (e.g. drauinam becomes drauinam)

The following strings, however, will not be instances of the left
environment:

upaakhiaa...  (e.g. upaakhiaanaam remains unchanged)
rathii... (e.g. rathiinaam remains unchanged)

Characterizing a rule environment, then, is a matter of describing
a set of phonological strings. How such sets are to be represented
formally is a crucial question of phonological theory.

In the past it has been proposed that a phonological description
also contain a set of statements or rules which characterize the
set of phonologically admissible morphemes in a language. The
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status and organization of this morpheme-structure component,
as we shall call it, is a matter of some controversy, but if we grant
it some sort of existence we are again faced with the problem of
representing a set of strings, namely, those strings that are phono-
logically admissible as morpheme shapes. (On the other hand,
there seems to be no need at all for a special component to describe
the set of admissible phonetic strings, since this set is determined
indirectly by the morpheme-structure component and the phono-
logical rules).

Several possible mechanisms for representing sets of phonolo-
gical strings immediately suggest themselves. We might, for
example, generate such sets by means of phrase-structure or even
transformational grammars. A number of authors (Romeo 1964,
Waratomasikkhadit 1964) have proposed that the admissible
phonetic or phonemic strings of a language be described in this
manner. However, no one to my knowledge has suggested the
use of such powerful devices to characterize the environment of a
phonological rule. Morpheme structure too has usually been
described otherwise by generative phonologists.

Another approach would be to allow the use of string variables
and truth-functional conditions. The left environment of the Sans-
krit nasal retroflexion rule could then be given as

PAQ

Conditions: A is a retroflex continuant;
Q % RBSif B is a palato-alveolar, retroflex or dental
consonant,

This way of describing environments is often found in the litera-
ture, though usually conjunction with other formal devices and
not in the pure form exemplified here,

Most formalisms actually used or proposed for writing phono-
logical rules and representing morpheme structure appear to be
versions of a schematic notation involving two fundamental
devices:

(2)  (a) Explicit finite lists. The usual notation is {Xi, ..., X},
where X, ..., Xga are the listed items.
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(b) Some means of representing an infinite list of the form
X0, X1, X2, X3, .... Both (X)o and (X)* have been used
in this function. We will use (X)*.

Using this notation we can represent the left environment of the
Sanskrit rule by the expression

(3) ({A1, ..y AgD* {1, s} ({k, kh, g, gh, 5, p, ph, b, bh, m,
a, i, u, h})*

where Aj, ..., Aq are all the segments of table (1).

Any meaningful expression involving brace and star notation
will be called a schema. From the informal explanation just given
it is probably fairly easy to construct and interpret the schemata
needed in phonology. However, we will not leave the matter to
the reader’s intuition but proceed to a formal development. To
begin with, we characterize well-formed schemata recursively in
(4). The term “elementary symbol”, used in (4), is for present
purposes equivalent to “phonological unit”.

(4)  (a) 0is a schema and each elementary symbol is a schema.
(by If Xy, ..., Xy are schemata then so is X;i...Xy.
(¢) If Xy, ..., Xq are schemata then so is {Xy, ..., Xy}
(d) If X is a schema then so is (X)*.

To verify that (3), for example, is a schema, we first note that
since each segment is a schema by virtue of (4a), the following are
also schemata by virtue of (4¢):

{Al, PR Aq}

{r, s}
{k, kh, g, gh, n, p, ph, b, bh, m, a, i, u, h}

Then because of (4d) each of the following is a schema too

(At oy Ag)*
({k, kh, g, gh, n, p, ph, b, bh, m, a, i, u, h})*

That (3) is a schema now follows directly by virtue of (4b).
At this point it would be well to establish explicitly certain
notational conventions which we have in fact been tacitly observing.
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Late capital letters U, ..., Z range over arbitrary schemata, the
earlier letters P, ..., T over elementary strings (strings of elementary
symbols), and the very early letters A, ..., E over elementary
symbols.

The interpretation of schemata in phonology is usually given
in the form of conventions which expand schemata into explicit
lists, which may be finite or infinite. The standard conventions
for brace and star are given in (5).

(5) (a) X{Y1, ..., Yo} Z expands to the finite list
XYiZ, ..., XYpZ
(b)y X(Y)*Z expands to the infinite list
XYOZ, XY1Z, XY?2Z, XY32Z, ...

(cf. Chomsky and Halle, 1968: 394, 398). By recursively applying
these conventions one presumably ends up with a list of elementary
strings. These strings constitute the set represented by the original
schema.

In general, of course, we cannot literally write out lists resulting
from expansions since these may very well be infinite. (5) is appa-
rently just a metaphorical version of (6).

(6)  (a) Each elementary string represents the set consisting of
that string alone.
() X {Y1, ..., Yu}Z represents the union of the sets
represented by XY1Z, ..., XYnZ.
(¢) X(Y)*Z represents the union of the sets represented by
XYZ, XY1Z, XY?Z, XY3Z, ...

It is convenient to say that a string is subsumed under a schema
if it belongs to the set represented by that schema.
Alternatively, then, we state (6) as in (7).

(7)  (a) Each elementary string subsumes itself and only itself.
(b) P is subsumed under X {Y1, ..., Yu} Z if and only if
it is subsumed under XY,Z for some i, 1 < i < n.
(¢) P is subsumed under X(Y)*Z if and only if it is sub-
sumed under XY!Z for some i = 0. '
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Another way of interpreting (5) is this. Suppose that instead of
replacing a schema by an expanded list we replace the schema by
an arbitrarily chosen item in that list. Continuing in this way we
eventually arrive at a particular elementary string. Suppose we say
that the sequence of items written down in this process is a chain,
and that adjacent items constitute links. We can formalize this
alternative interpretation of (5) as in (8).

(8)  (a) A brace-removing link is an ordered pair of the form

X{Y1, ..., Yn}Z, XY;2)

(b) A star-removing link is an ordered pair of the form
XYH*Z, XY1Z)
where i > 0.

(¢) A link is an ordered pair that is either a brace-removing
link or a star-removing link.

(d) A chain is a nonempty sequence (Xy, ..., X,) in which
(X1, X141) is a link for each i, 1 < i < n—1.

Under this conception a schema X represents the set of all P which
occur at the end of chains beginning with X. An example of a
chain beginning with schema (3) and ending in the string brahma
is given in (9). For brevity we have set

V == {k, kha ga gh) Ur ps ph’ b’ bh? m’ a’ i’ u’ h}

For each line we indicate whether it forms a brace-removing link
or a star-removing link with its predecessor.

@ UHr s} (M*

U {r, s} (V)* star-removing

b{r, s} (V)* brace-removing
br(V)* brace-removing
brVVvv star-removing

braVvyv brace-removing
brahVV brace-removing
brahmV brace-removing

brahma brace-removing
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Some fairly obvious consequences of the definitions given so far
are stated in (10).

10y (a) (X, X') is a link if and only if there are schemata W,
Y, Y, Z such that X = WYZ, X' = WY'Z, and
(Y, Y") is a link.
(b) If (X4, ..., Xu) and (Xy, ..., Xn,.m) are chains, then so
is (Xl, very Xn, ceey Xm.m)-
(¢c) If P 5 X, then P is subsumed under X if and only if
there is a link (X, X") such that P is subsumed under X'.

The question of primary interest, of course, is whether or not (7)
and (8) vield equivalent interpretations of schemata. The answer
is yes; that is,

(11) P is subsumed under X if and only if some chain begins
with X and ends in P.

(*First we prove (12)).

(12) If there is a chain beginning with X and ending in P, then
X subsumes P.

Let the chain be (X, ..., Xyu). Suppose n == 1. Then Xy = Xy = P.
But by (7a) P subsumes itself. Suppose next that n > 1 and that
(12) is true for all chains of length less than n. By the inductive
hypothesis P is subsumed under X, and hence, because (X1, Xa)
is a link, under X; (cf. (10c)).

To prove the converse of (12) we make use of a depth measure.
The depth of any schema X, denoted d(X), is defined recursively
as follows:

(13) (a) If X is an elementary string then d(X) = 1.
(b) If X == YZ then d(X) is the maximum of d(Y), d(Z).
©) If X = {Yy, ..., Yu} then d(X) is one greater than the
maximum of d(Y3), ..., d(Yx).
(d) If X = (Y)* then d(X) is one greater than d(Y).

This definition assigns a unique depth to every schema and is so
framed that every schema is at least as deep as any schema it
contains.
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Schema (3) provides convenient examples. Letting U and V have
the same values as in (9) we have:

Expression Depth
any segment 1
brahma

{r, s}
Y

v

U{r, s}

{r,s} V

(U)*

(V)*

U)* {r, s}

{r. s} (V)*
(U)* (V)*

U)* {r, s} (V)*

For each schema X of depth greater than 1 there will be schemata
W, Y, and X such that

(i) X = WYZ;
(i) Y has the form {...} or (...)*; and
(iii) Y has the same depth as X.

[ R R L B IR RN SR S S R S S

The number of distinct triples (W, Y Z) satisfying (i)-(iii) will be
called the linear complexity of X, denoted lc (X). Thus if X is
schema (3), X will have a linear complexity of 2 because both of
the following triples, but no others, satisfy ()-(iii):

@, (U)%, {r, s} (V)*)
(U)* {r, s}, (M*, 0)

where U and V are as in (9). Now suppose that P is subsumed
under X and that (W, Y, Z) is a triple satisfying (i)-(iii). Because
of (10a) and (10c) there is a schema Y’ such that (Y, Y’) is a link
and P is subsumed under WY’Z. The schema Y’ must be shallower
than Y and hence shallower than X (cf. (13c) and (13d)), while Y
itself is as deep as X because by hypothesis it satisfies (iii) above.
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Consequently, if the linear complexity of X is greater than 1, the
linear complexity of WY'Z will be one less than that of X, al-
though the depths of X and WY’Z will be the same. On the other
hand, if the linear complexity of X is 1, the depth of WY'Z will
be one less than that of X,

We can now show (14)

(14)  If the depth of X is greater than 1 and P is subsumed under
X, then there is a chain beginning with X and ending in
some schema which is shallower than X and which sub-
sumes P.

Suppose first that Ic (X) = 1. It follows from the remarks in the
preceding paragraph that there is a link (X, X’) where X’ is shal-
lower than X and subsumes P. But this link is also a chain. Now
suppose that (14) is true for 1¢(X) < k. Consider the case where
le (X) ==k + 1. It follows from the remarks of the preceding
paragraph that there is a link (X, X') where X' has the same depth
as X, has a linear complexity less than that of X, and subsumes P.
By the inductive hypothesis there is a chain (X', Xy, ..., Xya) such
that Xy is shallower than X' and subsumes P. But (X, X', X,
..., Xp) Is also a chain, in fact, a chain that begins with X and ends
in a schema that is shallower than X and subsumes P.

We are now ready to consider the converse of (12) directly.
This is given in (15).
(15) If Pis subsumed under X, then there is some chain beginning

with X and ending in P,

P alone is a chain beginning with X and ending in P. Suppose
next that (15) is true for d(X) < k. Consider the case where
d(X) == k - 1. By (14) there is a chain (X, X1, ..., Xp) in which X,
is shallower than X and X, subsumes P. By the inductive hypothesis
there is a chain (Xy, ..., Xpum) where Xnm == P. But (X, X3,
...y Xnsm) is a chain beginning with X and ending in P, This con-
cludes the proof of (11).%)

A third way of interpreting schemata, the last we shall consider,

is given in (16).
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(16)  (a) 0 subsumes itself and only itself, and each elementary

symbol subsumes itself and only itself.

(b) P is subsumed under XY if and only if there are strings
Q and R such that P = QR, Q is subsumed under X,
and R is subsumed under Y.

(¢) P is subsumed under {X, ..., X,} if and only if it is
subsumed under some X; (1 < i < n).

(d) P is subsumed under (X)* if and only if it is subsumed
under some schema of the form X! (i > 0).

(16) interprets schemata in precisely the same way as (7) and (8).
(*To demonstrate this we need only show that (16) implies (7) and
conversely. That (16) implies (7) can be seen from the fact that
(7a), (7b) and (7c) can be derived from (16) by taking (16a), (160),
and (16d), respectively, in conjunction with (16b). That (7) implies
(16) can be seen from the following considerations. (16a), (16c)
and (16d) are just special cases of (7a), (7b), and (7c), respectively.
As to (16b), we can reason as follows. First, suppose we know
that P = QR, where Q is subsumed under X and R is subsumed
under Y. Then there will be chains (X, ..., Xy) and Y1, ..., Ym)
such that X = Xy, Xy = Q, Y = Yy, and Y, = R. However,
(XaY1, ..., XuYy, ..., XuYu) is also a chain {cf. (10a)); in fact, it
is a chain beginning with XY and ending in P. On the other hand,
suppose we know that P is subsumed under XY. Then there will
be a chain beginning with XY and ending in P, and this chain
must have the form (X1Y1, ..., XpYy) where X = X;, Y = Y1,
and for each i, 1 < i < n—1, either

() Xy, Xy.1) is a link and Y1 = Yi,q, or else
(i) Xj == Xj,1 and (Y3, Y1) is a link.

(Again, cf. (10a).) Since (X1, ..., Xu) and (Y1, ..., Ym) can be
turned into chains merely by deleting repetitions, Xy = X sub-
sumes Xn and Yy == Y subsumes Ypn. But P = X, Yn, so that we
can take Xy and Yp, respectively, as Q and R.*)

The result just obtained is of some significance because it means
that schemata are just notational variants of regular expressions,
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familiar from theory of finite automata (cf. the definitions in
McNaughton and Yamada 1960, where the term ‘denote’ corres-
ponds to our ‘subsume’ and where the notation XjuU ... UX,
corresponds to our {Xi, ..., Xn}). The only discrepancy is the
trivial one that we have no method of representing the null set,
a gap we can immediately remedy by introducing the symbol O
(to be distinguished from @ denoting the empty string in our
metalanguage). We can, then, represent with schemata all and
only those sets that we can represent with regular expressions.
These sets, which are said to be regular, constitute a highly restrict-
ed family, ranking lowest in the following familiar hierarchy:

Recursively enumerable sets
Context-sensitive sets
Context-free sets

Regular sets.

As is well known, each family of sets in this list is a proper sub-
family of any family listed above it.

To propose, then, that schematic notation is adequate for
writing phonological descriptions is to assert that all the sets that
need to be referred to are regular. This is a strong claim in view
of the highly restricted nature of regular sets. If the claim is correct,
as I believe it is by and large, phonology stands in sharp contrast
to syntax, where comparably strong hypotheses seem not to be
tenable. Furthermore, we now have a profound reason for rejecting
the proposal discussed earlier that phrase-structure or transforma-
tional grammars be used to generate sets of phonological strings,
for many grammars of these types generate nonregular sets (indeed,
some recent work of Kimball (1967), of Peters and Ritchie (1969)
and of Ginsburg and Partee (1969) suggests that we can generate
any recursively enumerable set with a transformational grammar).
The free use of string variables is also excluded by the regularity
claim, for with such variables we can generate such sets as (i) and
(ii), which are known not to be regular.

(i) The set of all strings of the form PAP.
(ii) The set of all strings of the form PAQ, where P # Q.
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To conclude this chapter, let us consider which of the three equi-
valent ways of interpreting schemata should be taken as axiomatic.
This question is of no great theoretical import, but it must be
decided before we proceed to further development of the formalism
in the next chapter. In fact, we will find it most convenient to take
(16) as axiomatic, and we will henceforth refer to clauses (16a)-
(16d) as interpretive axioms. (8) then becomes a set of auxiliary
definitions and (7) becomes a set of theorems along with the other
assertions made in this section about subsumption. The clauses
(4a) through (4d), which define well-formed schemata, will be
known as constructive axioms.

REFINEMENTS OF THE FORMALISM

Neither braces nor star can be removed from the formalism of
schemata without drastically reducing the family of representable
sets. Hence both braces and star must be regarded as primitive
notational devices. However, we can exclude from the primitive
notation every expression of the form X {Y1, ..., X} Z in which
X or Z is nonnull, since such an expression represents exactly the
same set as { XY1Z, ..., XYnZ}. For an example we can turn again
to schema (3) of the preceding section. Letting U and V be as
in (9), we can write this schema as (U)* {r, s} (V)*. This schema,
which is not primitive, represents the same set as the primitive
schema

{ U r(V), (U)*s(V)*}

Although we can represent all phonologically relevant sets with
primitive schemata, assuming these sets to be regular, we cannot
always do so in a way that is satisfactory for linguistic purposes,
because we frequently cannot express linguistically significant
generalizations concerning the subsumed strings. For this reason
it is essential to introduce nonprimitive devices of an abbreviatory
nature into the formalism. The classic example of such a device
is nonprimitive brace notation, as exemplified in schema (3). Since
this use of braces is so well established in phonology, we will
accept it here without further comment,

Another aspect of our formalism that needs clarification is the
status of phonological units. We will make the usual assumption
that it is not the alphabet of units that is to be taken as primitive
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but rather some fixed finite universal set of distinctive features Fi,
..., Fa, each of which is associated with a set of possible coefficients.
Phonological units are then defined by the constructive axiom (17).

(17Y  Each expression of the form [KFy, ..., KaFa], where K is
a possible coefficient of F, is a phonological unit.

The expressions K F; will be called feature specifications. Of course,
since certain combinations of features specifications are inherently
impossible, (17) can be regarded only as a first approximation to
the definition of unit. However, we will attempt no further refine-
ment here.

The distinctive features to be assumed here unless otherwise
noted will be those proposed by Chomsky and Halle (1968:
Chapter 7) as amended on page 354 to include a feature of sylla-
bicity. We also assume that the possible coefficients of each feature
constitute a finite set; in fact, we generally take these coeflicients
to be just plus and minus. Under these assumptions the alphabet
of units is still finite, and the hypothesis of regularity put forward
in the previous chapter remains unaffected. The consequences of
allowing an infinite set of coefficients for some feature (all the
positive integers, say), which may involve a departure from
regularity, will be considered in a later chapter.

The distinctive features form the basis of a highly important
system of abbreviatory notation. A simple version of this notation
is given by (18), which includes one constructive axiom (18a) and
one interpretive axiom (18b).

(18) (a) Each feature specification is a schema.
{(b) P is subsumed under a feature specification if and only
if P is a unit containing that specification.

Thus ¢ is subsumed under -+cor(onal) but not under -—cor.

Suppose now we extend the formalism to include the new
axioms (19a) and (19b), which are constructive and interpretive,
respectively.

(19) (a) If Xy, ..., Xp are schemata, then [Xi, ..., Xn] is a schema.
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(b) P is subsumed under [Xi, ..., Xq] if and only if it is
subsumed under each X;.

In other words, [X1, ..., Xa] represents the intersection of the sets
represented by X, ..., Xp. Since the intersection of two or more
regular sets is regular, the bracket notation hereby introduced does
not increase the family of representable sets and can therefore be
regarded as nonprimitive,

The main justification for (19) is that it yields the full apparatus
of distinctive feature notation when conjoined with (18). Thus 7 is
subsumed under [-cor, —voice] because it is subsumed under
-+cor and —voice, but is not subsumed under [4-cor, -+voice]
because it is not subsumed under -+voice. To consider a slightly
more complex example possible under the extended formalism,
a is subsumed under [syl, { 4-tns, —high}] because it is subsumed
under both +-syl and {-+tns, —high}, and it is subsumed under
{-tns, —high} because it is subsumed under —high. Two minor
differences between our notation and the customary one should
be noted. First, we allow a feature specification to stand un-
bracketed to represent the set of all units containing that specifica-
tion. However, since [X] is equivalent to X, we can if we wish
bracket otherwise unadorned feature specifications, a practice we
will follow. The other difference is that our definitions imply
[ ]=10}; hence, [ ] stands for the set containing just the null
string rather than the set of all phonological units. For the latter
set we will use the special symbol $.

The need for distinctive feature notation is glaringly apparent
in schema (3), and we are now able to recast it more adequately.
Suppose that the segments of table (1) are specified in part as
follows (this analysis is based on Chomsky and Halle 1968: 314):

Coronal Distributed Anterior Continuant
k, kh, g, gh, ¢ o — -
¢, ch, j, jh, i - - — —
L ths d) dh’ n '+” - - -
t, th, d, dh, n 4 — - e
p, ph, b, bhy m — }-
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$ + t - +
$ + - - +
8 + - -+ +
r + - - +
1 + + +
a, i, u, h - — -

Schema (3) can then be reformulated as:
($)*[+cont, --cor, —ant, —distr] ([—cor]*

Although bracket notation has been motivated chiefly by its utility
in representing classes of phonological units, it has, under our
formalism, a potentially much vaster range of application. Con-
sider, for example, the readjustment rule of English (Chomsky and
Halle 1968: 175) which marks a vowel as exempt from part of a
certain laxing rule if that vowel is followed by a string subsumed
under

{-+cons, ~-ant, -+cor] [-+cons, -+-cor]

To be subsumed under this schema a string must have the following
characteristics:

(i) it must consist of two segments,
(i) it must consist of consonantal coronal segments, and
(iii) it must begin with an anterior segment.

Notice, however, that the schema does not directly express these
three generalizations; rather, it describes each of the two segments
in the cluster separately. It might be held that this is undesirable.
If so, we can use bracket notation to express (i)-(iii) directly, as
follows:

[$$, ([-+cons, --cor])*, [-+ant]$]

Whether this is to be regarded as an improvement is disputable,
of course. Consider another case. It has become customary to use
an expression of the form X; to stand for X{(X)*. Thus [—syl]e
would subsume clusters of two or more nonsyllabics. We can
reproduce the essence of this subscript notation by means of
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brackets and § if we want; for example, we can write [([—syl])*,
$8(8)*]. This expression says directly that (i) the subsumed strings
consist entirely of nonsyllabics and (ii) the subsumed strings
consist of two or more units. The bracket and $ notation may in
some respects be superior to the subscript notation. Consider the
following phenomenon, discussed by Kiparsky (1968: 180). Old
English had a rule that laxed a vowel before a cluster of at least
three consonants, and Early Middle English generalized the en-
vironment to include clusters of two consonants as well. Without
subscripts or extended use of brackets we could describe this
change as simplification of the schema [—syl] [—syl] [—syl] to
[—syl} [—syl]. However, a rule using this schema does not directly
express the generalization that members of the clusters are all
consonants; the segments are specified independently. We might
then want to write the schemata of the two historic versions of the
rule as [—sylls and [—sylle. Then, however, if the subscripts are
an official part of the notation there is no difference in simplicity,
and one way of explaining the historic change in the rule is lost.
It would seem that the schemata [([—syl])*, $3$$] and [([—syl])*,$$]
would resolve this dilemma if $ were assigned some small fractional
cost less than that of a distinctive feature.

The examples just discussed are intended only as illustrative.
I have not pursued a thorough investigation of bracket notation,
and it is entirely unclear to me how far its use should be extended.
Henceforth, therefore, we will usually confine our use of brackets
to the representation of classes of phonological units in conformity
with the usual custom.

Still another abbreviatory device that has come into wide use
is the variable. In the preceding section we saw that variables
ranging freely over strings make it possible to represent nonregular
sets, and since we are assuming that nonregular sets do not come
up in phonology, we will want to constrain variable notation in
some appropriate way. What we will do is allow variables to range
only over feature coefficients and phonological units.

The basic formalism for variable notation is given in (20). We
have adopted the convention of using capital letters from G through
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O for strings that are not necessarily either schemata or phono-
logical strings.

(20) (a) If K is a coefficient (resp.: unit) and L is a coefficient
(resp.: unit) variable, then K is a substitution instance
of L.
(b) If GKH is a schema and K is a substitution instance
of L, then GLH is a schema.
(¢) Let X be a schema of the form GoL1Gi...LyGp, where
each L; is a variable and each Gy is free of variables.
A substitution instance of X is a schema of the form
GoKi1Gi...KnGp, where K; is a substitution instance of
L1 and Ki = Kj if Lj == Lj‘
(d) If X contains variables, P is subsumed under X if and
only if it is subsumed under a substitution instance of X.

In deference to custom, but not from any consideration of prin-
ciple, we will use early Greek letters «, B, v, ... as coefficient
variables. Late Greek letters o, 7, v, ... will be used as unit variables.
Actually, unit variables have appeared in a different guise under
another name, but we will not be ready to discuss this matter until
we treat rule formalism.

As the formalism now stands it is inconsistent because para-
doxes such as the following arise at every turn. According to (20)
both t and g are substitution instances of ¢ and hence both are
subsumed under o. Also, according to (20), the strings ## and aa,
but not fa or af, are subsumed under co. But by (16b) both ta
and at are subsumed under oo. To avoid this contradiction we
must replace (16b) by (21).

(21)  If neither X nor Y contain variables, then P is subsumed
under XY if and only if there are strings Q and R such
that P = QR, Q is subsumed under X, and R is subsumed
under Y.

Now for a simple example involving unit variables. The set of
all strings of the form ABBA, where A is a vowel and B a con-
sonant, can be represented by the schema

REFINEMENTS OF THE FORMALISM 31
[+syl, o] [—syl, 7] [—syl, 1] [+syl, o]

Replacing the variables by a4 and/or ¢ in all the allowable ways,
we obtain the following as substitution instances of the above
schema:

[+syl, a] [—syl, t] [—syl, t] [+syl, a]
H“SYL a] [”Syl} a] [“SYL a] [“{”Syls\ a]
[Fsyl, ] [—syl, t] [—syl, t] [+syl, {]
[+syl, t] [syl, a] [—syl, a] [+syl, t]

The first of these substitution instances subsumes only the string
atta. The remaining three subsume nothing whatever, because
nothing can be subsumed under [—syl, a] or [-+syl, t]. This is
precisely the desired result.

There are certain auxiliary devices which are of little use by
themselves but can be employed to good effect in conjunction with
variable notation. Among these are conditions, counterparts, and
coeflicient strings.

Conditions are frequently used to further restrict the ways in
which variables can be replaced. Let us say that an expression of
the form (K = L}, where K and L are both units or both coeffi-
cients is an atomic condition. Nonatomic conditions can be
constructed by using negation, denoted by a prefixed hyphen, or
any of the sentential connectives ‘and’, ‘or’, ‘if...then’. To bring
conditions into schemata we add (22) to the existing axioms.
(22a) is constructive, (22b) interpretive.

(22) (a) If X is a schema containing no condition and if K is a
condition, then X:K is a schema,
(b) P is subsumed under X:K if and only if P is subsumed
under X and K is true.

Thus X:K represents either the same set as X or the null set,
according as K is true or false. Consider, for example, the schema
ot:—(c = 1), which represents the set of all clusters consisting of
two nonidentical units. Among the substitution instances of this
schema are nt:—(n = t) and tt:—(¢ = t). nt:—(n = t) has a true
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condition, n and ¢ being in fact nonidentical; consequently it
represents the same set as nr (which subsumes only itself). 7:
—(t == £) has a false condition and subsumes nothing.

Schemata that might be referred to as counterpart expressions
are introduced in (23).

(23)  (a) If Xy, ..., X, are feature specifications and A is a phono-
logical unit, then [X4, ..., Xy, (A)] is a schema.
(b} A is subsumed under
X1, ooy Xp, KFy, (Y1, ooy Yo, LFy, 21, o Ze])]
if and only if it is subsumed under
X1, ooy Xp, (Y1, o0 Yo, KFy, 2y, o, ZeD)
(©) [(A)] subsumes A and only A.

As an example, consider the counterpart expression [—voice, (d)].
(23b) tells us that to interpret this expression we should substitute
~—voice for the feature specification -+voice in ; the result will
be the voiceless counterpart of d, which is . The primary use of
counterpart expressions will be in the structural change portion
of rules, treated in the next chapter.

Coefficient variables become more flexible instruments if strings
of coefficients are allowed to occur in feature specifications and
if the familiar equivalences + -+ == -, — — = 4, b — == —,
and — - }- == — are adopted as interpretive principles. We intro-
duce this commonplace notation in (24).

(24) (a) If K is a nonempty string of coefficients of Fj, then
KFj is a schema.
(b) Let K be a possibly empty string of coefficients of Fj.
Then P is subsumed under -+ -+KF; (resp.: — —KFi,
4 —KF;, - -+KFy) if and only if it is subsumed under
4 KF; (resp.: -+KFi, —KFi, —KFy).

The variable notation and associated auxiliary devices just intro-
duced do not increase the family of sets representable by schemata.
1t is obvicus that this is true of the auxiliary devices considered
by themselves; for the very axioms that interpret them are essen-
tially statements of equivalence between schemata that contain
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them and schemata that do not; thus X:K is equivalent to X or g,
each counterpart expression is equivalent to a specific phonological
unit, and each schema of the form KF; is equivalent to either
+Fi or —Fi. As to unit and coefficient variables, each of them
has only a finite set of substitution instances. Hence any schema
X containing such variables, but no other variables, will have a
finite set of substitution instances Y1, ..., Ya and will be equivalent,
therefore, to the variable-free schema {Y1, ..., Yu}.

The schematic notation as it now stands will form the basis of
our discussion of rules, to which we turn in the next chapter.
Some customary devices that have not so far been mentioned,
such as angle brackets and parentheses, will be discussed in
Chapter 7.

Some conventions adopted for solely typographical reasons are
the following. A list of items separated by commas, whether
enclosed in brackets or braces, will frequently be displayed ver-
tically. In addition, we will write X* instead of (X)* where X is a

braced or bracketed schema or $. Thus our final reformulation
of schema (3) is

--cont
¢ -+cor

-~ant

- distr

[—cor}*
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ITERATIVE AND SIMULTANEOUS RULES

A generative phonology is a system of rules for mapping phono-
logical strings into phonetic realizations. We will suppose that the
most rudimentary form such a rule can have is P — P'/Q — R,
where P, Q, R, and P’ are phonological strings. This type of rule
will be referred to as elementary and will be said to have QPR as
its input and QPR as its output. Usually such a rule is thought
of as applying to any string of the form SQPRT, but for conve-
nience in formalization we will take the more atomistic view that
it applies only to the specific string QPR. If P = P’, the rule is
said to be vacuous.

In general it is neither possible nor desirable to represent a
phonology as an explicit list of elementary rules. Usually, in order
to preserve the finiteness of the grammar and to express significant
generalizations, we must resort to nonelementary rules which, by
appropriately economical means, can achieve the effect of a large
or even infinite series of elementary rules. It is a widely accepted
view that these nonelementary rules should be constructed by
means of a schematic notation similar to that developed in the
preceding chapters. Accordingly we will allow arrow, slash, and
dash to be elementary symbols along with phonological units,
thereby implicitly introducing schemata that subsume strings con-
taining these symbols. A nonelementary rule will then be thought
of as having the general structure G:X, where G is a symbol
designating a particular mode of application and X is a schema
subsuming elementary rules, these being referred to as the subrules
of G:X. For the time being we will not associate a particular kind
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of application with a particular kind of schematic expression; for
example, we will make no special association between conjunctive
ordering and braces. Rather, we will treat all types of schematic
expression in a uniform manner, assuming that the rule G:X treats
an input string in a way that is determinable entirely from

(i) the input string,
(i) the mode of application G, and
(iii) the set of elementary rules subsumed under X.

Just what modes of application should be made available to
phonological rules is the question to which we now turn.

There are some phonological rules which make changes at no
more than one place in any input form. A rule which places a
stress on the first vowel of a word or which devoices word-final
obstruents is a rule of this type. For any such rule a very simple
method of application suffices. Given the string P, we try to find
out whether the rule which we wish to apply to P has a subrule
whose input is P. If we find such a subrule, we take its output as
the output of the application; if we find no such rule we take P
itself as the output.

If all phonological rules were of the sort just described, our
discussion would be at an end. There are, of course, many rules
that can change several different places in an input string; in fact,
there may be no principled upper bound to the number of places
affected or to the distance separating these places. The Sanskrit
rule discussed toward the beginning of Chapter 2, for example,
must retroflex every a occurring in the appropriate environment,
regardless of how many such n’s there may be in an input word.
An elementary rule, however, changes just one place in an input
string. In general, then, we must allow several subrules to be
involved in each rule application. One way we might do this is
as follows. Instead of stopping after a single one-place application
we continue performing such applications until we obtain a string
which cannot be further changed. This sort of application, which
we shall call iterative, was once proposed by Harms (1966a: 608)
and has been discussed by McCawley (1968: 20-22) in connection
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with sets of rules that are not necessarily elementary in our sense.
We can formalize the notion of iterative rule as in (25).

(25) (a) Aniterative rule is an expression of the form /:X, where
X is a schema subsuming elementary rules (the subrules
of I'X) and [ is a constant denoting the mode of
application next to be defined.

(b) Let P and Q be phonological strings and let I:X be an
iterative rule. Then I:'X maps P into Q if and only if
there is a sequence (P3, ..., Pp) of phonological strings
such that

(i) Py = P;
(i) for each i, 1 =1 = n—1, some nonvacuous sub-
rule of 7:X has Py as input and Py,; as output;
(iii) 7:X has no nonvacuous subrule with Py as input;
and

(iv) Py = Q.

The sequence (P1, ..., Py), if it exists, can be referred to as an
application of I'X to P.

An iterative version of the Sanskrit nasal retroflexion rule is
given in (26).

+cor -+cont
(260 L -%«;ms e [H(SI t] / $* fzzi [—cor]*—[+son] $*
—distr

An application of this rule is displayed in (27). Each line other
than the first is derived from the preceding line by virtue of the
indicated subrule of (26).

(27)  usnataraanaam
usnataraanaam {n — n/us-—ataraanaam)
usnataraapaam {n — n/usnataraa-—aam)

Note that application (27) is complete despite the fact that the
schema in (26) subsumes both the following:
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n — n/us-ataraanaam
n - n/usnataraa-—aam

Because these subrules are vacuous they cannot be applied to the
output of (27). If they were allowed to apply, they would do so
forever, and (26) would not have provided usnataraanaam with
any realization at all. The desired cutput could have been obtained
only by complicating the expression to the left of the arrow to read

-+ COr

-+-nas

-+ ant
c

There is another application of (26) that has the same input and
output as (27), namely (28).

(28) usnataraanaam
usnataraanaam (n -» n/usnataraa—aam)
ugnataraanaam (n —» n/us—ataraanaam)

A method of application diametrically opposed to the iterative
would be this. Instead of applying subrules in series, changing the
string under consideration step by step, we extract just those sub-
rules which have this string as their common input and then make
simultaneously all the changes that these subrules call for. This
kind of application has been discussed by McCawley (1968: 20-22)
and has been proposed by Chomsky and Halle (1968: 392, 398) as
the appropriate way of interpreting rules of certain restricted forms.

Formalization of simultaneous rules would be straightforward
if every subrule were of the form A - P/R—S8, where A is a phono-
logical unit. Then, given the input string Az...An to which we wish
to apply the simultaneous rule N, we would say that the string T
was a possible output if T had the form Qi...Qy, where for each i
one of the following conditions held:

@ Ai - Qi/As...Ai_1 — Aj.1...An is a subrule of Nj or
(i) Qu is identical to A; and N has no subrule of the form
Ay - QA1 Al — Ai.. An
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However, we will also want to account for subrules of the form
P - Q/R — 8 where P consists of several phonological units,
since certain processes cannot be naturally formulated if such
subrules are excluded. For example, metathesis of two adjacent
vowels followed by a vowel is naturally formulated as

syl [-+syl ) . «
: J [ : meto/fﬁ [+sy]] $

but not as

[4syl] = ©/$* — [+syl]
T ot %

[syl] = of8* [-syl] — [ LTSV S

[0

On the other hand, we will make no attempt to accommodate sub-
rules of the form @ — Q/R-—S. It seems that in general we can
avoid such subrules with little if any loss of naturalness. Thus a
role that inserts a schwa between the second and third members
of a triconsonantal cluster could be written

[“‘“Syl] [””:yl] — 001/§* — [—syl] §*

o
just as well as
& > of §* [—syl] [syl] — [—syl] $*

In the next chapter we will consider the matter of insertion rules
again and find a natural place for them.

In formalizing simultaneous rules we will make use of the notion
of overlay, defined as follows. Let M = P> Q/R—S and
N = P’ — Q'/R'—S’ be clementary rules. Then M overlays N if
and only if

(if) R is not longer than R’, and
(iif) S is not longer than S’

Thus, for example, M will overlay N if
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M == ugnataraa — usnataraa/—naam,
N == n - n/us—ataraanaam

On the other hand, neither of the following two elementary rules
overlays the other:

n —» n/us-—astaraanaam
n -» n/usnataraa-—aam

We can now define simultaneous rules and their mode of appli-
cation as in (29).

(29)  (a) A simultaneous rule is an expression of the form S X,
where X is a schema subsuming elementary rules (the
subrules of §:X) and S is constant designating the mode
of rule application defined in (b) below. Fach subrule
of §:X is assumed to have the form P — Q/R—S where
P £ o,

(b) Let P and Q be phonological strings and let $:X be a
simultaneous rule. Then S:X maps P into Q if and only
if there is a finite sequence ((P1, Qi), ..., (Pn, Qn)) of
ordered pairs of strings such that

(i) nis odd;
(if) P == Py...Py;
(iii) for each even i, | <C i <C n, the elementary rule
Pi - Qi/PL...Piwl — Pi_%l...Pn
is a subrule of $:X;
(iv) for each odd i, I <Ci <_n, P; = Q; and the ele-
mentary rule
Py — QyP1..Piy — PPy
overlays no subrule of $:X;

(v) Q= Q1...Qn.
The sequence ((P1, Q1), ..., (Py, Py)) will be called an application
of §:X with input P and output Q. The elementary rule
Pi e Qj/Pl...Pi,,; - Pi §,1...Pu

will be referred to as the ith step of the application (thus the even
steps are subrules of $:X and the odd steps are vacuous and
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overlay no subrules of §:X). Frequently we will display a simulta-
neous application in the form

Ps .
“Pa
P Q2 2 Qo

We can create a simultancous version of the Sanskrit nasal retrq'
flexion rule by simply substituting S for 7 in (26). We then have (30).

L cor -t-cont
N —ant -+cor . .
(30) §: | --nas »[ ©) } / g ant [~cor]*—[-son]$
N —distr

This rule gives the same result as (26) but is applied in a radically
different way. For example, (30) converts usnataraanaam into
usnataraanaam by virtue of the following application:

n n
ug  ataraa _ aam
n n

This application consists of the following five steps:

1. us —» us/—nataraanaam

2. n — n/us—ataraanaam

3. ataraa — ataraa/ugn-—naam
4. n -» p/usnataraa—aam

5. aam — aam/usnataraan—

The even-numbered steps are subrules of (30), and the odd-
numbered steps are vacuous elementary rules that overlay no
subrules of (30).

Consider the array

n
ugnataraa o 2am

This sequence consists of three steps:
1. usnataraa —» ugnataraa/-—naam
2. n -» pfugnataraa-—aam
3. aam —» aam/usnataraan-—
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However, we have no application of rule (30) here because the
putative first step overlays

n — n/us—ataraanaam.

which is a subrule of (30).
The vowel metathesis rule discussed earlier is a less restricted
version of a rule proposed by Chomsky and Halle (1968: 361) for

the Kasem language. We give the rule again in (31) in a simulta-
neous formulation,

Gy s [‘*F;yl] [“*':yl] - 16/ 8% — [+syl]

This rule changes piai into paii by virtue of the application
ia ;
P ai
There are three steps:

1. p — p/—iai
2. ia — aifp—i
3. i— i/pia—

Note that under our formalism (31) is ambiguous. The hypothe-
tical input string piaia would be changed into either paiia or piiaa
depending on which of the following applications was taken:
ia . . ai
p i pi . 2

In order to get an idea of the relative power of iterative and
simultaneous rules we will compare them with certain mapping
devices whose formal properties have been well studied. We will
assume that a finite sequence of mapping devices is also a mapping
device, operating according to principle (32).

(32) Let M = (My, ..., Mp) be a sequence of mapping devices
(possibly rules), and let T and J be arbitrary strings (not
necessarily phonological). Then M maps I into J if and
only if there is a sequence Iy, ..., In,1 of strings such that
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=1,

If M maps P into Q, we will sometimes say, using phonological
terminology, that M provides Q as a realization of P. Note that
a realization must be a phonological string; if M maps P into [
alone and 1 is not a phonological string, then M provides P with
no realization. It should be borne in mind that in general a mapping
device may provide a given string with zero, one, several, or in-
finitely many realizations. A device will be called monogenic if it
provides each string with exactly one realization. Phonological
rules are typically monogenic. Alternative realizations provided to
a string by a nonmonogenic rule are said to be in free varia-
tion.

One highly generalized and unstructured form of mapping device
is the (unrestricted) rewriting system. Chomsky (1963: 357) has
discussed devices of this sort from the point of view of string
generation, but here we are interested in the way they convert
strings into strings. We can assume that each rewriting system is
characterized by (i) a finite alphabet of symbols, including the
boundary symbol h and the start symbol s, and (ii) a finite set of
instructions of the form I — J, where I and J are strings of symbols
in the system’s alphabet. We define an immediate derivation of a
rewriting system M as an expression of the form GIH — GJH,
where 1-- J is an instruction of M, and G and H are strings of
symbols in the alphabet of M. A string I is automatically put in
the form of hslh when it is presented as input to a rewriting system,
and the system then applies in a series of immediate derivations
as long as possible. In other words, rewriting systems operate
according to (33).

(33) Let M be a rewriting system and let T and J be strings
consisting of symbols of M but containing no occurrences
of h or s. Then M maps I into J if and only if there is a
sequence (I3, ..., In) strings such that
(i) 1y = hslh;
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Git) for each i, 1 =i =n—1, L = I;,1 is an immediate
derivation of M;

(iii) M has no immediate derivation of the form I, — 1’
for any I'; and

(iv) I = hlh,

It is a well-established principle that any mapping whatever that
can be computed by a finitely statable, well-defined procedure can
be effected by a rewriting system (in particular, by a Turing
machine, which is a special kind of rewriting system). Hence any
theory which allows phonological rules to simulate arbitrary re-
writing systems is seriously defective, for it asserts next to nothing
about the sorts of mappings these rules can perform. It is rather
alarming, then, that we can prove (34).

(34) If M is a monogenic rewriting system there is a finite
sequence of phonological rules, each simultaneous or itera-
tive, which provides every phonological string with the
same realization that M does.

(*In fact, the behavior of a monogenic rewriting system M can
be simulated by a single iterative rule if we suitably code the
symbols Dy, ..., D, of that system in terms of phonological units.
To do this we can pick two arbitrary distinct phonological units
A and B as coding elements. Assuming the symbols Dy, ..., Dy
to be pairwise distinct and to include all phonological units, we
define the coding of Dy, denoted (D;), to be the string AIB2>1B.
If q1, ..., qu are symbols of M (not necessarily distinct), we define
{q1...qny (the coding of the string qi...qn) to be the string
{q1y...{qny. Thus {GH) = {G) (H) for any strings G and H
over the alphabet of M. Furthermore, since the correspondence
between the individual symbols and their encodings is one for one,
every string is unambiguously recoverable from its encoding.
Now suppose M has the instructions I — Ji, ..., Im — Jm.
Since M is monogenic we can assume that each phonological string
is the input of exactly one application of M. This follows from the
way rewriting systems can be constructed to imitate Turing ma-
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chines (cf. Chomsky 1963: 358-9). We can therefore assume that
Ii % Ji for each i. For if any application of M contained an
immediate derivation of the form GLH - GLiH, this application
would never terminate, and at least one input string would have
no realization, contrary to the assumption that M is monogenic.
Consequently if Iy = Jj, the instruction I; — J; would never
be invoked in any application and would therefore be elimin-
able.

Now let Y be the schema {{D1), ..., {(Da>}*, and let X be the
schema { {I1) — {J1), ..., {Im) = {Jud} /Y -—Y. We can show that
K -» L is an immediate derivation of M if and only if X subsumes
some nonvacuous elementary rule whose input is (K> and whose
output is {L>. Suppose first that K - L is an immediate deriva-
tion of M. Then there will be G, H, and 1 such that K = GIiH,
L = GLH, and I; — J; is an instruction of M. But then X will
subsume {§i) — {J / {G) ~ {H), whose input and output are
(K> and {1.), respectively. Furthermore, because I; 5 Ji, {I;) =
{J:>. Suppose next that (K> and {L.> are the input and output,
respectively, of some elementary rule subsumed under X. Since
this elementary rule has the form (&) ~» {Jp> /[ {(G) — {H) for

(L) = {GJiH). Consequently, because the coding is biunique,
K = GIijH and L = GJ;H. But then, since I; ~» J; is an instruction
of M, K — L is an immediate derivation of M. By considering
these remarks and comparing (33) with (25b) one can easily verify
that M maps P into Q if and only if 7:X maps (hsPh> into ¢hQh),
where P and Q are phonological strings.

Consider again the symbols Dy, ..., Dy of M. We can assume
that for some k, 3 = k = a, the symbols Dy, ..., Dy are phono-
logical units and that the remaining symbols (which must include
at least h and s) are special symbols of M used for internal compu-
tation. Thus the encoding of each phonological unit will have the

We can now design a rule sequence which will literally map P
into Q if and only if M does so. The sequence has the form (N,
..., Nj) where
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Ni = 8: {Dy - <D, ..., Dy > (D) }/8* — $*,

Ne = I: { @ — (hs) [—AKS*, o - (h)/$FARA*BY— 1},
N3 = I: @ — (hshd/—,

Ny = I: X,

N = S: {(h) > &, (D) — Dy, ..., (Dg> — Dy }/$* — $*

(N1, Ng) will convert P into <hsPh) when P is nonempty, and N3
will do the same job when P is empty. Ny then maps ¢hsPh) into
<(hQh} if and only if M maps P into Q, as explained previously.
Ns then converts <hQh) into Q.*)

It would seem, then, that a rule formalism which permits both
simultaneous and iterative rules is excessively powerful. Notice
that we reduce this power very little if we exclude simultaneous
rules and permit only iterative ones. (*For let M, Ny, ..., N5 be
as above. Obtain Ny from Ny by replacing S with 7 and deleting
Dk — (D) and Dyyg — (Diys)> from the braced expression.
Obtain N’5 from N5 by simply replacing S with /. Then (N3, No,
Na, Ny, N’5) will provide each phonological string that is free of
occurrences of Dy; and Dg with the same realization that M does.
Strings containing occurrences of Dy and Dyq will not in general
be handled correctly, of course; Dy and Di1 have been sacrified
to the cause of coding.*)

Suppose we try the polar alternative of excluding iterative rules
altogether and allowing simultaneous rules only, We will try to
show that simultaneous rules are equivalent to finite-state machi-
nes, which are highly restricted in structure and are incapable, in
fact, of performing a vast array of computable mappings, though
the mappings they do perform seem to include most of those that
arise in phonology.

In its most general form a finite-state machine is characterized by

(i) a finite alphabet of input symbols,
(ii) a finite alphabet of output symbols,
(iii) a finite set of symbols referred to as states,
(iv) a subset of states designated as left terminal,
(v) a subset of states designated as right terminal, and
(vi) a finite set of instructions of the form ¢ K -~ L ¢,
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where q and q’ are states, K is an input symbol, and
L is a string of output symbols.

By a computation of a finite-state machine M we will mean an
expression of the form qiKj - Lj...quKy — Lygn,1 where for
each i, 1 =1 == n, qiKi - Liqi,1 is an instruction of M. K;...Kp
will be referred to as the input of the computation, and Li...Ly
will be referred to as the output. If q; is a left terminal state of M
and qu1 is a right terminal state of M, the computation is said
to be terminated. By definition M maps I into J if and only if
some terminated computation of M has I as input and J as output.

A simple example of a finite-state machine is the one charac-
terized as follows:

Input alphabet: A, B

Output alphabet: A, B, C

States: 0, 1, 2

Left terminal states: 0

Right terminal states: 0, 1

Instructions: 0A - Al
0A — C2
0B — RO
1A — CO
1B - Bl
ZA > Al

One of the computations of this machine is

0B - BOA — A1B — B1A —» COB — BOA — C2A — Al

The input of the computation is BABABAA, and the output is
BABCBCA. Since the first symbol of the computation is a left-
terminal state of the machine and the last symbol is a right terminal
state, the computation is terminated. Hence we may conclude that
the machine maps BABABAA into BABCBCA.

We will say that a finite-state machine is right-deterministic if
it has exactly one left terminal state and, for each state q and each
input symbol K, exactly one instruction of the form qK —» Lg'.
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If a finite-state machine has exactly one right terminal state and,
for each state q and input symbol K, exactly one instruction of
the form q'K — Lq, we will say that the machine is left-deter-
ministic. We denote by I1t(M) the unique left terminal state of a
right-deterministic machine M, and use rt(M) for the unique right
terminal state of a left-deterministic machine M,

We will be especially concerned with two varieties of finite state
machines called right transducers and left transducers. A right
transducer is a right-deterministic finite-state machine all of whose
states are right terminal. Clearly a device M of this sort will convert
I'into J if and only if J is the output of that unique computation
which has I as input and had 1t(M) as its leftmost state. A left
transducer is defined in completely symmetric manner as a left-
deterministic finite state machine all of whose states are left
terminal. A right transducer is also known as a generalized se-
quential machine (Ginsburg 1962: 5, 20), the unique left terminal
state being also known as the start state or the initial state,

Although we have been regarding mapping devices only as
mechanisms for converting strings into strings, this being the
function of phonological rules, we can also look upon them as
devices for defining or representing sets of strings. Suppose we say
that a phonological string P is accepted by a mapping device M
if and only if M provides P with at least one realization. Those
phonological strings that are accepted by the device constitute
the defined set. It is well known that a set is regular if and only
if it is defined by some finite-state machine. Hence phonological
schemata and finite-state machines are entirely equivalent in their
capacity to represent sets.

If we wish to construct a finite-state machine solely for the
purpose of accepting strings there is no point in providing it withw
output symbols. We might just as well let each instruction be of
the form gK > q'. Then the machine accepts P if and only if it
maps P into @. A finite-state machine of this sort is called a finite-
state automaton. If such a machine is right- (left-) deterministic it
is said to be a right- (left-) automaton.

What we wish to show now is (35).
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(35) If N is a monogenic simultaneous rule then there is a left
transducer My and a right transducer Mz such that (M;, M)
provides each phonological string with the same realization
that N does.

(*We let N = S$:X be an arbitrary monogenic simultaneous rule,
fixed throughout the proof. If N has no subrules it leaves input
strings unchanged, and there is a trivial transducer that can
accomplish this identity mapping. Henceforth we assume N to
have at least one subrule.

Without loss of generality we can assume that X = {Xy, ..., Xm}
is a primitive schema. Each of the X; will then have the form
Yi -+ Y'y/U; — Vi, where Yj, Y's, Uy, and Vi subsume only phono-
logical strings. To see this consider each of the X; in turn, letting
(Z1, E1. ..., Zyp, By, Zy,1) be the longest sequence of schemata such
that Xy = Z;E1...ZpEpZyp .1 and such that each Ex(h = 1, ..., p)
is an arrow, a slash, or a dash. Since this sequence is maximally
long none of the Z; can have the form Z'E'Z” where E’ is arrow,
slash, or dash and 2 and Z” are schemata. Hence if arrow, slash,
or dash appears anywhere within a Z;j it must be inside a braced
or starred expression (these being the only nonelementary schematic
expressions allowed in primitive schemata). Now, any braced
expression that is a proper part of a primitive schema must be
enclosed in starred parentheses. Consequently, an arrow, slash, or
dash appearing within any of the Z; must be inside a starred
expression. However, if an arrow, slash or dash appeared inside
a starred expression it could be repeated an unbounded number of
times in subsumed strings, and X would subsume some expressions
that were not elementary rules.

Because simultaneous rules have no subrules of the form
@ — QR — T, we can assume that the Y; subsume only nonempty
strings. We can also assume that each Y'; is a phonological string,
since if §:X is indeed monogenic none of the Y'; need subsume
more than one phonological string. We will set S; = Y'; and
Wy == Y{V;.

The first step in creating a pair of transducers to simulate N is
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to construct, for each k = 1, ..., m, two left automata Wy and Vy
that represent the same regular sets as Wy and Vi, respectively,
and two right automata Uy and Y\ that represent the same regular
sets as Uk and Yy, respectively. In addition we define Uy = ¥ =
Wo = Vo to be the automaton having just the one state 0 and having
the instruction OA — 0 for each phonological unit A. 0 is taken
to be both left terminal and right terminal. This device is at once
a right automaton and a left automaton, and it accepts every
phonological string. Suppose now we define ((zo, ..., zm)k = 2k
for any (m--1) -tuple (z9, ..., zm) and any k = 0, ..., m. An
(m-1) -tuple x will be said to be a W-state (resp.: V-state, U-state)
if and only if (x)x is a state of Wy (resp.: Vi, Uy) for each k = 0,
..., m. Henceforth we use the letters w, v, and u to stand for
W-states, V-states, and U-states respectively. The letter y will
range over states of all the Y;. Also we define

W o= (rt(WQ), oo l‘t(Wm))
L. (rt(Vo), vees rt(Vm))
a = (1t(To), ..., 1t(Tw))

We now construct the first transducer My. The input alphabet
of Mj is the phonological alphabet and the output alphabet consists
of triples of the form (w, v, A). The states of M; are couples of
the form (w, v). Each state of My is left terminal, and M; has
the unique right terminal state (W, ¥). For each input symbol A
and each state (w, v), My has the instruction (W', v)A — (W', V', A)
(w, v) where for each k = 0, ..., m, (W)kA — (W) and (vV)zA —
(V) are instructions of Wy and Vi, respectively. M; is a left
transducer which, when presented with an input string A;...Ap,
responds with the output string (w1, vi, A1)...(Wn, Va, Apn) where
the conditions of (35) hold.

(35) (a) for each k, 0 = k = m, (Wn)xAn — rt(Wy)
and (vo)kAn — rt(Vy) are instructions of Wy and Vy,
respectively.
(b) for each k, 0 ==k == m, and each i, 1 =i =n—1,
(Wi)kAq > (Wip)x and (Vi)Ag = (Vig)k
are instructions of Wy and Vy, respectively.

-
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The second transducer My is constructed as follows. The input
alphabet of My is identical to the output alphabet of My, and the
output alphabet of Mg is again the phonological alphabet, The sta-
tes of My are triples of the form (u, y, k) where 0 =k ==m, y is a
state of Y, and u is a U-state. Mg has the unique left terminal state
(4, 0, 0), and all of the states of My are right terminal. The instruc-
tions of My are given by (36).

(36) For each input symbol (w, v, A) and each state (u, v, k),
Mg has the instruction (u, y, k) (w, v, A) - Q@/, ¥, k)
where

of Uk;
(by) if y is a right terminal state of Yy and (v)i is a left
terminal state of Vi, then
(1) k' is the highest integer such that (u)x is a right
terminal state of Uy and (W) is a left terminal
state of Wy (such an integer will always exist
because 0, at least, is such an integer),
(i) Q = A or Sy according as k' is equal to or
greater than zero, and
(iii) 1t(Yw)A —> ¥’ is an instruction of Yi;
(b2) if y is not a right terminal state of Yi or (v)x is not a
left terminal state of Vy, then
0 K =k
(i) Q = o, and
(iii) yA —> y’ is an instruction of Yy = Y.

Each string (w1, v1, A1) ... (Wn, Vo, Ap) produced as output by
M; will be the input of exactly one terminated computation of the
right transducer Mg, and this computation will have the general
form Kg...Ky where

Ko = (uo, yo, ko) and
Ky = (wi, vi, AY) — Ti(ug, yi, k) fori =1, ..., n.

(M1, My), then, maps A1...Ap into Ty...Tyh. We need to show that
the simultaneous rule N also maps Aj...Ay into Ty... Ty,
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Since (uo, yo, ko) is the left-terminal state of Ms we have (37).
(37)  up =10, yp = 0, and ko = 0.

For each i = 1, ..., n and each r = 0, ..., m, the expression
(ui-1)rA; — (up)r is an instruction of Ur. This follows by virtue
of (36a). Because of (37) (uo)r = 1t(U;). Also Uy is right-deter-
ministic. Hence

(uo)rAr — (upr... Ay — (ugde

is that unique computation of Uy that begins with 1t(U;) and has
Aj...A; as input. Therefore A;...A; is accepted by Uy if and only if
(u)r is a right-terminal state of Ur. Reasoning in a similar way
from (35) we can show that A;...Ay is accepted by W, (resp.: Vy)
if and only if (wi)r (resp.: (vi)r) is a left-terminal state of Wy
(resp.: V). Hence we have (38).

(38) If1l=i=nand!l =r=m,then
(a) Aj...A; is subsumed under U, if and only if (u;)s is a
right-terminal state of Ur; and
(b) Aj...Ay is subsumed under W, (resp.: V) if and only
if (wi)r (resp.: (v)r) is a left-terminal state of W,
(resp.: Vy).

n For each i = 1, ..., n we will say that i is a type 1 or type 2 index
according as the instruction

(Wi-1, i1, Ki_1) (Wi, vi, As) — Ti(ug, vi, ki)

satisfies condition (36b1) or (36bg). Note that these conditions are
mutually exclusive and exhaust the possibilities, so that each i from
1 through n must be either a type 1 index or a type 2 index, but
cannot be both.

Now suppose that i is a type 1 index such that kj == 9, By
(36by.ii) Ty = A;. Furthermore, if i << n, then i + I is a type 1
index; this follows from the fact that y; = 0 = (viy )o = (Vis ),
is both a right-terminal state and a left-terminal state of
Yki =Y, = V, = Vki (cf. 36b.). By (36b,.i) there is no r > k;
such that (u;_,),, is a right-terminal state of U, and (W, is a
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left-terminal state of Wy. Hence by (38) there is no r > k; such
that Aj...Aj_1 is subsumed under Uy and A;...A, is subsumed
under Wy. Consequently, since Wy = Y,V foreachr =1, ..., m,
there is no j such that A;...A; is subsumed under Yr and Aj,1...An
is subsumed under V; (taking Ay,1...Aq = @ ifj = n). Therefore
there is no j such that

Aju.Aj R Ti...Tj/Al...Aiwl — Aj._;‘]”.An

is a subrule of N.
We can immediately extend the results of the preceding paragraph
to (39).

(39) Letiand j be indices such that i == j and such that each i,
i=1i =], is a type | index for which ki = 0. Then
(d) Ti...Tj = Ai.-.Aj;
(b) if j << n,j- 1isa type 1 index;
(c) there are no i, 1" such that i =i =1i" =j and such
that the elementary rule
A A T T Ay AL - Ay A
is a subrule of N. Consequently the elementary rule
A[...Aj e Ti...Tj/Al...Ai_l e Ai+1‘..An
does not overlay any subrule of N.

Now let i be a type 1 index for which k; > 0. Because of (38)
Ay...A;_ is subsumed under U,, and A,...A, is subsumed under
Wy,. Also, T, = §,,. Now let j be the highest integer not greater
than n such that each h, i < h =£j, is a type 2 index. (If j == i,
then of course there is no such h; but if j > i, then j at least will
be such an h.) For each such h we have Ty = @ by (36bs.ii), and
therefore T; = Sy, = T;...T;. Now because of (36b,), we have
(D) and (iD):

(i) kn =kp' fori=h <= h' =], and
(i) ¥p-1Ap — Vo 18 an instruction of ?k, for each
hyi<th=j.

Also, because of (36b,.iii), 1t(¥,)A; —y; is an instruction of
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?h‘ Recall, too, that ?ki is right-deterministic, Consequently,
for i == h =j,

WY) A =y Ay >y,

is that unique computation of ¥,, which has A,...A; as input and
1t(Y,,) as its leftmost state. Therefore A;...A, is accepted by Yy,
if and only if y, is a right-terminal state of Y,,. Therefore A;...A,
is subsumed under Y, if and only if y, is a right-terminal state of
Y\, Now consider the two cases j < nand j = n.

Case 1: j < n. j-++1 must then be type 1 index. But then because
of (36b,) y; is a right-terminal state of ¥, (= Y. and
(Vi+ 1), is a left-terminal state of V, (= V, ). From this
it follows that A;...A; is subsumed under Y, and A, ;...A
is subsumed under V.

Case 2: j = n. Because A;...A, is subsumed under W,, and
W, = Y,V one of the following conditions must hold:
(i) & is subsumed under Y,, and A,...A, is subsumed
under V;
(ii) for some h, i = h < j, A;...A, is subsumed under
Yy, and A, .. A, is subsumed under V,; or
(i) A;...A, is subsumed under Y,, and & is subsumed
under V..
(i) is not satisfied because Y,, subsumes only nonempty
strings (recall that rule N has no insertion subrules).
(1i) would imply that y, is a right-terminal state of ¥,
and (vyy), Is a left-terminal state of Vki; therefore,
since k;, = k;, h+1 would be a type 1 index (cf. 36b,).
This would contradict the assumption that each integer
greater than i and equal to or less than j is a type 2 index.
The only remaining possibility is (iii).

n

What we have managed to show is (40).

(40) Leti be a type 1 index for which k; > 0 and let j be the
highest integer such that each h, i < h =, is a type 2
index. Then
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Ai«‘vAj ~p Ti"‘Tj/Al"'Ai“l - Aj+1"'An
is subsumed under Y, - S, /U, — V,, and is therefore a
subrule of N.

Now let sy, ..., s, be all and only the type 1 indices for which
k,, > 0. (1 =i=7p). We can assume s; < s, if i < i. For
each i, 1 ==1 == p, let t; be the highest index such that each h,
sy < h == {3, is a type 2 index. Also, define ty = Oand sp.1 = n-+1,
Clearly, ti < s3,1. Now for i == 0, ..., p we define

Poivi = Ay A 13

Qaivt = Ty Ay, 13

Poriva = A, Ay and

Quiuz = T Ty,
From these definitions it follows that A;...Ap = Py...Pgp,1 and
T1...Ta == Q1...Qap,1. Now for each j, 1 =] = 2p--1, let M; be
the elementary rule

Py Qi/P1...Pi_1 — Py Papr

If j is even, then j = 2i+42 for some 1, 0 == i = p. Then M; is
the elementary rule

Ay AL 2 T Ty AL A o — Aysg A,
which, by virtue of (40), is a subrule of N. If j is odd thenj = 2i--1

AH‘%‘I“‘ASQ-&g‘“’l s Tt{+1...Ti+1/A1..,A“ b A An

S

There are now two cases to consider, t; == si;y and ¢ < 8,31

Case 1: ty = sy, 1—1. Then Py = Q; == ¢ and M; overlays no
subrule of N. The reason for this is that M; is an inser-
tion rule, and an insertion can overlay only another
insertion rule. However, N has no insertion subrules.

Case 2: t; < si,1— 1. We consider first the type of index that
i 4+ 1 1s.

Subcase 1. 1 == 0. Then t; -+ 1 == 1, which is a type 1
index because ko = 0, yo = 0 is a right-ter-
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minal state of Yo, and (vi)o = 0 is a left-
terminal state of V.

Subcase 2. i > 0. Then t; + 1 is less than n = s;,1—1
and is a type 1 index. For if t; -+ 1 were a
type 2 index t; would not be the highest index
such that each h, s; << h = t;, is a type 2
index, contrary to the definition of t;.

Now although t;+1 is a type 1 index it is not among the

Sty ---» Sy, because it is larger than s; and less than 8,41

Therefore k,,, ; = 0. Hence, because of (39¢), M; overlays

no subrule of N. Furthermore, (39a) implies that P; = Q;

We have now shown that when j is even M; is a subrule of N and
that when j is odd P; = Q; and M; overlays no subrule of N.
Consequently the sequence ((P1, Q1), ..., (Pap,1, Qap.1)), whose
jth step is M;, is an application of N. But this application has
P1...P2p.1 = Ar...Apasinputand Q;...Qgp,1 = Ti... Ty as output.
Thus N maps Ay...Ap into Ty... Ty Q.E.D.¥)

A left (right) transducer takes into account only what is to the
right (left) of an input symbol in determining how to replace that
symbol in the output. Schiitzenberger (1961) has investigated a
finite-state device which takes into account both the left and right
contexts of each input symbol. This machine, referred to simply
as a finite transducer, is characterized by the following struc-
tures:

(i) Two finite alphabets I and O (the input symbols and
the output symbols).

(i) A right automaton U whose input alphabet is T and
whose states are all right terminal.

(iii)) A left automaton V whose input alphabet is I and
whose states are all left terminal.

(iv) A finite set of output instructions of the form
uKv — L, where u is a state of U, K is an input
symbol, v is a state of V, and L is a string of output
symbols. There is exactly one instruction uKv — L
for each uKv.
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The way a finite transducer works is this. Suppose K, ..., K,

are input symbols. For each i (i =1,.., 1) let :i% be the
i
ightmost : : , o) ..

FIBATMOSL - iate in that terminated computation of S «72 which
leftmost |V

O ANK K :

has ; ' ! ‘g as its input, and suppose w,K,v; — L; is the

L Ki+l“'Kt\ )

output instruction for u;K,v;, Then the transducer converts
K,...K,into L;...L,.

Schiitzenberger has pointed out that an ordered pair of machines,
one of which is a left transducer and the other of which is a right
transducer, is equivalent to some finite transducer in the mapping
its effects. Consequently every monogenic simultaneous rule is
similarly equivalent to some finite transducer. Thus a theory
which permits only simultaneous rules in a phonological descrip-
tion embodies a very strong hypothesis concerning the sorts of
string mappings that are possible in phonology, for finite trans-
ducers rank next to the bottom in the following hierarchy.

Rewriting machines (in particular, Turing machines).
Linear bounded transducers.

Pushdown-store transducers.

Finite transducers.

Right transducers; left transducers.

S e

It is well known that every mapping effected by a device of type
n in this list can be effected by a device of type n—1 (n == 2, ..., 5),
but not conversely. (Right transducers and left transducers arc not
comparable with each other in this way because some right trans-
ducers can do things that left transducers can’t and vice-versa.)
There seem, in fact, to be few phonological processes that exceed
the capacity of finite transducers; the ones known to me belong
to the very restricted types to be discussed in Chapter 7. In at
least one respect, then, simultaneous rules are far more appro-
priate to phonology than iterative ones.

If the finite-state claim is correct, there is a clear choice between
two recent proposals concerning the way such processes as con-

ITERATIVE AND SIMULTANEOUS RULES 57

traction, metathesis, gemination, and degemination should be
handled. Postal (1969: 298) has suggested the use of variables
ranging over lists of feature specifications. He had in mind a
vowel-doubling rule, but his considerations extend to the other
types of processes just mentioned. Thus according to Postal’s
proposal the rule mentioned earlier that metathesized two vowels
before another vowel could be written:

20337 o

Under our view of brackets as representing set intersection, Postal’s
variable can in most cases be regarded as a unit variable. It is
possible, therefore, to simplify slightly the above rule to

[F[3]or1 oo

This, of course, is just a notational variant of our rule (31).

Another way of writing the kind of rule under discussion is with
transformational format:

X, [+syll, [+syl]l, [+syl, Y

1 5 3 4 5w1,3,2,4,5

Langacker (1969: 858-9) has correctly observed that all phono-
logical rules can be written in this format, and has proposed that
this be done. Notice, however, that in this format integers are used
as general string variables. Consequently many nonfinite-state
operations can be performed, such as the reduplication of whole
words. Such reduplications occur, to be sure (for example, in
Indonesian). However, reduplication seems to be a morphological
process spelling out grammatical elements or features (e.g. plura-
lity or distribution) and seems to have no phonological origin or
motivation. It belongs rather with what Chomsky and Halle
(1968: 9-11) have referred to as readjustment rules. I would claim
that phonological rules proper never require general string varia-
bles for their expression and would therefore reject Langacker’s
proposal as insufficiently restrictive.
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The simultaneous rule model is, of course, just one of a number
of conceivable formalisms that would impose a finite-state
restriction on phonological rules. One could, for example, propose
that phonological rules be finite transducers in the literal sense.
No one would take such a suggestion seriously because of the
linguistic inappropriateness of the formulations it would require.
We will, however, give serious consideration to another type of
rule, so far employed very rarely in generative phonology, which
shares some of the properties of the iterative type but which, like
the simultaneous rule, is a finite-state device in its mapping power.
This new type of rule, to be called linear, has two subvarieties
which we will refer to as the right-linear and the left-linear.

We consider first right-linear rules. To describe how these
function it will be convenient to use the notion of right-overlap.
f M=P~>QR—-S and N=P - Q - Q/R'—§ are
elementary rules, we will say that M right-overlaps N if and only if

(i) RPS = R'P'S,
(i) R is not longer than R/, and
(iii) RP is longer than R’.

Thus M right-overlaps N if

M == usnataraa -» usnataraa/--naam,
N = n - g/us—ataraanaam
or if

N = a —» d/nat— pikkappikai
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However, M does not right-overlap N if

M = ug — ug/—nataraanaam,
N = n -» p/us—ataraanaam

or if
M == watunis — watunis/— ”as,
N = § — a/watunis—as

We now formalize right-linear rules as in (41).

(41) (a) A right-linear rule is an expression of the form R:X
where X is a schema subsuming elementary rules
subrules of R:X) and R is a constant denoting the
mode of application next to be defined. There is no
restriction on the form of subrules.

(b) Let P and Q be phonological strings and let R:X be a
right-linear rule. Then R:X maps P into Q if and only
if there is a sequence ((P1, Q1), ..., (Pn, Qn)) of ordered
pairs of strings such that

() nis odd;
(ii) P = Py...Py;
(iii) for each even i, 2 =i = n—1, the elementary
rule
Py > Qi/Q1...Q1u1 — Piyr . Py
is a subrule of R:X;
(iv) for each odd i, 1 =i =n, P; = Q; and the
elementary rule
Pi — Qi/Q1...Qi1 — Piy1... Py
does not right-overlap any subrule of R:X;
) Q = Q1...Qu.
The sequence ((Py, Qu), ..., (Pn, Qn)), which we will
write also as
P Py
Py Q2 Ps... Qn_l
will be referred to as an application of R:X with input P
and output Q. The ith rightward step of the application
is defined as the elementary rule P; - Qy/Q1...Qi 3

Pm
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~ Pyi,1...Pn. Thus the even-numbered steps are subrules
of R:X and the odd-numbered steps right-overlap no
subrules of R:X.

The Sanskrit nasal retroflexion rule can be used again to illustrate
the linear modes of application. Using the same schema as we did
in the simultaneous rule (30), we can construct the right-linear
rule (42).

+nas -cor

. —ant « | +cont B % [ ®

(42) R: | -+tcor| — [ ©) ]/$ ~ant [—cor}*—[+son]$
¢ ~—distr

This will give the same results as the simultaneous rule. In par-
ticular, it sill convert usnataraanaam into uspataraanaam by virtue
of the same application, namely:

n n
us  ataraa  aam
n n

Here, however, the application is regarded as consisting of the
following rightward steps:

1. us - us/—nataraanaam

2. n - n/ug-—ataraanaam

3. ataraa —» ataraa/usn-—-naam
4. n ~» n/usnataraa--aam

5. aam -»> aam/usnataraan—

Notice that the dash appears in the leftmost possible position in
the first step and occupies positions successively farther to the
right in subsequent steps. Furthermore the output of each step
other than the last is the input to the next step. Consider in
particular the even-numbered steps, which are also subrules of (42).
Since the other steps are vacuous, the input to the application is
also the input to the second step, the output of the second step
is the input to the fourth step, and the output of the fourth step
is the output of the application as a whole. Now observe that 2
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and 4 are precisely those subrules which were invoked in appli-
cation (27) of the iterative version of the rule (26). Thus the
right linear rule, though formally very similar to the simultaneous
rule, is in another respect quite like the iterative rule. In general,
the function of R is to restrict iterative applications to those
which proceed through the input string in a strictly left-to-right
manner, stopping when the right end of the string is reached even
if the string in its current form is the input to a further subrule.
These conditions on application are sufficient to reduce the power
of iterative rules to that of finite-state devices. For it is possible
to demonstrate (43).

(43) If N is a monogenic right-linear rule there is a left-trans-
ducer M; and a right transducer M2 such that (M;, Ms)
provides each nonempty phonological string with exactly
the same realization that N does.

(* We can let N = R:X. As in the proof of (35) we can assume
that X = {Xj, ..., Xm} is a primitive schema in which each X
has the form Y; — S;/U;—Vi, where S; is a phonological string
and Y, Uj, and V; subsume only phonological strings.

Suppose first that N has no subrules of the form § -~ P/Q — R.
The construction of (Mi, Mg2) proceeds exactly as the proof of
(35) down through the construction of Mj. My has the states,
input alphabet, and output alphabet described in the proof of (35),
and a similar designation of left and right terminal states, but a
different set of instructions. Specifically, Mz will have, for each
state (u, y, k) and each input symbol (w, v, A), the instruction
(u,y, kK)(w, v, A) - Q(u', ', k) where all the conditions of (44)
hold.

(44) (a) For each r, 1 =r = m, (u'), is the rightmost state
of that computation of U, which has (u), as its leftmost
state and Q as its input. (Notice that v’ must be iden-
tical to u if Q == 0.)

(b1) (Identical to (36b;).)
{(b2) (Identical to (36by).)
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The proof that (Mi, M3) does the same work as N will not be
given, since it follows the same general lines as the corresponding
portion of the proof of (35). The minor differences that exist
between the two proofs stem from the discrepancy between (44a)
and (36a).

Suppose now that N has some subrules of the form 0 — P/Q—R.
Consider a modified formalism that allows the symbol Z, distinct
from all phonological units and not subsumed under $, to be
referred to in rules. Obtain Y';, U'y, and V'y from Y, Ui, Vi,
respectively, by substituting Z*A Z* for each phonological unit A.
Let X" = {X'y, ..., X'm}, where

X'y = Y'i - §;/U's — V'3 if Y; does not subsume 9,
Y,i”"si/UHMV’i e

xi— L (zaps sz (ze || 00
ZW’S{/U’i . V/l .

Let X" be a primitive schema equivalent to X’. The rule R:X"
has no subrules of the form & — P/Q — R but will simulate N
in the following sense. Where N maps a nonempty phonological
string A1...Ay into By..By, R:X" will map ZA1Z...AnZ into
KiB;...KyxBxKyx,1, where each Ky is a string (possibly empty) of
Z’s. In the manner described in the preceding paragraph we can
construct a left transducer M; and a right transducer Mz such
that (Mj, Ma) performs the same mapping as N’ It is a trivial
matter to construct a left transducer My that inserts Z between
each pair of adjacent segments in a nonempty input string and
also at the beginning and end of the string. Even more trivial is the
construction of a transducer Mz that deletes all occurrences of Z.
It is obvious that the 4-tuple (Mo, M1, Mg, M3) will provide each
nonempty phonological string with the same realization that
N does. By virtue of some results of Schiitzenberger (1961), this
4-tuple is equivalent to a single finite transducer and hence to
an ordered pair of machines the first of which is a left transducer
and the second a right transducer.*)

In formalizing simultaneous rules we failed to accommodate
insertion processes as they are usually formulated. Insertion
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subrules of right-linear rules are interpreted in the desired way,
however. The rule of vowel-doubling proposed for Mohawk
by Postal (1969) can, for example, be given as the right-linear
rule (45).

o

(45) R: 0~ G/s*tmsyu . ?[”%““S}’I‘J g+

This will turn watunis®as into watunisa®as by virtue of the appli-
cation

watunis g “as
This application has the three steps

watunis — watunis/—?as
§ ~» a/watunis-"as
Yas — Pas/watunisa-—

Left-linear application is the mirror image of right-linear appli-
cation. Corresponding to the notion of right-overlap is that of
left-overlap. f M =P -~ Q/R —~S and N=P —» Q R’ — §
are two elementary rules we will say that M left overlaps N if
and only if

(i) RPS = R'P'S,
(i) S is not longer than §', and
(iii) PS is longer than 8.

Then we formalize left-linear rules as in (46).

(46) (a) A left-linear rule is an expression of the form L:X
where X is a schema subsuming elementary rules (the
subrules of L:X) and L is a constant denoting the mode
of application next to be defined.

(b) Let P and Q be phonological strings and let L:X be a
left-linear rule. Then L:X maps P into Q if and only
if there is a sequence ((P1, Qu), ..., (Pn, Qu)) of ordered
pairs of strings such that

(i) nis odd;
(it) P = Py...Py;
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(iii) for each even i, 2 =i = n — 1, the elementary
rule
P; = Qi/Pn.. Py — Q... Qy
is a subrule of L:X;
(iv) for each odd i, 1 =i=n, Py = Q; and the
elementary rule
P; = Qi/Pn...Pit — Qi1 Qs
does not left-overlap any subrule of L:X;
(v) Q = Qu...Q1
The sequence ((Py, Qu), ..., (P1, Q1)), which we can
write as
Pu1 P2

Pn.o... Py,
Pn Qn..l n-2 Q2 1

will be called an application of L:X with input P and
output Q. By the ith leftward step of this application
we mean the elementary rule

P > Qi/Pu..Pia — Q1. Q1

The Sanskrit nasal retroflexion can be expressed by a left-linear
rule involving the same schema as was used in (42). The 1eft-linff:ar
rule gives the same results as the right-linear one, and its application
has the same form. For example usnataraanaam is processed by
the application

n n
ug  ataraa _ aam
n n

Here, however, the application is regarded as consisting of the
following leftward steps:

aam -» aam/usnataraa-—

n -> n/usnataraa—aam

. ataraa -» ataraajusn-—naam

. 1 —> njus—ataraanaam

5. us - ug/—npataraanaam

L .

This application bears the same relation to the iterative ap?lication
(28) as the right-linear application of (42) displayed earlier bears
to 27).
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By a proof symmetric to that outlined for (43) we can show
that for each monogenic left-linear rule N there is a right-transducer
M; and a left-transducer My such that (M1, Mg) provides each
phonological nonempty phonological string with the same
realization that N does.

Let us now review some of the formal results concerning simul-
taneous and linear rules. We have seen that each monogenic rule
that is right-linear, left-linear, or simultaneous is equivalent in the
mapping it effects to an ordered pair of machines each of which
is right transducer or a left transducer. Hence each such rule is
equivalent to some finite transducer in the sense of Schiitzen-
berger. By a series of simple constructions, here omitted, we can
show converses to these assertions. Specifically, every finite trans-
ducer can be simulated by some simultaneous rule.! Furthermore,
every finite transducer can be simulated by each of at least four
ordered pairs of linear rules, representing the four possible com-
binations of directionality:

Ist rule 2nd rule
right-linear right-linear
right-linear left-linear
left-linear right-linear
left-linear left-linear

A further result, due to Schiitzenberger (1961), is that any n-tuple
of finite transducers operating in sequence can be reduced to a
single finite transducer. Consequently, if f is a many-to-one
mapping of phonological strings into phonological strings, the
following assertions are entirely equivalent:

(a) f can be effected by a sequence of finite transducers;
(b) f can be effected by a finite transducer;

1 It would be absurd, of course, to maintain that the class of phonological
rules coincides with the class of rules that can perform finite-state trans-
ductions. As the formalism stands it is still possible to formulate many
implausible rules, even in a simple way. The extent to which the further
necessary restrictions can be stated in general formal terms is not a question
we will go into here, It is obvious. however, that substantive contraints, such
as those imposed by marking conventions, are indispensable.
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(c) f can be effected by a sequence of simultaneous rules;
(d) f can be effected by a simultaneous rule;

(e) fcan be effected by a sequence of right-linear rules;
(f) fcan be effected by a sequence of left-linear rules.

It makes no difference to mapping capacity, then, which of the
three types of rules (simultaneous, right-linear, left-linear) we
allow in phonological descriptions. We will therefore have to
judge the three types solely on the basis of the formulations they
yield. In general, we prefer formulations which reflect naturalness,
plausibility, or significant generality with corresponding notational
economy. From the point of view of this criterion, it seems clear
that we need a formalism that allows both right-linear and left-
linear rules, and we shall consider a variety of cases that support
this view.

Southern Paiute has a well-known rule which, counting from
left to right, stresses the even-numbered nonfinal vowels of a word.
If we follow Chomsky and Halle (1968:244-9) concerning the
nature of underlying representations in Southern Paiute, assuming
in particular that underlying vowels are all unstressed and are to be
equated with Sapir’s moras, and if we assume that their rule (44)
(which among other things deletes word-final consonants) precedes
the alternating stress rule, then we can formulate the latter rule in
right-linear fashion as in (47) below. (This formulation is similar
to DRULE R7 of Bobrow and Fraser (1968: 769).)

4n R [”*gy]] - [“mﬂm* [""*"SY‘ }{msyn*__w

(o) ~-gtress

To see how this rule works consider the word natapikkappikai
‘they threw rocks at one another’. The underlying form given here
is that presumably imposed by the analysis of Chomsky and Halle.
This word is the input of one application of (47), namely:

4 ... a . a.,
nat , pikk |, ppik | i
4 P a PP a
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This application consists of the following rightward steps:

1. nat —» nat/—apikkappikai
2. a - d/nat-—pikkappikai

3. pikk -» pikk/natd —appikai
4. a -» d/natdpikk—ppikai

5. ppik - ppik/natdpikkd —ai
6. a — d/natdpikkdppik—i

7. 1 — i/natdpikkdppikd—

The even-numbered steps are subrules of (47) and the odd-num-
bered steps are vacuous and do not right-overlap any subrule of
(47). Note that although (47) has the subrules

i — i/natap-—kkappikai
i - i/natapikkapp—kai

it will never yield the incorrect stress pattern *nataptkkappikai by
virtue of any putative application

natap i kkapp : kai

The first step here would be
natap — natap/— ikkappikai,

which right overlaps the subrule
a -~ d/nat—pikkappikai

The output natdpikkdppikdi is subject to further rules which convert
it ultimately into nardwikdppixda, where . denotes voicelessness.
(See Chomsky and Halle, loc. cit. and also Harms 1966h. We
assume that the ‘spirantization’ rule (46) of Chomsky and Halle
follows rather than precedes the alternating stress rule; apparently
the two rules can occur in either order with no difference in effect.)

Notice that we cannot obtain a simultaneous or left-linear
version of the Southern Paiute stress rule merely by substituting L
or S for R in (46); if we did we would have a rule that stressed



68 LINEAR RULES

every nonfirst nonlast vowel in a word, deriving forms like
*natdpikkdppkitkdi. Apparently the optimum solution in simul-
tancous or left-lincar mode is something like formulation (48).

@) L, S: [“ﬁjy‘] [*‘(‘:fﬂ  T—sy1) * [+ syl]

(L-sy1) * [syl] [—sy1] * [--sy1]) * [—syl]*— §§*

This rule states explicitly that a vowel to be stressed must be pre-
ceded by an odd-number of vowels within the word, whereas
the right linear rule (47) requires merely that the nearest preceding
vowel be unstressed. This difference in the way the left-hand
context is described is the source of the somewhat greater sim-
plicity of the right-linear formulation.

The case just considered represents a common phenomenon.
Eastern Ojibwa, as described by Bloomfield (1956), apparently has
an alternating stress rule much like that of Southern Paiute,
though with some additional complications. The distinction
between underlying long and short vowels, irrelevant in Southern
Paiute where phonetic long vowels seem to derive from under-
lying geminate clusters, is crucial in Eastern Ojibwa. According
to Bloomfield (p.5) the odd-numbered vowels in a sequence
containing only short vowels are reduced in “loudness” some-
times to the point of complete disappearance and undergo changes
in quality. Other vowels, whether long or short, are not reduced.
Furthermore, the last vowel in a word is never reduced. If we
interpret reduced loudness as lack of stress and nonreduced
loudness as presence of stress, and if we assume underlying vowels
to be unstressed, we can formalize Bloomfield’s descriptive
statement (apart from the quality changes) in terms of the sequence
of rules in (49). In (49a) and (49b) any of the three application
modes, right-linear, simultancous, and left-linear, are possible,
and we can omit the mode designator.

+syl q
49 (@ +tns | > [»,u:g)e SS] /8% —$*
o
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-+ syl [ A-stress 1 ol
o | | [ il LS
[ syl "--stress +-syl } el
© R {: o }D) (o) }/&;* [wstress [yl *—$*

(49a) stresses long vowels, (49b) stresses final vowels, and (49c),
the only essentially right-lincar rule, stresses the even-numbered
vowels in a sequence of syllables containing vowels still unstressed
(which are identical to nonlast short vowels after application of
(49a-b)). We can illustrate the operation of (49) with part of the
paradigm of a verb meaning ‘to arrive’.

nintako8§in  takoSSin takoS8ino:k
takoS$§in6:k  48a
nintako$§in  takoSSin 48b
nintdko§Sin  takos8in tako88ind k. 48c¢
nentakusSin  tekoSSin tek688end:k  reduced-vowel
quality changes
‘I arrive’ ‘he arrives”  ‘they arrive’

The best we can do in trying to formulate the Eastern Ojibwa
alternating stress rule in simultaneous or left-linear mode is
apparently (50).

L [ syl -}-stress K11 et rmec VAT cof T#
GOy L, S [ o ]»[ (©) ]/(55 [+ stress]y*| - syl]

) | syl )
s 2 e &Y & . W
[-+syl, —stressl([—syl] t:»-«stressi] [—syi]
[+syl, —stress])*[—syl]*— §*

(50) says explicitly that a vowel is to be stressed if an odd-number
of unstressed vowels intervene between this vowel and the nearest
preceding stressed vowel or, if there is no such stressed vowel,
the beginning of the word.

Notice that the optimal right-linear versions of the Southern
Paiute and Eastern Qjibwa alternating stress rules, (47) and (49¢),
are almost identical, whereas the optimal simultaneous (and
left-linear) versions, (48) and (50), diverge because of the extra
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[-—stress] specifications necessary in the left-hand context of (50).
Thus the right-linear formulations reveal more clearly that the
two languages exploit essentially the same alternating stress rule,
despite their different treatment of long vowels and final-syllable
vowels.

Alternating stress is apparently just one manifestation of a
widely attested process which in some sense strengthens or weakens
alternate vowels in certain kinds of sequences. We consider briefly
three cases in which vowel strength if manifested as length, voicing,
and retention, respectively.

In Tubatulabal, according to Swadesh and Voegelin (1939),
there is a word-level rule which lengthens the first vowel and each
even-numbered vowel in a sequence containing only short vowels.2
However, a short vowel will not be lengthened if the next following
vowel, if any, is long. Some input-output relations defined by this
rule are given below. We transcribe the forms according to the
principles followed by Swadesh and Voegelin, inferring from one
of their suggestions that 3 (a vowel-shortening variety of glottal
stop) is the final segment of the morpheme /a 3 ‘going’.

dawaginanalad  adawoginanalad (input)
da:wogi:nana:la3 a:dawo:gina:nala:3 (vowel lengthening)
ta:wogiinana:la a:dawo:gina:nala  (later rules)

‘he goes along ‘he went along

causing him causing him

to see’ to see’

In Japanese, according to Han (1962: 36-43), alternate vowels
are devoiced in a sequence of the form CiA;...ChAyCr,1 where
the C; are voiceless stops and the A; are short high unaccented
vowels. Whether it is the odd or even vowels that are devoiced
is a matter of free variation. Thus we have pukupukuto and
pukypukyto as freely varying pronunciations of pukupukuto.
According to Delattre (1951: 348), French has a rule which
deletes the even-numbered vowels in a sequence of the form

2 McCawley (1969) has discussed this rule in great detail and proposed a
left-to-right iterative formulation that could be regarded as right-linear.
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CiAs.. . CpAnCh1 where the C; are consonants, Ay is any vowel,
and A through A, are all schwas. For example, orthographic
elle ne me le redemande pas, which presumably has the phonological
shape elonamolsradomddapa just before the schwa deletion rule
is to apply, is pronounced in Delattre’s norm as slnamlardamédpa.

The three rules just described bear a striking formal resemblance
to left-to-right alternating stress rules and seem, like them, to be
most naturally expressed by right-linear formulations.

So far we have considered only rules that affect alternate vowels
from left to right. Rules that affect alternate vowels from right
to left seem to be somewhat rarer, but they do, in fact, exist, and
provide evidence that we must allow left-linear application in
phonology. We again consider the Tiibatulabal language, which
(according to Voegelin 1935: 75-78) has the following block of
word stress rules:

(1) the last vowel is stressed,
(i) each long vowel is stressed, and
(i) in a sequence containing vowels not stressed by (i)
or (ii), the even-numbered vowels, counted from right-
to-left, are stressed.

This block of rules is later than the left-to-right alternating length
rule that was mentioned above, and indeed follows certain vowel
shortening rules which obscure the alternating length pattern,
To formalize (i)-(iii) we can look to the very similar Eastern Ojibwa
stress rules (49). (i) and (ii) can simply be identified with (49a)
and (49b). A formal version of (iii) can be obtained from {49¢) by
simply replacing R with L and replacing the contextual portion of
(49¢) by its mirror image. The stress pattern of Tiibatulabal is
given, then, by (51).

(51) (a) (like (49a))
(b) (like (49b))

(© L: Rﬂ - [ '*“S“"SS] /8% —[—syl]* [*‘-Syf ] g+

(o) —stress

Examples of derivations with (51) are given below.
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witanghatal witaghatala:batsu (input)

witanhatdl witanhatala :batst (51a)
witanhatald :batst (51b)

witdphatil witaghdtald :batsu (51¢)

The optimal simultaneous (or right-linear) version of the Tiiba-
tulabal alternating stress rule seems to require the much more
complex schema (52).

(52 [ni:yl] - [W%SWQSS} /8% —([—syl]* [Jrsyl } [—syl]*

(o) —stress

~—S$1ress -—S§tress

Another example of a right to left process affecting alternate
vowels is the rule postulated by Havlik (1889) to account for the
development of the jers (probably to be interpreted as short high
vowels) in Slavic languages. According to this rule, if successive
syllables containing jers are counted from the right, then a jer in an
even-numbered syllable is retained, though usually changing in
quality, while a jer in an odd-numbered syllabie is lost. (cf. Shevelov
1965: 452-3). In Russian the retained jers become mid vowels,
For example, underlying (or historically ecarlier) forms ditici
‘reader nom. sg.” and ditica ‘reader gen. sg.” yielded ¢tec and
detea, respectively. Havlik’s rule, in its Russian version, can easily
be formalized as in (53) if we are permitted left-linear application.

T e high iR
(53) (a) L: | —tns —»L g]/ﬁi*m[wsy[]* Shi | §*
(G) —{ns
[+3
syl
(6) | +hi | > 0/$%— 5+
—1ins

An attempt to formulate (53a) in simultaneous or right-linear
fashion will lead to even worse results than in the case of the
Tibatulabal alternating stress rule, as can be verified by the
diligent reader.

LINEAR RULES 73

Consider too the rule of Eastern Ojibwa which turns o and i
into w and y, respectively, before another vowel (Bloomfield
1956: 4-5). As Bloomfield tells us, this rule must be applied from
right to left; for example, eninioak ‘men’ becomes eniniwak .
Simultaneous or left-linear application would sometimes give the
wrong result; in particular it would change eninioak into *enin ywak.
To correct this situation we would have to complicate the rule
considerably. The best we would do, it seems, is to say that o and /
become w and y when occurring before an even number of 0’s
and /’s that are followed in turn by a vowel that is preconsonantal,
final, or not o or i.

Certain vowel harmony rules seem also to be best formulated
in linear fashion. Consider the rule of Yawelmani Yokuts which
rounds a vowel that is preceded by a round vowel of the same
height (Kuroda 1967: 13-15, 43-5; Kisseberth 1969). The effects
of this rule are exemplified in (54)

(54)  Before harmony After harmony Gloss

hudhin hudhun ‘recognize (aorist)’

hudal hudal ‘recognize (dubitative)’

gophin gophin ‘take care of an infant
(aorist)’

gopal gopol ‘take care of an infant
(dubitative)’

mutmixhin mutmuxhun  ‘swear (comitative aorist)’

hubusxasit hubusxasit ‘choose (exclusive passive
aorist)’

As can be seen from the next to last example, ronding harmony is
propagated as far to the right as possible. We can describe this
process quite naturally by means of the right-linear rule (55)

+syl syl
(53 R: |aigh| | O] j5e ahigh | sy e se
o ‘ -+round

This formulation refers just to the nearest preceding vowel to
determine whether rounding of the vowel under consideration
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should take place, in the spirit of our informal description above.
It should be clear that we could not adopt this approach under
simultancous or left-linear application, for each of these types of
application considers only the original input form of the left-hand
context. Thus we would obtain the incorrect from mutmuxhin
from mutmixhin. What we must do when deprived of right-linear
application is allow a vowel to be rounded if it is preceded any-
where in the word by a round vowel of the same height, provided
that no vowel of a different height intervenes. The necessary
schema, given in (56), is much like (55) but requires an additional
mention of the feature specification ahigh.

J-syl” +syl _
( X “round] ., . [5 syl ﬂy s
, “ | ahigh . —$
(56) Lach;gh % (©) ]/$ ijiund | ahigh §

From a study of Hetzron’s work (1967: 178-9, 193; 1969: 8-9,
passim; and personal communication) it appears that Southern
Agaw has a right-to-left rule that makes a nonlow vowel high
when the next following vowel is i. The effect of this rule is
illustrated below (tone marks omitted).

gomejanta gomejanti moleqgeska moleqgesi (input)
muligisi  (raising rule)
(feminine) (masculine) (plural) (singular)

‘one who is in haste’ ‘monk’

If my interpretation of this rule is correct, we can express it by
means of the left-linear formulation (57).

+-syl e syl
57 L | —low W»W“gh]/$*-—»~[»~syu* ‘high | $*
o L (@ . —back

A simultancous or right-linear formulation would require us to
say that a nonlow vowel is raised when followed anywhere
within the word by i, provided that no back vowel intervened
(underlying front vowels are all nonlow). We would, then need
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the schema (58), which, though much like the schema in (57),
mentions the feature specification — back twice instead of once.

+syl - — +-syl

, - [ high . ;msyl )
(58) fow ,,{ ©) ] /% [ —back +high
G . ) . ~—back

Consonants as well as vowels may be subjected to processes of a
linear character. We mention first a rather simple and common-
place example. In Russian and certain other languages an obstruent
cluster becomes voiced or voiceless throughout, according as the
final member of the cluster is voiced or voiceless. Thus Russian
ksgibu ‘toward the bend” is actually pronounced gzgibu. The left-
linear formulation of the rule, given in (59) seems superior to the
optimal simultaneous or right-linear formulations (60).

o s [][e [m)

(60) S.R: [w:,;on] N [czvoice} /$* —[—son]* [—w- son ] §[+ son]$*2

(o) avoice 0 3

The schema in (60) must explicitly identify the final member of the
obstruent cluster as the agent determining the voicing of the
obstruent under consideration, whereas the schema in (59) needs
mention only the immediately following obstruent.

Another example of a linear process affecting consonants is to
be found in Tshiluba.® Consider the verbal suffixes -i/- (benefactive)

and -ile (simple past). We illustrate their use first with the root
-kwat- ‘take’,

kukwata ‘to take’
ukwacile ‘he took’
kukwacila ‘to take (ben.)y’
ukwacidvile ‘he took (ben.y’

¥ Our statements about Tshiluba are based largely on work with a native
informant, M. Pierre Mulumba. This work was carried out during the academic
year 1969-70 at the University of California, Santa Barbara, under the auspices
of the Linguistics Program. For further information about Tshiluba see
Burssens (1946) and Coupez (1954).
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The changes ¢ to ¢ and / to dv before i are quite regular. Consider
now the parallel paradigmatic forms of the verb -dvim- ‘culti-
vate’,

kudyima ‘to cultivate’
ud¥imine ‘he cultivated’
kud¥imina ‘to cultivate (ben.)’
ud¥imin¥ine ‘he cultivated (ben.)’

The rule is that / becomes n when the nearest proceding consonant
is nasal, with n later becoming palatalized before i. The form
ud¥iminVine, derived from wdvimilile, indicates that the rule
proceeds from left to right. Since n and / are the only coronal
sonorants in Tshiluba we can give the rule in a right-linear
formulation as follows:

“son’ X
©1) R:|+cor wﬁ;‘ﬂ/s;*[+nas1[+syl1w$*
¢ ]

In a simultaneous or left-linear formulation we would have to
write (62).

,+50n ”{“nas *{“‘*SOH
(62) S, L: +§0r -»[ ©) ]/$*[+n381([+sy1] h_cm] ) —8*

The complication arises from the fact that we must refer to the left
context in its original input form (e.g. udvimili— rather than
ud¥imini—). Thus we must state explicitly that s can intervene
between the / being considered and the preceding n that would
trigger the nasalization. In right-linear application the intervening
I’s will have already become »’s themselves, so to speak, so that
the environment needn’t be complicated to account for them.

The evidence considered so far favors a formalism that allows
both right-linear and left-linear rules. With these types of rules
available we might naturally inquire whether we need simul-
taneous ones as well. Apparently the answer is no, for it is difficult
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to find a genuine case where simultaneous mode of application
yields a better formulation than either of the linear modes. We can,
however, get an idea of what such a case might be like by considering
the effects of the second singular prefix in the Terena language
(Bendor-Samuel 1960 and Langendoen 1968: 109-10). According
to Langendoen’s interpretation of Bendor-Samuel's work, this
prefix has the underlying phonological shape y. When attached
to a stem beginning with a vowel, no further change takes place.
On the other hand, if the y is prefixed to a form beginning with
a consonant, then the first non-i vowel undergoes a change, as
follows: u and e become i, and ¢ and o become e. Subsequently
the y is deleted. Thus we have such forms as the following:

nokone ‘he needs’ nekone (<ynokone) ‘you need’
kurikena ‘his peanut’ kirikena (<Cykurikena) ‘your peanut’
piho ‘he went”  pihe (< ypiho) ‘you went’

What we have just described is the main clause of the y-prefix rule.
There is in addition a special clause that raises an e to i in a
y-prefixed word if all the other vowels in the word are also e’s.
The special clause can be thought of a preceding the main clause.
An example is yxerere ‘your side’, which becomes yxiriri by the
special clause (ultimately the y is deleted). On the other hand,
a word of the form yBeCeDi, where B, C, and D are consonants,
would supposedly be untouched by the special clause because not
all its vowels are e’s. The word would then pass on to the main
clause, becoming yBiCeDi. Similarly, yBiCeDe would be un-
affected by the special clause and would consequently become
yBiCiDe by the main clause. It seems that only a simultaneous
formulation of the special clause would be natural, since it is
apparently the original input form of both the left and right
contexts that determines whether an e will be raised. Linear appli-
cation, which requires us to refer to the output form of either
the left or the right context, would force us to express the special
clause in a more roundabout way. Perhaps the best we could do is
introduce the following two rules, each of which could be left-
linear or right-linear.
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(i) Change e to E in a y-prefixed word when every vowel
to the left or right is ¢ or E;
(ii) Change E to i.

We assume here that E is some vowel that does not otherwise occur
in Terena.

The special clause of the y-prefix rule of Terena is not in fact
a clear case of an essentially simultaneous rule. There is a subtle
but crucial difference between Langendoen’s description of the
rule and Bendor-Samuel’s 1960 statement. What Bendor-Samuel
actually says is that if the first one or more vowels of a word
are all e’s, then these e’s are all raised to i. This implies, apparently,
that we need only refer to the left context of an e to determine
whether the e should be raised to i. Thus yBeCedi would indeed
be affected, becoming yBiCidi. 1t is difficult to determine from
Bendor-Samuel’s data whether this is true; if it is, a left-linear
formulation will be completely adequate.

Although the Terena example fails to provide us with a convine-
ing case of simultaneity, it does present us with another type of
rule, not hitherto discussed, which is interesting to take note of.
Consider (63), which in its environment part is a near optimal
formulation of the main clause of the Terena y-prefix rule.

syl ] ~low
Hback |~ m(k?)d{ -~ CONS [—syl]
) Jrior 7 —syl {[—syl] mback] *— g
Mbﬁck M[—H}igh} —back -high
. ©)

Right-linear application cannot be associated with this schema
because it would change ykurikena to *kirikine instead of the
correct kirikena. However, both left-linear and simultaneous
application give the correct results. The reverse situation is exem-
plified by Dahl’s law, a rule occurring in a number of Bantu
languages of East Africa (Bennett 1967). The Southern Kikuyu
version of this rule causes a k to become y when the next following
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consonant in the word is an underlying voiceless stop. Any number
or vowels may intervene between the &k and the voiceless stop.
As so stated, the rule can apply either simultaneously or right-
linearly, producing, for example, neyayaakeroma from neka-
kaakeroma ‘he will bite him’. (I am indebted to Leonard Talmy
for this example.) A left-linear application would yield incorrectly
the form *nekayaakeroma, and consequently some other (and
more complicated) means of describing the change would be
necessary.

To summarize, we have found a fair number of rules that favor
a right-linear formulation and a fair number that favor a left-linear
formulation. In addition we have given an example of a rule that
can be regarded equally well as left-linear or simultaneous, though
not plausibly as right-linear, and another example that can be
regarded as right-linear or simultaneous though not plausibly
as left-linear. Then, of course, there are many rules (perhaps the
majority) which are simply indifferent as to mode of application,
working equally well in right-linear, simultaneous, and left-linear
mode. The Sanskrit nasal retroflexion rule is of this kind. However,
we have failed to find a convincing example of an exclusively
simultaneous rule. These results suggest that we allow only right-
linear and left-linear rule application in phonology.
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ALTERNATIVES TO LINEAR RULES

A right linear rule moves inexorably rightward through an input
string. Having changed a segment, a right linear rule moves on,
never changing that segment again nor changing anything to the
left of that segment. Although this is one plausible way of for-
malizing left-to-right processing, it is not the only way, and it
might be wrong. We might have been better advised to define a
restricted iterative rule that changes only the leftmost possible
segment at each step of application. Such a rule we might call
left-iterative, representing it in the form LI:X, where X is a schema
subsuming elementary rules. To achieve the effect of leftmost
application formally, we might say that P — Q/R — S is a subrule
of LI:X if and only if X subsumes P — Q/R — S but subsumes
no elementary rule P’ — Q'/R’ — § where R'P'S" = RPS and
R’ is shorter than R. We might further require that P # Q in
order to exclude vacuous subrules. We would then say that L1:X
maps U into V if and only if there is a sequence Uy, ..., Uy of
phonological strings such that

() U= Uy,
(i) for each i, 1 =1 = n — 1, some subrule of LI:X has
Uj as input and Uy,1 as output,
(iii) Uy is not the input to any subrule of LI'X, and

The Southern Paiute stress rule, for example, could just as well
have been regarded as left-iterative, having the form of (64).
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64) LI [%:ylj‘ N [wf«stress] 5% [+syl ] [—syl]*— $§*

(o) ~—S§tress

This rule will give the correct stress pattern to natapikkappikai
by virtue of the following application:

natapikkappikai

natdpikkappikai (by subrule a — d/nat-—pikkappikai)
natdpikkdppikai (by subrule a - d/natdpikk— ppikai)
natdpikkdppikdi (by subrule a — d/natdppikkdppik—i)

Notice that the elementary rule
i — i/natap —kkappikai,

which would put a stress in the wrong place, is not a subrule of (62)
even though it is subsumed under the schema in (62). The reason
becomes apparent when we set

R = natap, R’ = nat

P fraed i, P' = a,

S = kkappikai, S = pikkappikai
Q == i, Q' S Ei.

Then the elementary rule under consideration willbe P — Q/R — §.
However, the schema in (62) also subsumes P’ — Q'/R’ — &',
where RPS = R'P'S’ and R’ is shorter than R; this situation
prevents P - Q/R — S from being a subrule of (62) according
to the definitions in the preceding paragraph. Note also that
4 — d/nat — pikkdppikdi cannot be a subrule of (62) because
it is vacuous; consequently the application displayed above is
complete and does not continue indefinitely.

In parallel fashion we could define a notion of right-iteration,
to take the place, perhaps, of left-linear application.

Although the linear rules discussed in the preceding chapter
would work as well in left- or right-iterative fashion, we have some
slight reason to prefer the linear formalization. First of all, left
or right iteration allows for some peculiar effects going beyond
the bounds of finite-state processing, effects which we will probably
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want to exclude. For example, rule (65) will convert each string
of the form PCAA;...AyB1...BmB, where C, By, ..., Bu. B are
consonants and A, Ay, ..., A, are vowels, into PCAA;... Ay B
or PCABqp,1...ByB according as n = m or m > n.

(63) LI+ syl [—syl] - O/$* [+syl] — [—syl] * [—syl]

The right and left iterative modes of application would have
the further disadvantage of forcing a third mode of application
on us. To see this, consider first any rule which switches the value
of some feature, such as the first part of the English vowel shift
as described by Chomsky and Halle. This rule can be given as

~+syl
-+-tns .
(66) | +stress| — mamgh} /| $* g+
~low . (0)
ahigh

The absence of mode designator is intended to mean that the rule
can be applied in either right-linear or left-linear fashion (in fact,
it can also be applied simultaneously). Either way the rule will
convert kitw ‘cow’ into kiw (ultimately kdw), by virtue of an

o

application having the form k ; w. Suppose, however, that (66)

were left-iterative or right-iterative. Then it would keep on
applying to kilw forever, changing it first to kéw, then back to
kitw, then to kéw again, and so on. To make (66) work properly
we would have to introduce some third type of application, the
most natural choice being simultaneous.

Again, consider the rule of Chipewyan which devoices a
continuant consonant that immediately follows a voiceless
continnant consonant (Li 1946:400). The rule causes teszdih
‘I split’ to become fessdih (ultimately resdif). It will also cause
ndsizé *I am hunting’ to become ndstzé (ultimately ndsz€). Notice
that ndslzé will not become *nds#sé; it is the immediately preceding
sound in the original input that determines whether devoicing
of a continuant consonant will take place. The appropriate
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effect can be achieved by associating simultancous or left-linear
application, though not right-linear application, with the following
schema:

syl

—voice| ., [ —Vvoice
][ 2] -

On the other hand, both left-iterative and right-iterative application
of this schema would turn ndslzé incorrectly into *ndstsé. Again,
some third mode of application would have to be introduced to
account for this case correctly.

Some of the defects of left and right iteration could be cured
as follows. We might say that a subrule P - R/Q — S changes
RPS into R < Q> S, where P contains no angle brackets.
After application of a rule is completed, angle brackets are erased.
The effect, roughly, is to exclude a substring from further change
if it has already been changed. By this of mechanism we could
exclude at least some of the nonfinite-state effects referred to
above (in particular, rule (65) would now turn PCAA;...AyB1...BuB
into PCAA;...Aux_1B2...BpB), and we could make feature-
switching rules function properly. However, the Chipewyan rule
would still work improperly under both left and right iteration.
To correct this situation we could attempt some further refinements
of left and right iteration, but it seems pointless to do so when
linear application accounts correctly for all the cases discussed.

Anderson (1968) has proposed a convention of left-to-right
application that is rather different from either right-linear appli-
cation or left-iteration. According to Anderson’s proposal we must
think not of left-to-right application of a single rule but rather
of a sequence of rules. When application is to begin a position
marker © is placed immediately to the left of the first vowel in the
input form. The rules, each of which contains one mention of the
position marker in its environment, are then applied in sequence
in the usual fashion. After the sequence is applied, the symbol © is
moved rightward until it is at the immediate left of the second
vowel in the string, and the rule sequence is applied again. This
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procedure is repeated as long as possible, and is therefore executed
as many times as there are vowels in the input string. If we identify
vowels with syllables, or somehow restrict the placing of the position
marker so that it appears only to the immediate left of syllable
peaks, we can refer to this mode of application as the left-to-right
syllabic cyclic.

Let us write a left-to-right syllabic cycle in the form LRSy:
(X1, «..; Xn) where each X; is a schema subsuming elementary
rules. Application of the cycle might then be formalized as follows.
Let P and Q be phonological strings. Then LRSy: (X, ..., Xn)
maps P into Q if and only if there is a sequence

*V == ((Rlala ey Rl)ﬂ»{«l):u weey (Rmala LEEE Rmmu))
of (n-+1)-tuples of strings such that

() P is mapped into Ry by the rule
St [+syl, 6] — °g/[—syl]* — $*

St X maps Ry,j into Ry,g.1;
(iii) Foreachi, 1 =i == m—1, the string Ri,n,1 is mapped
into Ry 1,1 by the rule
° > gr/S*—S*,
[+syl, o] > °c/$* o[-+-syl] [—syl] *— §*
(iv) Rm,ny1 is mapped into Q by the rule S: © — g5/ $* — $*,

The sequence & is said to be an application of LRSy: (X1, ..., Xu)
with input P, and the (n-1)-tuple (Ry,1, ..., Ri,n,1) is referred to
as the ith round or cycle of the application.

A very simple example of a left-to-right syllabic cycle is (67).

(67) LRSy: ([*;Yl]w{*"i:)e“]/$*[“yl ][wsyn*ww)

-~ 8tress

This cycle contains just one rule, whose schema is identical {except
for the symbol ©) with that used in (47). In fact, (67) produces the
same results as (47) and is yet another way of describing the
Southern Paiute stress pattern. (67a) below is an application of

(67) to the word tuk*apaiyu ‘during the night’. Since (67) contains
only one rule, each round of (67a) is a 2-tuple of strings.
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(67a) Round 1: (touk¥apaiyu, teuk¥apaiyu)
Round 2: (tuk™eapaiyu, tuk¥odpaiyu)
Round 3: (tukw¥dpeaiyu, tuk¥dpoaiyu)
Round 4: (tukwdpa®iyu, tuk¥apadiyu)
Round 5: (tuk¥dpaivou, tukdpaiyou)

In this application, as in all applications of (67), the odd-numbered
rounds are vacuous. Usually we will display applications of left-
to-right cycles in a completely vertical manner, omitting vacuous
steps. Thus (67a) would appear as follows:

teukVapaiyu
tuk¥oapaiyu
tukvodpaiyu
tuk¥dpeaiyu
tuk¥dpa®iyu
tuk¥dpaciyu
tukvapaiyou

Anderson does not simply propose that left-to-right syllable
cycles be made available along with other more orthodox types of
application. He claims at one point that phonologies of natural
languages consist entirely of simultaneous rules and left-to-right
syllabic cycles. To assess the strength and validity of this
claim, let us first consider left-to-right syllabic cycles from the
point of view of mapping power. If we assume that a LRSy cycle
can contain any rule schema that subsumes elementary rules
of the form P - Q/R°S — T or P — Q/R — 8$°T and that each
such schema is to be applied in simultaneous mode, then we have
a rule formalism that can simulate any simultaneous rule and
hence any sequence of simultaneous rules, For suppose we have
a single simultaneous rule N. We can assume that N has the form
St {A1 - Qi/X1 — Yy, ..., Ay — Qu/Xy — Yn} where the A; are
phonological units, the Q; are phonological strings, and the X;
and Y; are primitive schemata subsuming phonological strings.
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For each 1, let X'; and Y'; be obtained from X; and Yi, res-
pectively, by replacing each phonological unit B with the
expression (°) *B(")*, Let Z be the schema

[—syl]* — $%/$*O[4-syl] [ syl]*—

® o, G/ QK 0 2 [—syl]*
o SIE grop sy

Then the left-to-right syllabic cycle
LRSy: ([{Ay — Qi/X'1—Y'y, ..., Ay — Qn/X'a—Y's },Z))

which contains just one rule, albeit a complex one, will accomplish
the same task as the rule N. The bracketed expression can, of
course, be eliminated in favor of a primitive schema. The idea
behind this construction is that the left-to-right syllabic cycle
should simply idle until it reaches the last round. On the last
round, the lone rule in the cycle is executed and application ter-
minates.

With left-to-right syllabic cycles we can also carry out certain
nonfinite-state processes. Consider cycle (68) which contains
just one rule.

(68)  LRSy: ([—syll - @/[—syll—sylJ* —[+sylJ*o[ - syl] $%)

This cycle turns a string of the form CCyLL CoAr AP, (n = 0,
m == 1), where C, Cy, ..., Cy are consonants, A1, ..., Am are vowels,
and P is empty or begins with a consonant, into CAj...AnP or
CCi...ComAs...ApP according as m = n or m < n. We illustrate
with applications of (68) to strings cccecaaac and ccaaac.

ceecelaaac cglaaac
ceeclaaac cPaaac
ceecalaac caaac
cecaaac

cecaadae caalac
ccaalac
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The mapping power of left-to-right syllabic cycles might be reduced
if a different method of applying rule schemata were stipulated.,
Certain strong constraints on the form of rule schemata might
also have this effect, and it is possible that we have done an
injustice to Anderson’s theory by not imposing such constraints.
However, Anderson is silent on the matter.

Although left-to-right syllabic cycles probably have sufficient
mapping capacity for phonological purposes, perhaps even too
much mapping capacity, they are clearly incapable of providing
linguistically satisfactory formulations in many cases. One of the
difficulties arises from the fact that Anderson excludes right-to-left
cycles because of his mistaken belief that right-to-left processes
do not occur in the phonologies of natural languages. Thus,
although the right-linear rules discussed in the preceding chapter
can be routinely reformulated as left-to-right syllabic cycles (we
need only place a position marker to the left of each environment
dash), the left-linear rules would have to be formulated with
essentially the same complex and unsatisfactory schemata that
are needed in the simultaneous formulations.

Suppose we extend Anderson’s formalism so as to allow right-
to-left syllabic cycles as well as left-to-right ones. We would still be
unable to express the right-to-left nature of the Russian rule that
determines the voicing of obstruent clusters according to the final
member of the cluster (rule (59) in the preceding chapter). The
problem here is that the right-to-left processing takes place within
each cluster, proceeding segment by segment rather than syllable
by syllable. We can, however, amend Anderson’s theory again
so that the cycles are segmental rather than syllabic. Thus the
position marker will now be placed at the beginning (or end)
of the input string when application is about to begin and will be
moved one segment (or, more generally, one phonological unit)
to the right (or left) at the end of each round. We then will have
the following two types of cycles:

LR (left-to-right segmental)
RL (right-to-left segmental)
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All the left-to-right syllabic cycles discussed above, including the
nonfinite-state cycle (68), will work properly as left-to-right
segmental. The same is true of the cycles formulated by Anderson,
which will be discussed below.

Anderson makes an even stronger claim than the one that we
have been discussing. He believes that every phonology consists
of exactly one left-to-right cycle. It should be clear by now that
this claim is untenable. Note that we cannot even say that each
particular language is characterized by a single direction, having
either all left-to-right cycles or all right-to-left cycles. In the
preceding chapter we mentioned at least two languages, Tiiba-
tulabal and Eastern Ojibwa, that had both left-to-right and right-
to-left rules. Tibatulabal as a left-to-right rule of alternating vowel
length and a right-to-left stress rule, while Eastern Ojibwa has a
right-to-left rule making glides out prevocalic short nonlow vowels
and a left-to-right stress rule.

Although most of Anderson’s claims appear to be wrong, it
still might be true that left-to-right (right-to-left) processing
is more correctly formalized as right-to-left (left-to-right) segmental
cyclic rather than left (right) linear. Let us review some Finnish
evidence, presented by Anderson, which seems superficially to
support this view,

Finnish! has a consonant gradation rule that weakens a single
or geminate stop that follows a sonorant and begins a closed
syllable. The standard results of weakening are indicated below.

p becomes v,

t becomes d,

k is deleted,

a geminate stop becomes a single stop.

Thus we have forms such as the following:

1 Among the many works about Finnish in a well-known language are
Fromm and Sadeniemi (1956), Harms (1964), McCawley (1963, 1966),
Lehtinen (1967). Our assertions about the language are based mainly on work
with Miss Sointu A. Takala, who served as informant in a field methods course
offered in the Linguistics Department of the University of California, Berkeley,
during the academic year 1964-65,
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matto ‘rug (nom.)’
maton ‘rug (gen.)’
mato ‘worm (nom.)’
madon ‘worm (gen.)’

The allative plural of fprtd ‘girl’ shows that a vowel i cluster
must be regarded as tautosyllabic for the purposes of consonant
gradation;

tyttoille (before gradation)
tytoille (after gradation).

There is another rule which deletes any ¢ or d that follows a non-
initial [—syl] [+syl] sequence and precedes another vowel. Some
effects of this rule are seen in the partitive suffix ta:

maa ‘land (nom.)’

maata ‘land (part.)’

talo *house (nom.y’

taloa  (<talota) ‘house (part.)’

Suppose now we attempt to order dental-stop deletion and conso-
nant gradation in the conventional manner. On the one hand we
might decide that dental-stop deletion precedes consonant gra-
dation, in view of the fact that this ordering yields the correct deri-
vation for the genitive singular of ammatti ‘occupation’:

ammatin
ammattin (dental-stop deletion)
ammatin (consonant gradation)

The opposite ordering would incorrectly give *ammain, as follows:

ammattin
ammatin (consonant gradation)
*ammain (dental-stop deletion)

On the other hand, consider the so-called collective genitive plural
of harakka ‘magpie’. If consonant gradation precedes dental-stop
deletion, then the correct derivation of the form is obtained:
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harakkatin
harakkadin (consonant gradation)
harakkain (dental-stop deletion)

The other ordering, which seems to be necessary for the genitive
singular of ammatti, yields the wrong result for the collective
genitive plural of harakka:

harakkatin

harakkain (dental-stop deletion)
*harakain (consonant gradation)
*harakoin (other rules).

Anderson chooses to resolve this paradox by means of a left-to-
right syllabic cycle. The cycle he proposes can just as well be
regarded as segmental and given roughly in the form of (69).
(69a) presupposes a rule that stresses the first and only the first
vowel of a word. Just how the portion of (69b) to the left of the
slash is to be adequately expressed is not clear; this matter will be
touched on later.

(69) LR:
{a) Dental-stop deletion.
------ cont e -+ syl "
[w{wcor ] ~ 275 [—sl] {wst,rcss] —OlsylS
(b) Consonant gradation,
tt>t
trd f[—syl1$¥]

8%+ son]—°[+syl] % Q;g syl oy

The correct form of the words considered above will now result,
as can be seen from the following partial derivations:

(i) ammattein
ammat%in  (69b)
ammati'n
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(ify harakkeatin
harakkactin
harakkatein
harakkacin (69a)
harakkaion

Though Anderson’s artifice is clever, the need for it is highly
questionable. Notice, first of all, that conventional rule ordering
can be imposed if we split the gradation rule into at least two
stages. The first stage would be much like the gradation rule in
(69), except that it would merely weaken one half of a geminate
stop rather than eliminating that half altogether. In other words,
the gradation rule proper would change # into 7r, say, where 7
is some weakened variety of 7, and a later rule following dental-stop
deletion, would reduce 7r to £. We would then have derivations
such as the following:

ammattin harakkatin

ammaftin harakkadin (consonant gradation)
ammattin harakkain (dental-stop deletion)
ammatin harakkain (weak geminate reduction)

Despite Anderson’s assertion to the contrary, there is good
independent evidence that geminates pass through an intermediate
stage when they are subject to gradation. To see that this is so
we will have to consider a number of rules which appear at first
glance to be irrelevant to the present problem.

First, although the usual results of weakening p, 7, k in the
gradation environment are v,d, and (¥, respectively, special
circumstances will call forth a different output. For example, if the
sonorant preceding the stop is a homorganic nonsyllabic, the stop
assimilates completely to the sonorant; for example, underlying
lukenton (genitive singular of lukento (> luento) ‘lecture’) becomes
luennon. Another fact, of particular interest here, is that k becomes
Jj in the gradation environment when the preceding sonorant is r,
[, or h and the following vowel is e. Thus form the verb stem
sdrke- ‘break’ we have first person singular present sdrjen (cf.
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third person plural present sédrkevdt). It should be borne in mind
that it is only the vowel e which triggers the change k to j; even
the closely related vowel i will not do it. Thus when the first
singular suffix » is appended to the verb stem pyrki- ‘strive for’ the
phonetic form pyrin results according to the general rule, not pyrjin.

Consider next the rule that deletes a short unrounded vowel
when a suffixal ; follows. The effects of this rule can be illustrated
by the verb stems pyrki-, cited above, hake- ‘look for’, and otta-
‘take’. If the third person suffix var alone is added to these stems,
the resulting forms are simply pyrkivét ‘they strive for’ (with vowel
harmony in the suffix), and hakevar ‘they look for’, ottavat ‘they
take’, If the past tense suffix / is inserted too, giving the under-
lying strings pyrkiivit, hakeivat, and ottaivat, the phonetic results
will be pyrkivit, hakivat, and ortivat, If we add the past and first
singular suffixes to the stems in question, obtaining the underlying
forms pyrkiin, and hakiin, and ottiin, both gradation and unround-
vowel-deletion will apply, vielding phonetic pyrin, hain, and otin.

A verb stem ending in rke, lke, or hke, will of course also be
subject to unround-vowel-deletion. The crucial question is what
happens when both unround-vowel-deletion and gradation apply.
Applied in the order just stated, the & would be deleted; thus the
first singular past of sdrke- would be obtained by the following
derivation:

séirkein
séirkin  (unround-vowel-deletion)
sérin (gradation)

The output here, however, is incorrect; the form actually used is
sdrjin. Consequently, consonant gradation must precede unround-
vowel-deletion, and we must have the derivation

siirkein
sdrjein  (gradation)
sérjin  (unround-vowel-deletion)

Another rule we must consider is the one that changes noninitial
1 to s before i. This “dental-stop sibilation” rule, together with a
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rule that raises final e to /, accounts for nominative singular kdsi
‘hand’ in face of the essive singular kdtend, genitive kdden (with
gradation), and so on. It also accounts for the past tense forms
of the many verb stems that end in 7. An example is halut- ‘want’
with third singular imperative halutkoon, infinitive haluta (from
haluttah by consonant gradation and final & deletion), first singular
past halusin (< halutin by sibilation). The last form indicates that
dental-stop deletion must follow sibilation; otherwise we would
obtain *haluin. The stem kiipet- ‘climb’ behaves in a similar
manner; we have kiivetkoon (< kippetkoon), kiivetd (< kiipettah),
kiipesin (<< kiipetin).

Consider now a verb stem like funte-, ‘feel’ infinitive runtea
from underlying tuntetah. In the present we have first singular
tunnen, from tunten by consonant gradation, and third plural
tuntevat. In the past we have first person singular funsin and third
plural funsivat, from underlying tuntein and rtunteivat. Clearly,
unround-vowel-deletion must precede sibilation of 7 if these forms
are to be derived correctly.

The data we have considered so far imposes the following
order on the rules under discussion:

consonant gradation
unround-vowel-deletion
sibilation of dental stops
dental-stop deletion

If we accept this ordering, which seems to be unavoidable even in a
left-to-right cycle, we must perforce accept an intermediate stage
in the gradation of geminate stops. For if the gradation rule
immediately reduced 17 to 7 then the rules given above would turn
ammattin into *ammasin rather than the correct form ammatin.
Gradation must, then, weaken ## to some intermediate form which
cannot be reduced to ¢ until after both dental-stop sibilation and
dental-stop deletion have applied. The precise nature of this
intermediate stage is not altogether clear, to be sure; its historical
analogue is denoted #7 in the handbooks (c¢f. Fromm and Sadeniemi
1956: 35-6) in accordance with a hypothesis that the first part
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of the cluster was weakened (laxed 7). Nevertheless, the basic point
remains. If geminate stops must pass through an intermediate
stage anyway when subject to gradation, a major motivation for
the left-to-right cycle vanishes.

Note that geminate stops are not the only clusters that must
pass through an intermediate stage under the rule ordering that
seems to be necessary. Consider again the first singular present
and past of runfe-. We saw above that these forms had the under-
lying representations tunten and runtein. The phonetic realization
of tunten is tunnen, which arises straightforwardly by gradation.
The phonetic realization of funtein, however, is tunsin, which
must have undergone dental-stop sibilation. But if gradation
changes nr immediately to nn, our rules give the following incorrect
derivation:

tuntein

tunnein  (gradation)

*tunnin  (unround-vowel deletion)
(no further rules applicable)

Apparently, then, we must assume that a single stop in gradation
environment is first weakened by some simple operation such as
laxing or voicing, regardless of what the preceding sonorant is.
This weakened stop is still subject to sibilation if it is dental; if it
escapes sibilation it is later assimilated to a preceding homorganic
consonant, if any. If a weakened stop escapes all these rules it
becomes v, d, or ¥ depending on whether it is labial, dental, or velar.
Thus if we denote the weakened stops by the noncommittal
symbols p, 7, k, we have derivations something like the following:

tunten tuntein

tunfen tuniein (gradation)
tuniin (unround-vowel deletion)
tunsin (sibilation)

tunnen (assimilation)

Another problem that has concerned Anderson is the formation
of the illative case of Finnish nouns and adjectives. In order to
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understand what this is about we must consider some further
rules.

Stems ending in a consonant add a linking vowel -e- before most
suflixes that begin with a consonant. Compare the following forms

talo  ‘house (nom.)’ sisar ‘sister (nom.)’
talon ‘house (gen.) sisaren  ‘sister (gen.)’

In both cases we assume that the genitive is formed by adding n
to the noun stem; sisar-t-n then becomes sisaren by the e-insertion
rule.

“-insertion does not take place before certain suffixes, however;
among these exceptional suffixes is the partitive 7a. Thus we have
taloa ‘house (part.)’, from talota by dental-stop deletion, and
sisarta ‘sister (part.)’. Whether the difference between the two
types of suffixes can or ought to be described in phonological
terms or in terms of diacritic features on morphemes is a question
that will not concern us here. We will assume that the linking e
appears in its proper place prior to the application of any of the
rules to be discussed (in fact, prior to any of the rules discussed
above).

Consider now some noun and adjective stems that end in s.
We have mies ‘man’, kirves ‘axe’, vieras ‘foreign’, and uros *male’,
with genitives and partitives in the singular as follows:

genitive: miehen kirveen vieraan uroon
partitive: miestd  Kkirvestii vierasta urosta

Anderson posits three rules that will account for the above
genitives. These rules, which are motivated by other evidence
as well and which we see no strong reason to question, are essentially
the following:

(i) intervocalic s after a nonfirst vowel becomes #
(“s-weakening”) (This rule has numerous exceptions,
e.g. kiisu ‘pyrites’),

(i) Ahe, where A is any vowel, becomes AZA (“vowel-
copying”),
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(iii) intervocalic i after a noninitial [—syl] [+syl] sequence
is deleted.

The derivations of the genitives are, then,

mies--n kirves-+n  uros-+n vieras-n
miesen  kirvesen  urosen  vierasen  (e-insertion)
michen  kirvehen urohen vierahen (s-weakening)
urohon vierahan (vowel-copying)
kirveen uroon  vieraan (h-deletion)

In miehen the h, though intervocalic, is not deleted because it is
preceded by a diphthong. (A more refined analysis would reveal that
the underlying form of mies is mees, so that it would in fact bea
long vowel that inhibits A-deletion.)

Let us turn now to the illative. We consider the nouns maa
land’, puu ‘three’, talo ‘house’, koira ‘dog’, and katu ‘street’, in
the illative singular and plural.

Singular: maahan puchun taloon  koiraan katuun
Plural: maihin  puihin  taloithin koiriin  katuihin

We account for all these forms with the rules we have plus one
additional rule, provided we assume with Anderson that the
underlying form of the illative suffix is sen. The additional rule,
given in a somewhat different version by Anderson, deletes the
middle vowel of a triphthong (“triphthong reduction™). Four
derivations should make the matter clear

maasen maaisen koirasen koiraisen
koirisen (unround-vowel deletion)
maahen maaihen koirahen koirihen (s-weakening)
maahan maaihin koeirahan koirihin  (vowel-copying)
koiraan koiriin  (A-deletion)
mathin (triphthong red.)

The rules just given predict the illative form correctly when the
underlying stem consists of one syllable or ends in a short vowel
or a nonspirantal consonant., We must assume that illative sen

is one of those suffixes that requires e-insertion; in this way we
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obtain the correct illative singulars micheen (<< miesesen) and
sisareen (< sisaresen).

Let’s turn now to the disyllabic stems ending in s which we
mentioned above. The illative singulars kirves, uros, and vieras
are

kirveeseen urooseen vieraaseen
There are two alternatives in the plural:

(a) kirveisiin uroisiin vieraisiin

(b) kirveihin uroihin vieraihin
There are some other disyllabic stems which in the nominative
singular end in a short vowel but behave in other respects like
stems ending in 5. Anderson assumes they end in a final /4, which is
deleted when no suffix follows as well as in the environment of the
h-deletion rule introduced previously. # followed by a consonant

results in gemination of that consonant. Thus from the stem kiiruh
‘hurry’ we have the following case forms:

nom. sg. kiiru
part. sg.  kiirutta
gen. sg.  kiiruun
ill. sg. kiiruuseen
ill. pl. kiiruisiin, kiiruihin
Polysyllabic stems ending apparently in a long vowel behave in

many respects like these ending in a spirant. From the stem fienoo
‘neighborhood’ we have

nom. sg. tienoo

part. sg. tienoota

gen. sg.  tienoon

ill. sg. tienooseen

ill. pl. tienoisiin, tienoihin

The nonillative case forms of polysyllabic stems ending in a spirant
or long vowel can be accounted for by the rules already introduced
if appropriately ordered in the conventional manner. The illatives,
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with their peculiar vowel-lengthening and retention of s, offer
some difficulty. Anderson accounts for them with a left-to-right
syllabic cycle, which we give as a roughly formulated segmental
cycle in (70) below.

(70) LR: (a) Triphthong reduction.
[+syll > @/ $*[+syl] — [+syl)[—syl]o[+sy1]$*
(b) IHative lengthening.
L -+ 8yl
{ :ll] ~» 6G/$* | —stress | T
- T

ié
—gyllo— §*
@’S[ -3

(c¢) S-weakening.

] TSY1
s ayst[ T |ty
{d) Vowel-copying.
~+syl
e — o/$* | —stress | ho— §*
o
(e} H-vocalization.
+-syl
h —» of $¥[—syl] | —stress | —O[-4-syl]$*
o

Of the rules in this cycle, triphthong reduction, s-weakening, and
vowel-copying have been already introduced above, and A-voca-
lization takes the place of A-deletion. Illative lengthening is a new
rule applying to one idiosyncratic case morpheme. Instead making
use of the diacritic feature [illative], presumably introduced by a
general convention that distributes syntactic class information
to the individual segments of a morpheme, we could have regarded
illative lengthening as a ‘minor rule’ from which all morphemes
except the illative are exempt.

The illative singular and plural of wros can now be derived in
part as follows:

uros®esen urosCisin
urohsen urohCisin (70¢)
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urch®osen (70d)
uroo®osen uroo%isin (70¢)

uroooen urooiosin
urooosten urooisoin

uroos®en urois®in (70a)
uroos®een (70b)
uroihin (70c)

The alternative illative plural arises from a different ordering of
(70a) and (70b); for example:

urosisin
urohOisin (70c)
urooisin (70¢)
urooiosin
uroois®in
uroois®iin (70b)
urois®iin (70a)

Notice that in these derivations the triphthong reduction rule
comes into play only when the position marker has moved to the
immediate left of the first vowel that follows the triphthong.
This feature of Anderson’s solution is crucial in the derivation
of the illative plural form uroisiin, for it allows illative lengthening,
formulated with © before the environment dash, to take place
prior to triphthong reduction despite the fact that the illative
vowel is to the right of the triphthong. Thus, when illative length-
ening is ordered before triphthong reduction, wroois?in will first
become urooisiin and then urois®iin. Then s-weakening, formulated
so as to take place only before a short vowel, is blocked; thus the
derivation of the nonexistent form *wroihiin is prevented and the
desired from wroisiin is generated.

Unfortunately, there is a serious difficulty with Anderson’s
formulation of the triphthong reduction rule. Consider the verb
stem saa- ‘receive’. The infinitive and first singular present are
saada (from saatah by consonant gradation and final 4 deletion)
and saan. Now the past, formed by adding i plus the personal
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suffixes, is always subject to triphthong reduction; thus we have
first singular past sain from underlying saain. Similarly, the third
singular past, where the personal suffix is (J, has the form sai.
Since no vowel occurs after the triphthong aai in the underlying
forms of these words, Anderson’s rule could not apply and aai
would remain unreduced. Similar remarks apply to verb stems
like joo- ‘drink’ and s66- ‘eat’, which have first singular presents
Juon and sydn (from joon and séon by a vowel breaking rule) and
first singular pasts join and sdin, derived from jooin and sdéin by
triphthong reduction. A more correct and more natural formulation
of triphthong reduction would seem to be

[+syl] = &/ $*[+syl]—[+syl] $*

With this formulation, of course, it is impossible to use the position
marker exactly as Anderson does, although it might be possible to
restore the essence of Anderson’s solution by rejuggling the
position marker in this and other rules. Instead of showing how
this could be done, however, we will proceed to some further
difficulties not as easily resolved.

The rule of s-weakening was originally formulated to take place
regardless of whether the following vowel is long or short, but was
restricted to position before short vowel in order to account for
illatives. Thus uroooseen (or urooseen) and urooisiin are correctly
prevented from undergoing s-weakening, as explained above.
However, there seems to be no other motivation for the short
vowel restriction, although indeed there seems to be no counter-
evidence to it either. On the other hand, there are many apparent
exceptions to s-weakening which are not explained by the restriction.
Thus we have kiisu ‘pyrites’, nielaisen ‘I swallow’ (cf. nielaista
‘to swallow’). Whatever the explanation of these intervocalic s’s
may be, it has nothing to do with the length of the following vowel.
This fact raises the suspicion that the simpler, less restricted
s-weakening rule might just as well be used and that the s illatives
are to be explained in a different way.

The third and perhaps most serious difficulty with Anderson’s
solution is this. Notice that Anderson’s derivations of the illative

ALTERNATIVES TO LINEAR RULES 101

plural forms of uros begin not with the presumed underlying form
urosisen but with urosisin. Anderson does not explain the reason
for this, nor does he give any rule that would change wurosisen
into wrosisin. The change looks suspiciously like a case of vowel-
copying, and can indeed be so regarded if we assume that urosisen
first becomes urohihen and that the s is re-introduced by a revised
version of the illative lengthening rule. This approach (similar to
that followed by McCawley 1966) also allows us to use the simpler
versions of both the triphthong reduction rule and the rule of
s-weakening, discussed above. Furthermore, it makes it possible
to apply the rules in conventional sequence. Qur reformulation,
still somewhat informal because not stated entirely in feature terms,
is given in (71).

(71)  (a) S-weakening.

syl e
s — h/$* [wstress] —[+syl]$
(b) Vowel-copying
+-syl
L: e — o/$*| —stress | h— §*
o
(¢) H-vocalization.
+syl
R: h — of$*[—syl] | —stress | —[-F-syl]$*
T

(d) Triphthong reduction.
[+syll — S/ $*[+syl]—[+syl] $*

(e) Hlative adjustment.
syl (i)
[+ill} = so/$* Lw-stress T ,@g

—a§

T

These rules apply in the order given, except that (71d) and (71e)
can also be applied in the reverse order.

The derivations of the illative forms of uros now proceed as
follows:
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nrosesen nrosisen

urohehen urohihen (71a)
urohohen urohihin (71b)
uroohen urooihin (71c)
uroohen uroihin (71d)
urooseen uroihin (71e)

As they stand, our rules account correctly for the illatives of
stems like wros, which end in a spirant, but not for the illatives of
stems that end in a long vowel. For example, although our rules
correctly predict the illative plural forms of tienoo, they give the
wrong illative singular. By our rules, the underlying form tienoosen
first becomes tienoohen by s-weakening and then tienoohon by
vowel-copying. The illative adjustment rule then gives the incorrect
result *fiencosoon. However, we can avoid this consequence by
giving tienoo the underlying representation tienose or tienohe.
The illative singular can be then derived from underlying rienosesen
in the same way that the illative singular of uros is derived from
urosesen. 1f we assume that unround-vowel deletion precedes
s-weakening we can derive the alternative illative plurals of tienoo
from the underlying representation tienoseisen as follows. First,
tienoseisen becomes tienosisen, and then tienosisen follows the
same path as urosisen. The nominative singular is derived straight-
forwardly as follows:

tienose

tienohe (71a)
tienoho (71b)
tienooo (71c)
tienoo (71d)

Words like leikkuu ‘harvest’ and vapaa ‘free’, which behave just
like tienoo, can be treated similarly. They would have underlying
forms like leikkuse or leikkuhe and vapase or vapahe.

An objection that might be raised against our treatment of words
like tienoo is that a perfectly easy way of accounting for the
partitive singular tienoota must be abandoned. If we assume with
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Anderson that underlying form of fienoo is tienco, then the
retention of 7 in the partitive suffix is explained by the fact that
a long vowel precedes the t. (cf. the environment of the cyclic
dental-stop deletion rule (69a)). If we assume that the underlying
representation of tienoo is tienose, then when we add the partitive
suffix we have the underlying string tienoseta. Here the t is preceded
by a cluster subsumed under [--syl] [-}-syl, —stress], which ought
to trigger deletion of the ¢. The solution that immediately suggests
itself is that we order dental-stop deletion after A-vocalization,
Then we would have the derivation

tienoseta

tienoheta (s-weakening (71a))

tienohota (vowel-copying (71b))

tienoota  (h-vocalization (71c))

tienoota  (triphthong reduction (71d))
(no further rules applicable)

The ordering of h-vocalization prior to dental-stop deletion seems
to be supported independently by the illative plurals of noun and
adjective stems ending in a spirant. For example, uroita, the illative
plural of uros, can be derived properly from the underlying string
urosita only if h-vocalization precedes dental-stop deletion.

Consider, however, the noun airuf ‘herald’. The illative plural
will be underlying airutisen. Our rules as they now stand will
convert this representation into airuiin. However, the correct form
is airuihin. Observe that airuihin would indeed be generated if,
contrary to our conclusions above, we ordered dental-stop deletion
before A-vocalization. Then we would have the derivation

airutisen

airutihen (s-weakening (71a))
airutihin (vowel-copying (71b))
airuihin (dental-stop deletion)

h-vocalization would not apply to the last line above because the A
is preceded by a diphthong.
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The apparent conflict between forms like uroita and forms like
airuihin can easily be resolved if A-vocalization and dental-stop
deletion are regarded as subcases of a single right-linear rule. We
might have thought to combine the two processes into a single rule
anyway, since their environments look very similar the way we have
formulated them. The similarity is not as close as it appears, how-
ever, for we have somewhat oversimplified the environment of
h-vocalization. Apparently, s-vocalization takes place after any
unstressed vowel sequence that does not end in a long vowel or in
vowel -7, whereas dental-stop deletion is restricted to position
after consonant -+ short unstressed vowel. Some effects of this
difference are illustrated below.

nominative: autio herttua

illative: autioon herttuaan

partitive: autiota herttuata
‘desolate’ ‘duke’

Compare also ill. sg. airueen (< airutesen) with ill, pl. airuihin.
The question now is how to express gracefully the environment of
h-vocalization. 1 don’t know a definitive answer, but perhaps we
can achieve the right effect if we take the liberty of using the
following somewhat controversial devices:

(i) brackets meaning set intersection, as described in
Chapter 3;

(iiy hyphen meaning negation (that is, -(X) subsumes
everything that X doesn’t).

Then the rule of h-vocalization and the rule of dental-stop deletion
can be combined into the single right-linear rule (72).

(72)

~cons syl e

[ ,b}wa»o'/ $*| —stress |, —($*[ sy}

—Voice T
R: o

[w cont} /S sy]] [»%syl 1

~+-cor —$1Iess

i
|
I —rrsvtse
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It is possible that this rule can and should be further reduced by
appropriate use of angle brackets or indexed braces in order to
express what similarity there does exist between the left environ-
ments of the subcases.

We emphasize that our solutions to the problems under dis-
cussion are far from definitive. Numerous unresolved questions
remain, but these can be answered only by a far deeper study of
Finnish phonology than would be appropriate here. We could
claim only that the solutions presented here are at least as plausible
as Anderson’s and in some respects superior, and that there is
little reason to believe, therefore, that a left-to-right cycle is
necessary. It is true that at least one rule, (72), must be applied
in a left-to-right manner, but a right-linear formulation appears
to be adequate.
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It appears from Cole’s description (1955) that Tswana has the
following system of underlying vowels:

i u High
o Higher mid
) Lower mid

a Low

Using the vowel features proposed in Wang (1968) we would
presumably attribute the following analysis to these vowels.

i u e o g 3 a
High  + + 4+ o+ - - -
Mid - =+ o+ o+ o+ =
Palatal - .

As contrasted with the vowel features of Chomsky and Halle (1968),
hereafter referred to as SPE, the above analysis has two distinct
advantages in the present example: (1) it allows for the representa-
tion of four vowel heights; and (2) the vowels specified [-+mid]
constitute a natural class that is opposed to the remaining three
vowels, as will be seen below.

In certain environments the mid vowels are raised slightly, but
not enough to reach the height of the next higher vowel; in other
words ¢ is raised but not to the extent of becoming e, and e is
raised but not to the extent of becoming i. Phonetically, then, the
following vowels are distinguished:
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1 u High
e o~ Raised higher mid
e o Higher mid
S o~ Raised lower mid
€ ) Lower mid

a Low

One of the raising environments is before the velar nasal n. Thus
we have o~n, e~), o~1, and e~ from underlying o, en, o1, and e,
respectively. This rule is followed by another rule which, working
from right to left, raises a mid vowel by one degree if the next
following vowel is higher. We illustrate as follows:

moxakolodi  moselesele moseleselen
moselesele~y (raising
before n)
moxako~lo~di mose~le~sg~le~y  (raising
before
higher
vowel)
‘advisor’ ‘Dichrostachys (locative of
glomerata’ moselesele)

The question now arises as to how we are to represent the six
phonetic vowel heights in feature terms and how we are to for-
mulate the raising rules. Clearly, the four-way height distinction
that is adequate for the underlying representations is insufficiently
refined for the phonetic realizations. We can, however, easily
account for this situation if we allow that feature coefficients on
the phonetic level be given as integers rather than as pluses and
minuses. When provided with such coefficients a feature is thought
of as indicating the degree to which a certain phonetic quality is
possessed. Thus phonetic vowel height might be thought of as
given by one of the first n positive integers, 1 indicating the least
tongue height, and n indicating the greatest tongue height. The
scale of height given by the integers 1 through n should presumably
be universal, defined once and for all in phonological theory. In
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the absence of a generally accepted universal scale, we will assume
ad hoc that n = 6, since this is adequate for Tswana. The rules
of Tswana must at some point convert the plus and minus speci-
fications of the high and mid features into integer specifications
of the phonetic feature of height, and the raising rules will be
formulated in terms of those integer specifications.

In order to handle integer specifications we will introduce a few
new devices. We regard a positive integer n as a sequence of n 17s
Thus 1 = 1, 2 = 11, 3 = 111, etc. The Greek letters t, , A, ...
will be regarded as variables ranging over strings of 1’s. We will
furthermore allow expressions of the form +IF, where I is a
string of 1’s. Such an expression subsumes any phonological unit
which contains the specification +IF or JIF where J is a string
of 1’s. Thus in particular, +F subsumes units containing the spe-
cifications +F, F, 1F, 11F, 111F, etc.

Suppose now that there is a rule in Tswana that converts binary
height specifications into integer specifications as follows:

i, u become 6 high

e, 0 become 4 high

g, ) become 2 high
a becomes 1 high

Then the rule that raises a mid vowel before a vowel of greater
height can be given as in (75):

(75)
-8yl . .
. . ull highy oo o [l hxgh] "
L: tlléngh _.{ o ]/ts [—syl] [ﬂyl $

The vowel height feature, as we have viewed it, has finitely many
possibly integer coeflicients. As long as this is true of all features
the alphabet of phonological units remains finite, and the extended
formalism allowing integers and integer variables does not increase
the mapping power of phonological rules. It is otherwise with the
prosodic features now to be discussed.

According to Schachter and Fromkin (1968: 106-9) the Akan
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languages have an underlying distinction between high-level and
low-level tone. These tones are manifested phonetically according
to the following downdrift rule (after certain other rules have
applied). A high tone is always on a higher pitch than an imme-
diately neighboring low tone; however, the pitch interval between
a low tone and an immediately following high tone is less than
the pitch interval between a high tone and an immediately following
low tone. To quantify these relations Schachter and Fromkin
assume that there is a pitch interval of two degrees between a low
tone and a following high tone and that there is a pitch interval
of three degrees between a high tone and a following low tone.
We can express this analysis in feature terms if we suppose there
is an integrally valued feature of pitch, 1 pitch being the highest
pitch, 2 pitch the next highest, and so on. Then the effect of the
rule can be illustrated by the phrase
5békd kumdsé dnopd i
311 4 22253 3

Here high tone is indicated by an acute accent, low tone by a
grave accent. High tone can be thought of as represented by the
specification --tone, low tone by the specification —tone. The
downdrift rule can be given by a series of three rules, of which
the last is right-linear.

(76)
’ | --tone’ 1 pitch .
(a) s - (o) _J [8%—$
syl T .
(b) —tone | —» | 1 pltch] [$*—§*
. (©)
- - . +syl
s —
-+-tone N 1p1tch} /8% | —tone syl o §*
A L (o) . --tone
() R:) . 111 pitch
-8y .
—tone | - M1l pltchJ /g% [»{»«‘tqne] [—tone]* — $*
- (o) wpitch
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We assume here that only syllabics can have the specification
-tone, nonsyllabics being all —tone.

There are now infinitely many phonological units, since in
principle [n pitch] segments exist for each n. In order to continue
thinking in terms of a finite alphabet of primitive symbols we can,
of course, think of a phonological string as composed of brackets,
commas, pluses, minuses, 1’s, and feature names, these being the
formal building blocks of phonological units. We will then be in
a position to consider whether the extended formalism allowing
integer coefficients and variables is more powerful than the for-
malism of Chapters 4-5. In fact, it is more powerful, for many
rules can be formulated that exceed the power of finite transducers.
The Akan downdrift rule (76¢), for example, is not a finite state
device. To see this we can reason as follows. Let us say that Q
is in the output set of a mapping device if and only if that device
maps at least one string into Q. It is well known that the output
set of a finite transducer is regular, Therefore, if M is some finite
transducer that purportedly effects the same mapping as rule (76c),
then the output set of both M and rule (76¢) must be regular.
However, the output set of (76¢) is not regular because of the
dependencies that hold between the coefficients of the pitch features
within a phrase. If we regard these coefficients as strings of 17s
we are obliged to say that in any output string of the form
[L +tone, 1 pitch K —tone, J pitch H], where K contains no
occurrence of the expression -+tone and I and J are strings of 1’s,
J is longer than 1 by exactly two 1's. If there is no upper bound
on the length of 1, this sort of restriction will give rise to a non-
regular set (this follows from a theorem of Nerode; see Rabin
and Scott 1959 and Chomsky and Miller 1958).

Phonological rules do, then, occasionally exceed the capacity of
finite-state machines. Apparently, however, this happens only in
the restricted sort of case just considered, where integral coeffi-
cients are being referred to or manipulated.

(76¢) has been given as right-linear but will work equally well
when applied iteratively. The rule given by Schachter and Fromkin
(p. 108) is in fact meant to be iterative and is essentially the same
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as our rule, though differing in its outward form and corresponding
rather to (76) as a whole. Notice that there is no way at all to
express the rule under the simultaneous mode of application. For
suppose we attempted a simultancous formulation. The determi-
nation of the pitch of each syllable would have to be made in-
dependently of the other syllabics, since the context of each
syllabic must be referred to in original input form. What we
would have to say, then, is this:

(i) A ---tone syllabic receives n pitch when preceded in the
phrase by exactly n—1 occurrences of sequences sub-
sumed under [+tone] [—syl]* [+syl, —tone].

(i} A —tone syllabic receives n-3 pitch when preceded in
the phrase by exactly n occurrences of sequences sub-
sumed under [-+syl, —tone] [-+syl}* [-+tonel].

However, the schematic notation as it now stands is unable to
express a dependency between the number of occurrences of a
particular kind of phonological string and the size of an integer
coefficient, at least when there is no upper bound on these values.
The most it can do in this respect is to state dependence between
integers. We could, therefore, formulate a simultaneous version
of (76¢) only if we introduced some further device, such as the
notation X! meaning a string of exactly I X’s. It would then be
imperative to allow I to be a variable as well as a specific integer.
However, right-linear application obviates the necessity for this
extra device in the downdrift rule.

There is one other notable example of a feature that has been
said to take on any positive integer as a coefficient. This feature
is stress. In SPE the integer coefficients designate degrees of strength,
1 denoting the strongest stress, 2 the next strongest stress, and so
on. Stress has some peculiar properties which set it apart from
other features and appear to call for special conventions.

In many cases the introduction of a I stress causes weakening
of all previously present integrally valued stresses by one degree.
Thus the English alternating stress rule (rule 17, Chapter 5, in
SPE) will not only place a 1 stress on the antepenultimate vowel
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of a final-stressed word but will also weaken the previously present
final 1 stress to 2 stress. Thus cavalcade becomes cavalcade. Tech-
nically, we could treat the weakening of the final stress as a separate
rule. However, weakening of this sort is such a frequent con-
comitant of primary stress placement that the two phenomena
seem to be part of one process. Consequently Chomsky and Halle
have decided in SPE to let this weakening take place automatic-
ally. If we incorporate their convention about stress into our
formalism we can write the alternating stress rule simply as

[Jr-syl] N [1 S“‘“’ﬂ J$% [ syl*[-+-syl] [—syl]*[1 stress] [—syl]*
o (o)

Many rules that introduce a primary stress operate according to
a principle of disjunctive application. Consider a revised version
of the alternating stress rule proposed by Ross (1969). For sim-
plicity of illustration we take Ross” preliminary revision on page 9,
omitting boundary symbols. Ross’ rule can be thought of as
having the two ordered subcases (77a) and (77b) (some slight
modifications have been made to fit the rule to our notation).

(n
(a) F«sy I] > [] SthSJ/ 3% [ —syl]*[+syl] [—syl]*[1 stress][—syi]

G (©)
(b) [tyl] [l @ SS] [$*—[=syII*TL stress] [—syl]*

In general, all nouns are subject to (77) (most verbs are exempted
from (77b) by a redundancy rule in Ross’ view). However, the two
cases of (77) are applied disjunctively: if a noun receives a 1 stress
by (77a) it is no longer subject to (77b). Thus from cavalcide and
kayc%k, where the final 1 stress has been introduced previously by
the main stress rule, we obtain cavalcéde and kd ygk. It is the prin-
ciple of disjunctive application that prevents the derivation

cavalcdde
cdvalcdde (77a)
*cavaledde (77b)
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1t is frequently the case that the second of two disjunctively ordered
rules omits material present in the first rule. This is true in (77),
for example. An equivalent of (77b) can be obtained from (77a)
by simply omitting the [-}-syl] from the expression to the right of
the slash. This fact has led to the association of disjunctive order-
ing with parentheses and with the closely allied angle bracket
notation. Thus (77) would be given in abbreviated form as (78).

(78)

[ [ttt s [-syIPT stressf syl
Although parenthesis notation gives the correct result in many
cases there are certain reasons why we will not incorporate it
officially into our formalism. For one thing parentheses are not
formally associated with the stress feature. Indeed, with their aid
we can formulate many disjunctively applied rules that have
nothing to do with stress. In this respect the principle of disjunc-
tively ordering is grossly over-generalized, for it seems to be
properly associated only with certain rules which introduce a
primary accent (whether of pitch or stress). Supposed cases of
disjunctive ordering that do not fall under this rubric appear to
be spurious. A few illustrative examples will suggest why I believe
this to be so.1

1 Chomsky and Halle (p. 366 of SPE) are aware of the sort of problem
about to be discussed and offer some preliminary suggestions for solving it.
We have not followed up these suggestions because the problem does not
arise within the rule formalism we are developing here. It must be granted
that the case discussed by Chomsky and Halle, a rule of Latvian, presents a
difficulty of another kind to our formalism. Adapted slightly to our notation,
but retaining the parentheses and morpheme boundary of Chomsky and
Halle’s formulation, the rule would appear as follows:

(--syl
thioh] - [—S¥1 o (L[4 *
[% ;?n} [ (c)] ] $* — () [+syll $

This is taken to represent the following sequence of rules:

+syl
. ion | [SY! —
@ [H;xgh} [ (G)] [ $% — + [+syl] $*
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One of the rules proposed in SPE (23111 in Chapter 5) replaces
lax u with tense i before a string subsumed under [—syl][-~cons]
or [--cons]. This appears to cry out for parenthesis notation, and
the authors of SPE do in fact use an equivalent notation involving
a subscript 0 and a superscript 1. Adapted slightly to fit our
formalism more closely, the rule could be given as (79).

+syl
11§ +tns‘j 1
(79) ~+back | = | —rnd | /$* — [—sy]] 0 [—cons]$*
-+high (o) J
o

According to the conventions in SPE (pp. 61-2, 199), (79) would
be expanded into the two ordered rules of (80),

(80) (a) u->/$* — [—syl][—cons]$*
(b) u-—>i/$* — [—cons]$*

Now consider the effect of the u ~» i rule on the word wusual. This
word presumably has the underlying phonological representation
usuz! (SPE, p. 228). S-voicing apparently should apply before the
u— # rule since s-voicing precedes velar softening according to
SPE, p. 221, and velar softening precedes the u - i rule 23111 of
Chapter 5. The input to the u - i rule will, then, be #zuz!l. This
string has two vowels which fit the conditions of the u — i rule,
the first u satisfying case (80a) and the second u satisfying case
(80b). According to the conventions of SPE, however, the two
cases are applied disjunctively; consequently only the first case
(80a) will apply, and the output will be izuzl. Unfortunately,

+syl [ —syl
(b) [-V%high} - | (o) } [ 8% — [-+syl] $*

9
When applied in the indicated order (a) and (b) will correctly convert kuru - iai
and aui-+a into kurw-+yai and auy+-a, respectively, As our formalism now
stands we cannot, as Chomsky and Halle can, regard (a) and (b) as subcases
of a single rule. If they are subcases of a single right-linear or simultaneous
rule they yield *awy -+-a instead of auy-+-a; if they are subcases of a single left-
linear rule, they yield *kuru-+ yai instead of kurw -+ yai.

FEATURES WITH INTEGRAL COEFFICIENTS 115

though, this output cannot yield the correct pronunciation of the
word, for the remainder of the derivation would be as follows
(numbers not in parentheses refer to rules in Chapter 5 of SPE):

if;zuasi

izl 231V
yizizl 29
yiwziwel 31
yiwziwal 34
*ytwziwsl 43

The desired phonetic form is yidwZiwal, with palatalization of the z,
But it is just this correct form that will be obtained of the two
cases (80a) and (80b) of the u - i rule are applied conjunctively
or simultaneously. Then the input string #zua! will be converted
to izizl and the remainder of the derivation will proceed as desired:

iziel

yizyizl 29
yiwzyiwel 31
yawzyiiwel 34
yliwzytwel 37
yawzZiweal 38
yliwZawel 43

Note that within our formalism, where there is no explicit ana-
logue to the notion of ordered expansion of rules, (79) will be

. . . I, .
interpreted correctly if the notation [—syl] o8 regarded as equi-

valent to {[—syll, &} and if (79) is regarded as a simultaneous,
right-linear, or left-linear rule. For then (79) will convert dzuzl
to izizl by virtue of the application

u
z _ ®l
i

1%}

L R e

Variable notation too has been interpreted according to the
principle of disjunctive ordering, with equally disastrous con-
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sequences. Consider the second part of the vowel shift (rule 33
of Chapter 5 in SPE), which could be given as

81 {Bl)éw1 - [“B"’W] /8% — §*,

o (o)

where X is the expression
~+-syl
-+ins
--stress
-~high
vhack
yround

According to the convention described on p. 357 of SPE, (81)
must be regarded as standing for the disjunctive sequence (82).

X -

—low] . %

32 (@) *?ﬁ"*[w)]“”$
-

+low] .. *

(b) wg)wwm)»[(s)Jm — $

Now consider the effect on the word migrate. The underlying
representation is presumably migr@t (in SPE, p. 144, this word is
thought to have a -+ boundary before the #, but this fact is of
no relevance here except for its effect on the stress). The stress
rules, diphthongization and the first part of the vowel shift rule
will convert migrat into the intermediate form méygr@yt. Applying
case (82a) of the second part of the vowel shift we obtain méygréyt.
Now, however, because of disjunctive ordering, (82b) cannot now
apply to this output. But this is not what is wanted; the desired
output is m&ygréyt. Conjunctive ordering of (82a) and (82b) will
not do either, for then the output méygréyt will be obtained.
Within the framework of SPE the most appropriate method of
application seems to be the simultaneous; for then (82a) will apply
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to the second vowel but not to the first, and (82b) will apply to
the first vowel but not to the second, as required. Within our
formalism the correct result is obtained immediately if (81) is
regarded as simultaneous, right-linear, or left-linear. Then the rule
will convert méygr@yt into mdygréyt by virtue of the application

mé *I‘e%t
& 8 e

There are several more cases in SPE where the notation incorrectly
calls for disjunctive ordering; the amusing game of finding them
is left to the reader. There are, in addition, a number of cases
where disjunctive application is called for by the notation but is
neither supported nor invalidated by any crucial evidence in SPE.
Rule 24 of Chapter 5 in SPE is a particularly interesting example.
The first part of the rule would take the following form within
our notation:

o v (01
(83) Y()X ?WS K

where

[ astress 11 stress
Y = | syl | — { } [ [—stress]* — [—sylJ*¥,
(o)
o
".‘.{ﬁ, Syl

—tns } ([—sylD,

| —-stress

X = st | g sy [0 ] s,

Pstress ystress

“dstress «
W= hsyl ] 5

N
i

and K is the condition

(—(a=1)and —(B == 1) and —(B = 11) and ~—(y = 18))
{that is, « is not 1, B is weaker than 2, and & is weaker
than v).
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According to the conventions of SPE, though not according to
our conventions, (83) stands for the following sequence:

(84) (a) () YZX:K
(i) YX:K
(b) () YZXW:K
(i) YXW:K

(84a) and (84b) are conjunctively ordered. Within each of (84a)
and (84b) the two subcases (i) and (ii) are said by Chomsky and
Halle to be disjunctively ordered (see Footnote 67, p. 114 of SPE,
where a preliminary formulation of the rule is discussed). Contrary
to what they imply, however, it is far from evident that only dis-
junctive ordering would yield the correct results. One can show
formally that (84a) can be applied either disjunctively or con-
junctively with no difference in effect on any logically possible
input. The following derivation illustrates what happens:

rodAmAnt&d  (rodomontade: A is some lax vowel)
I (main stress rule; the word is apparently an excep-
tion to the alternating stress rule)
2 (84a.1)

Even if (84a) is a conjunctive sequence, case (ii) cannot now apply
because the word cannot be matched to the structural description
in any way. In particular, the second vowel is not subject to the
rule because it is preceded in the word by a stressed segment.

(84b) will indeed treat certain inputs differently depending on
the way it is applied. A hypothetical example will illustrate how
this might happen:

winAtetAmAgosi  (?Winnetatamagouchi; A is some lax vowel)
I (main stress rule)
2 (84b.1)
2 (84b.ii)

Both of the last two steps are taken if (84b) applies conjunctively,
but the third step is omitted if (84b) applies disjunctively. To
decide whether (84b) should be conjunctive or disjunctive one
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would have to consider some long English word whose canonical
form was similar to that of our hypothetical example. In discussing
the rule (SPE, pp. 114-15), Chomsky and Halle consider only
shorter words that prove nothing either way. One of these words
is Winnepesaukee, whose stress pattern is derived as follows:

winApAsaki (underlying form; A a lax vowel)
1 (main stress rule)
2 (84b.1)

Even if (84.b) is a conjunctive sequence, case (i) is now inapplicable
because of its structural description. Thus, in particular, the second
vowel of the word cannot be touched because it is now preceded
somewhere by a stressed segment,

It would seem, then, that disjunctive ordering is a principle of
highly limited scope, being clearly required only by certain rules
of primary accentuation. Furthermore, if we assume that all stress
rules introduce either a --stress or an integer-valued stress, but
never a -f-stress as such, then even many rules of primary stress
placement cannot be applied disjunctively. For example, if we
recast the Southern Paiute rule (47) so as to introduce a I stress
instead of a --stress, we want to obtain tw’c""cirmiZ yu, not
*tukWépaiyu. It may be a further fact that disjunctive application
of a primary stress rule and weakening of previously present
stresses always go together; at least this is true of the English
stress rules. These considerations lead us to propose the conven-
tions of (85).

(85) (a) The stress feature may have the coeflicient 0 as well
as — and positive integers. However, no underlying
representation may contain a 0 stress vowel.

(b) The definition of subrule is revised as follows. P —»
Q/R~—S is a subrule of G:X if and only if P — Q/R—8§
is subsumed under X and RPS contains no O stress
vowel. , however, may contain such a vowel,

(¢) Let Q be the result of applying a rule N to the input
string P. If Q contains at least one 0 stress vowel, then
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all integrally valued stresses in Q, including the O stres-
ses, are weakened by one.

With these conventions we can now formulate Ross’ version of
the alternating stress rule as follows:

syl N 0 stress’ e S["%‘SYU( B
(86) R.L o } [ ©) }/{g* [ Syl]*e p S[ syl]*

[1 stress) [—syl}*

Application of (86) to k‘zmwlk;“?d {perhaps the representation of
cavalcade at this stage of derivation) will take the following form:

&

K, velkad
Fi g

The output k«%"{i’lkcﬁéd is turned into kaéva;lkzgd by convention (85c¢).
Notice that (85) cannot give the output kivdlkad by virtue of any
putative application
I
k v lka&d
0

g 2

The reason is that the supposed fourth step,

o ]
® — @/kv — lkid,

though subsumed under the schema in (86), is not a subrule of
(85), being excluded by convention (85b).

Ross’ version of the main stress rule of English, though not the
version in SPE, fits quite well into the framework proposed here.
Adapted slightly to our notation, Ross’ rule as given on p. 45 takes
the form of (87).

(87)
[ [

~—{ns
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where K is the expression

[+-s0n]
// LN
AR AN
e [ o+ coﬂ\\\\
( {/’</ ’rs \\\I )
N d) S
N \ { / /
\\ r n’} ’ ///
N
AN S
\\\ tis ///
\\ a a P 4
b b

and L is the right syntactic bracket

} n{a{NYaAdn

According to the conventions of SPE (cf. especially the Appendix

to Chapter 8), rule (87) will have the partial expansion shown in
(88).

(88)
o [ e[k
O[] - 2

The three cases (88a), (88b), and (88¢) of rule (87) stress ante-
penultimate, penultimate, and final vowels, respectively. Since the
cases are applied disjunctively in the order given, the effect is to
stress the leftmsot vowel that fits any of the three cases. We can,
then, adapt (87) completely to our formalism with very minor
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revisions, provided we adopt the customary angle bracket notation
and the usual way of referring to syntactic categories. All we need
to do is to make (87) a right-linear rule, substitute the expression
[0 stress, (0)] for [i stress, (0)] to the right of the arrow, and
replace each expression of the form (U) with {U, &L

There are a few cases where disjunctive application seems
appropriate and is in fact achievable under our conventions but
not under those of SPE. According to Harms (1968: 74), Komi
Jazva has a word-level rule that places stress on the rightmost
vowel that is not preceded anywhere within the word by a tense
vowel. Thus if there is a tense vowel, the first tense vowel receives
stress, while if there is no tense vowel, then the last vowe! receives
stress. With our conventions we would write the rule as follows:

89) L: [i&;yl} . [0 ?g;:ss] / [ Msy]g:j b g

~—tns|
There is no way in the system of SPE to achieve the effect of dis-
junctive application here, since in SPE the star notation is asso-
ciated with simultancous application. Parentheses around the left-
hand starred expression will not do either, since the first of the
two disjunctively ordered cases will be (89) itself.
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