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Doing arithmetic by hand: Hand movements during exact
arithmetic reveal systematic, dynamic spatial processing

Tyler Marghetis, Rafael Núñez, and Benjamin K. Bergen

Department of Cognitive Science, UC San Diego, La Jolla, CA, USA

Mathematics requires precise inferences about abstract objects inaccessible to perception. How is this
possible? One proposal is that mathematical reasoning, while concerned with entirely abstract
objects, nevertheless relies on neural resources specialized for interacting with the world—in other
words, mathematics may be grounded in spatial or sensorimotor systems. Mental arithmetic, for
instance, could involve shifts in spatial attention along a mental “number-line”, the product of cultural
artefacts and practices that systematically spatialize number and arithmetic. Here, we investigate this
hypothesized spatial processing during exact, symbolic arithmetic (e.g., 4+ 3= 7). Participants
added and subtracted single-digit numbers and selected the exact solution from responses in the top
corners of a computer monitor. While they made their selections using a computer mouse, we recorded
the movement of their hand as indexed by the streaming x, y coordinates of the computer mouse cursor.
As predicted, hand movements during addition and subtraction were systematically deflected toward
the right and the left, respectively, as if calculation involved simultaneously simulating motion along
a left-to-right mental number-line. This spatial–arithmetical bias, moreover, was distinct from—but
correlated with—individuals’ spatial–numerical biases (i.e., spatial–numerical association of response
codes, SNARC, effect). These results are the first evidence that exact, symbolic arithmetic prompts sys-
tematic spatial processing associated with mental calculation. We discuss the possibility that mathemat-
ical calculation relies, in part, on an integrated system of spatial processes.

Keywords: Mental arithmetic; Operational momentum; Spatial–numerical association of response
codes; Spatial–operation association of responses; Grounded cognition; Neural recycling.

Mathematics exemplifies some of the most remark-
able properties of human cognition: exact yet
abstract, mediated by notations and diagrams, and
accompanied by a compelling sense of certainty.
And yet mathematics itself is such a recent cultural
innovation that the neural resources responsible for
mathematical thought could not have evolved
specifically for that purpose. This article explores

the possibility that mathematical thought, and
arithmetic calculation in particular, relies on
neural resources that are specialized for processing
space (e.g., Anderson, 2010; Dehaene & Cohen,
2007). On this account, mathematical cognition
involves mapping mathematical entities to space,
a space that then affords reasoning and reflection
(Lakoff & Núñez, 2000; Núñez & Marghetis, in
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press). We may recycle the brain’s spatial prowess
to navigate the abstract mathematical world.

The last two decades have generated an abun-
dance of evidence that human numerical cognition
does, indeed, interact with spatial processing.
During a variety of simple tasks, numerical magni-
tude has been found to be associated with spatial
length (de Hevia & Spelke, 2009), area (Tzelgov,
Meyer, & Henik, 1992), and locations along hori-
zontal (Dehaene, Bossini, & Giraux, 1993) and
vertical (Ito & Hatta, 2004; Schwarz & Keus,
2004) axes. These effects exist across response
modalities: Thinking about numbers induces
spatial biases in subsequent manual responses
(Dehaene et al., 1993), covert attention (Fischer,
Castel, Dodd, & Pratt, 2003), eye movements
(Fischer, Warlop, Hill, & Fias, 2004; Schwarz &
Keus, 2004), and grip aperture (Lindemann,
Abolafia, Girardi, & Bekkering, 2007). Spatial
attention, conversely, systematically influences
random number generation (e.g., Loetscher,
Bockisch, Nicholls, & Brugger, 2010; Loetscher,
Schwarz, Schubiger, & Brugger, 2008). And lin-
guistically, talk about numbers is loaded with
spatial language: We count up to arrive at bigger or
higher numbers, but count down to smaller or lower
numbers (Lakoff & Núñez, 2000). There is evi-
dence, therefore, of bidirectional interactions
between numerical cognition and spatial processing.

In particular, systematic associations between
numerical magnitude and spatial location—along
vertical or horizontal axes—are often referred to
as a “mental number-line”. The specific direction
of the horizontal mental number line (e.g., left to
right) is thought to emerge from rich cognitive eco-
systems of cultural practices and artefacts, including
reading (Shaki, Fischer, & Petrusic, 2009), finger-
counter (Fischer, 2008), and physical number-lines
(Núñez, 2011).

But mature mathematical competence far out-
strips basic numerical abilities like number com-
parison. A bedrock of mathematics is the ability
to manipulate and combine numbers, performing
calculations to produce exact solutions. Might
exact, symbolic arithmetic also rely on basic
spatial resources, further elaborating a foundation
of spatial–numerical associations?

Recent research raises the tantalizing possibility
that this may be the case. McCrink, Dehaene, and
Dehaene-Lambertz (2007) reported that adults sys-
tematically over- and underestimated the results of
approximate addition and subtraction, respectively
—the so-called “operational momentum” effect
(hereafter OM). This effect has since been replicated
(Knops, Thirion, Hubbard, Michel, & Dehaene,
2009; Knops, Viarouge, & Dehaene, 2009;
McCrink & Wynn, 2009; Pinhas & Fischer,
2008). A leading explanation of OM ascribes the
effect to concurrent spatial processing (McCrink
et al., 2007). On this account, mental calculation
involves associating numbers with locations along a
mental number-line and then shifting spatial atten-
tion along that line—a form of simulated or abstract
motion (cf. Langacker, 1987). The observed over-
and underestimation is due to the momentum of
this simulated motion, a momentum that propels
the thinker past the correct response: toward greater
numbers in the case of addition, and toward lesser
numbers in the case of subtraction. We refer to this
as the spatial account of OM (Hubbard, Piazza,
Pinel, & Dehaene, 2005; McCrink et al., 2007).

In support of the spatial account, Knops, Thirion,
et al. (2009) reported that a machine learning classi-
fier that had been trained to distinguish right and left
saccades on the basis of functional magnetic reson-
ance imaging (fMRI) data from the posterior
superior parietal lobule (PSPL) was able to general-
ize spontaneously to approximate arithmetic, suc-
cessfully distinguishing addition from subtraction.
This suggests that approximate arithmetic and
spatial attention, at the very least, involve similar,
overlapping neural activity in the PSPL.

This spatial account is appealing on theoretical
grounds. For starters, it explains over- and underes-
timation during arithmetic (i.e., OM) by appealing
to known interactions between numerical magni-
tude and space, thus implicating spatial–numerical
interactions in arithmetical calculation. This raises
the possibility that simple spatial processing
might play a functional role during more complex
mathematical capacities like symbolic calculation
(Hubbard et al., 2005).

In so doing, the spatial account offers an expla-
nation of how a relatively recent cultural innovation
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like symbolic calculation could emerge, in part,
from evolutionarily older cortical foundations
(Dehaene & Cohen, 2007), shaped and assembled
by cultural practices and artefacts like external
number-lines (Núñez, 2011). By connecting arith-
metic to spatial processing, the spatial account thus
situates arithmetic within the broader frameworks
of grounded cognition (Barsalou, 1999, 2008),
embodied cognition (Lakoff & Núñez, 2000),
and various forms of neural reuse (Anderson,
2010; Dehaene & Cohen, 2007; Gallese &
Lakoff, 2005; Hurley, 2008). These frameworks
argue that higher cognition, including capacities
like mathematical reasoning or language compre-
hension, may rely on neural resources that evolved
in response to entirely different evolutionary press-
ures—namely, the constraints and demands of
interacting with the external world via perception
and action. This redeployment of sensorimotor
neural resources during higher cognition is some-
times referred to as simulation (Barsalou, 1999).
To borrow an example from language comprehen-
sion, understanding language about motion,
whether literal (“I gave him the butter”) or figura-
tive (“I gave him an idea”), may rely on the same
neural machinery that subserves the perception
and execution of real-world motion (e.g.,
Glenberg & Kaschak, 2002; Glenberg, Sato, &
Cattaneo, 2008; Kaschak et al., 2005; Matlock,
2004; Saygin, McCullough, Alac, & Emmorey,
2010). Similar proposals for arithmetic date back
at least to Hubbard et al. (2005), who noted that
“the parietal mechanisms that are thought to
support spatial transformations might also be
ideally suited to supporting arithmetic transform-
ations” (p. 445). By situating arithmetic within
the frameworks of grounded cognition, embodied
cognition, or neural reuse, the spatial account
thus offers an explanation of how a historically
recent, human-specific capacity like symbolic arith-
metic might have emerged from neural resources in
our evolved cognitive toolbox—as part of a larger
cultural–cognitive ecosystem, of course. The
spatial account, therefore, supplies a mechanistic
proposal for how neural resources specialized for
space might be responsible for parts of mathemat-
ical calculation.

Nonspatial accounts of operational
momentum

However, there are compelling nonspatial alterna-
tive explanations of known operational momentum
effects. One possibility is that over- and underesti-
mation during mental arithmetic is due to a logar-
ithmically compressed representation of numerical
magnitude. Children’s early representations of
number seem to be compressed logarithmically,
with smaller numbers allocated more represen-
tational resources than larger numbers (Siegler &
Opfer, 2003). Human adults continue to exhibit a
logarithmic representation of approximate, non-
symbolic numerical magnitude under certain cir-
cumstances (e.g., when responding nonspatially,
Núñez, Doan, & Nikoulina, 2011). And nonhu-
man primates represent nonsymbolic numerosities
using neural codes with logarithmically compressed
“receptive fields” for numerosity (Dehaene, 2003;
Nieder & Miller, 2003). On this account, the sys-
tematic over- and underestimation of addition
and subtraction is due to small errors induced by
these logarithmically compressed approximate
magnitudes. Adding 40 and 8, for instance, may
involve transducing these exact numbers to logar-
ithmically compressed approximate magnitudes
[e.g., log2(40)+ log2(8) ≈ 8.32] and then trying
to transduce this back to an approximate number
(28.32 ≈ 69. 48), a process that can overestimate
the result of the addition. A corresponding bias
emerges for subtraction [e.g., log2(40) − log2(8)
≈ 2.32, 22.32 ≈ 5.4, 32]. Following Knops,
Zitzmann, and McCrink (2013), we refer to this
as the compression account of OM (Chen &
Verguts, 2012).

A second nonspatial explanation ascribes OM to
a heuristic that, simply stated, assumes that
addition will always produce a larger number, and
subtraction a smaller number (McCrink &
Wynn, 2009). This is a reasonable assumption
under most circumstances; arithmetic involving
negative numbers is a notable exception. Applying
this heuristic, crucially, would make a reasoner
more likely to accept larger solutions from a list
of options when adding but more likely to accept
smaller solutions when subtracting. This proposal
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is bolstered by the existence of OM in infants as
young as nine months old (McCrink & Wynn,
2009; but see Knops et al., 2013), presumably too
early for them to have acquired any systematic
associations between numbers and lateral locations.
Following Knops et al. (2013), we refer to this as
the heuristic account of OM (McCrink & Wynn,
2009).

These nonspatial alternatives can explain the
systematic biases in arithmetic that are character-
istic of OM without invoking spatial processing
of any sort. Of course, these alternatives are not
in opposition to each other, and it is entirely poss-
ible that each proposed mechanism makes its own
contribution to observed over- and underestimation
during arithmetic (e.g., the computational model of
OM in Chen & Verguts, 2012, involves both
spatial and logarithmically compressed represen-
tations of number). But an immediate consequence
of these viable alternatives is that the mere existence
of over- and underestimation is insufficient on its
own to implicate space in mental arithmetic. Any
putative evidence in favour of the spatial account
will need to adjudicate between genuinely spatial
accounts of OM and these nonspatial alternatives.

Existing evidence for the spatial account

Besides intuitive plausibility, then, what evidence
do we currently have in favour of the spatial
account? Very little, in fact. Previous studies of
spatial biases during arithmetic have not distin-
guished between spatial–numerical and genuinely
spatial–arithmetical biases, or they have only
found spatial biases for nonsymbolic or approxi-
mate calculation. Pinhas and Fischer (2008), for
instance, had participants respond to single-digit
symbolic arithmetic problems by pointing to
locations along a number-line on a computer
touchscreen. They found that the magnitude and
location of participants’ responses were systemati-
cally biased by the arithmetic operation: rightward
towards larger numbers for addition, and leftward
towards smaller numbers for subtraction. This
demonstrates that mental arithmetic can induce
biases in the way we interact with external numeri-
cal artifacts (i.e., a number-line displayed on a

screen). However, since the experiment involved
an explicit, built-in mapping between numerical
magnitudes and response locations (e.g., larger
numbers were more rightward along the visually
displayed number-line), rightward and leftward
deflection was thus confounded with over- and
underestimation, respectively. In other words, the
observed deflection may have been the spatial
manifestation of numerical over- and underestima-
tion during approximate calculation—perhaps
due to logarithmic compression or a simple
heuristic—rather than genuinely spatial biases.

When spatial biases have been demonstrated
unequivocally, they have only been reliable for
approximate arithmetic using analogue, nonsym-
bolic number representations. Knops, Viarouge,
et al. (2009) had participants solve approximate
arithmetic problems, involving the addition or sub-
traction of symbolic (Arabic numerals) or nonsym-
bolic (sets of dots) representations of numbers.
Participants had to select the best response from
options displayed in a circle on a computer
monitor. As predicted, participants selectively
over- and underestimated the result of approximate
addition and subtraction, respectively, replicating
McCrink et al. (2007). Crucially, they also found
that participants were more likely to choose a
response on the right of the screen after addition,
and on the left after subtraction—an effect they
dubbed the spatial–operation association of
responses (SOAR). However, this SOAR effect
was only reliable for nonsymbolic sets of dots;
across two experiments, the effect was nonsignifi-
cant for symbolic representations (Arabic
numerals). We know of no evidence, therefore,
that unequivocally demonstrates spatial biases
during symbolic approximate arithmetic.

As far as we know, moreover, there have been no
studies of OM or spatial biases during exact calcu-
lation, in many respects a crucial test-case for
embodied or grounded accounts of mathematical
thought. The precise, highly constrained reasoning
required for exact calculation may be more amen-
able to “amodal” or symbolic approaches than to
sensorimotor or grounded approaches, since
spatial simulation seems to lack the necessary pre-
cision and abstraction (Dove, 2009; Mahon &
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Caramazza, 2008). The solution to 7+ 2 is exactly
9, after all, not approximately 9, and this remains
true regardless of whether we are dealing with dia-
monds, dragons, or decimal numbers. For these
reasons, evidence of spatial processing during
exact calculation is necessary if the spatial account
is going to scale up to advanced mathematics,
beyond basic capacities for approximation.

THE CURRENT STUDY

At present, therefore, there is no unequivocal
evidence of spatial biases during symbolic calcu-
lation; previous studies either have confounded
spatial effects with other nonspatial sources of
over- and underestimation or have only found
reliable effects with analogue, nonsymbolic
stimuli. Existing research, moreover, has been
limited to approximate arithmetic, so there is cur-
rently no evidence of spatial biases during exact cal-
culation. To address these limitations of previous
work with respect to the current question, we
tested the spatial account of OM during exact,
symbolic arithmetic, using the dynamics of motor
activity during mental calculation to look for
systematic spatial perturbations associated with
arithmetic operations.

In particular, we turned to computer mouse
tracking, a methodology in which hand move-
ments—as indexed by the streaming x, y coordi-
nates of the computer mouse cursor—are
recorded during real-time reasoning and decision
making (e.g., Spivey, Grosjean, & Knoblich,
2005). These continuous hand trajectories are
ideally suited for investigating the temporal
dynamics of cognition and have been used to
study the real-time processing of language, categor-
ization, and even race and gender (for a review, see
Freeman, Dale, & Farmer, 2011), and continuous
measures of hand movements have been used pre-
viously to study numerical cognition (Dotan &
Dehaene, 2013; Song & Nakayama, 2008). More
recently, computer mouse tracking has been used
to test grounded theories of abstract thought.
Miles, Betka, Pendry, and Macrae (2010) recorded
hand movements while participants decided

whether generic events were in the past or the
future. In line with previous research showing
that literate Westerners represent time on a left-
to-right mental timeline, they found that hand
movements were deflected to the left when reason-
ing about past events, and to the right when reason-
ing about future events. This methodology is
sensitive to subtle perturbations in the spatial and
temporal dynamics of hand trajectories and can
therefore reveal sensorimotor or spatial processing
during higher cognition, unlike typical offline
measures used in cognitive psychology that only
capture the discrete outcomes of cognition
(Spivey, 2007).

As a direct test of spatial–arithmetical biases
during exact, symbolic calculation, we had partici-
pants solve arithmetic problems while using a com-
puter mouse to select their response. We reasoned
as follows. If mental calculation involves dynamic
shifts in attention along a spatial representation of
number—the spatial account—then exact arith-
metic should systematically influence the spatial
trajectory of concurrent motor activity (Barsalou,
2008). For our American participants, this
implies that adding and subtracting should induce
spatial deflections not only along a left-to-right
conceptual number-line but also in ongoing inter-
actions with the world. We thus hypothesized
that, if the spatial account is correct, the trajectory
of participants’ hands should be systematically
deflected in the direction of simulated motion: to
the right during addition and to the left during sub-
traction (the SOAR effect). By contrast, since
response location was independent of solution
magnitude, neither the compression nor the heuris-
tic account predicts any systematic influences of
mental arithmetic on concurrent hand movements.

Method

Participants
Undergraduate students (n= 44, 14 males, mean
age 21.4 years) from the University of California,
San Diego, completed the experiment in return
for partial course credit. All experimental pro-
cedures were approved by the university’s
Institutional Review Board.
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Materials
On each trial, participants were presented with an
arithmetic problem (e.g., 6+ 2) and had to select
the correct solution from two options (e.g., 8
or 9), one of which was always correct (see
Procedure below). Arithmetic problems were gen-
erated according to the following criteria. All pro-
blems involved the addition or subtraction of
single-digit numbers and had a single-digit result.
Paired addition and subtraction problems were
created with the same first and second terms (e.g.,
3+ 1= 4 and 3 – 1= 2), and with the second
term ranging from 0 to 3, inclusive. Since the incor-
rect distractor response was always one higher or
lower than the correct solution, we restricted the
problems to those with correct solutions between
1 and 8 so the distractor responses were also
single digit numbers. This produced a list of 32
problems, 16 each for addition and subtraction.
Each of these problems then generated two items:
one where the distractor response was higher than
the correct solution, and another where it was
lower. All told, therefore, there were 64 items,
half of which involved addition, with addition
and subtraction items matched for the first and
second terms (see the Appendix).

Procedure
The experiment consisted of two blocks of 128
trials presented in a random order. Each of the 64
items appeared twice during each block, each
time with the correct answer in a different location.
The trial structure is illustrated in Figure 1. Trials
began by displaying the two response options in
the top right and left corners of a computer
monitor (474 mm wide× 296 mm high). These
response options were displayed for 1000 ms to
allow participants sufficient time to familiarize
themselves with the response locations. After this
1000-ms familiarization period, a button marked
“START” appeared in the bottom centre of the
screen, which participants could then click to
display the arithmetic problem. The arithmetic
problem appeared sequentially in the centre of the
screen: The first term (e.g., “5”) appeared for 500
ms, followed by the operation (e.g., “+ ”) for
500 ms, followed by the second term (e.g., “2”)

for 500 ms (see Figure 1). As soon as the second
term appeared, the computer mouse became
responsive to participants’ hand movements, allow-
ing participants to begin moving the cursor toward
the upper response buttons. In order to encourage
hand movements during mental calculation, par-
ticipants were instructed to begin moving the
cursor as soon as the second term appeared and
received a warning message if it took them longer
than 1000 ms to initiate a response.

Data collection and preprocessing
We used Mousetracker software (Freeman &
Ambady, 2010) to record the streaming x- and
y-coordinates of the computer mouse cursor,
which served as an index of participants’ hand
movements. The mouse was a Dell Optical USB
Scroll Mouse (model XN966), and the cursor
location was sampled at approximately 70 Hz by
Mousetracker. Before analysis, all trajectories were
rescaled to a 1.5× 2 standard coordinate space,
with the top-left of the screen at (−1, 1.5) and
the bottom-right at (1, 0), and were remapped
rightward. Trajectories were time-normalized to
101 time-steps using linear interpolation, in order

Figure 1. Timeline of each trial. Participants had 1000 ms to

familiarize themselves with the possible solutions (A), after which

they could press the START button to begin the trial. They were

then presented sequentially with the arithmetic problem (B, C, D),

but were only able to move the cursor toward their response after

the onset of the second term (D). Reaction times were measured

from the onset of the second term.
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that we could average across the full length of trials
that varied in duration. All statistical analyses were
performed using R statistical software
(R Development Core Team, 2008).

Results

Accuracy was quite high (M= 98.99%, SE= 0.18),
and no participants were removed due to low accu-
racy. We first conducted a 2× 2 repeated measures
analysis of variance (ANOVA) of mean accuracy,
with SOAR-congruency and arithmetic operation
(addition, subtraction) as within-subjects factors.
SOAR-congruency was defined as the match
between the arithmetic operation and the response
direction: Congruent addition trials were those
where the correct answer was on the right; congruent
subtraction trials were those where the correct sol-
ution was on the left. There were no significant
effects on accuracy (all ps. .3). Incorrect trials
(n= 114) were removed for all further analyses.

We used two measures to characterize the curva-
ture of these hand trajectories: maximum deviation
(MD) and area under the curve (AUC; Freeman &
Ambady, 2010). A trajectory’s maximum deviation
is the maximum distance it reaches from a hypothe-
tical “perfect” trajectory—that is, a straight line
from the start button to the correct response.
Area under the curve is the area bordered by the
actual trajectory and this perfect, straight trajectory.
These two measures were highly correlated
(r= .89) but reflect slightly different spatial proper-
ties of a trajectory: MD captures the extremes of
deflection but is blind to the trajectory as a whole;
AUC captures average deflection over the course
of the entire trajectory but is less sensitive to
sudden, acute deviations. We therefore report ana-
lyses of both measures, even though in this study
they produced nearly identical results (with slightly
larger effect sizes for MD).

While computer mouse trajectories are typically
fluid, they sometimes involve highly aberrant or
discontinuous movements due to hardware error
(e.g., mouse sticking), initial errors that are cor-
rected midresponse, or other anomalies. To
exclude these highly aberrant hand trajectories in
an objective manner, we removed trials where the

initiation time, reaction time, MD, or AUC was
more than 3 standard deviations away from each
subject’s mean (4.4% of trials). No other trials
were removed.

Spatial deflection
To investigate the spatial deflection of hand trajec-
tories, we analysed MD and AUC using 2× 2
repeated measures ANOVAs, by subjects and by
items. SOAR-congruency was a within-subjects
and within-items factor, while arithmetic operation
(addition, subtraction) was a within-subjects but
between-items factor.

The only significant effect was the main effect of
SOAR-congruency (see Figure 2). Hand trajectories
on incongruent trials had a significantly larger
maximum deviation than on congruent trials
(M= 0.202, SE= 0.02; M= 0.178, SE= 0.02),
both by subjects, F(1, 43)= 8.01, p= .007, η2p
= .16, and by items, F(1, 62)= 10.7, p= .002,
η2p= .15. Similarly, incongruent trials had a signifi-
cantly larger area under the curve than congruent
trials (M= 0.345, SE= 0.04; M= 0.309, SE=
0.04), by subjects, F(1, 43)= 4.61, p= .038,
η2p= .10, and by items, F(1, 62)= 5.92, p= .002,
η2p= .09. Thus, hand trajectories were reliably
deflected in the predicted direction: to the right for
addition, and to the left for subtraction.

Relation between spatial biases for magnitude and
arithmetic operation
Since addition and subtraction of the same terms
will produce results that are on average higher
and lower, respectively, we conducted additional
analyses to tease apart the observed spatial–arith-
metical biases from possible spatial biases associ-
ated with the magnitude of the problems’
solutions. Did spatial–arithmetical biases (i.e., the
SOAR effect) make a contribution above and
beyond any effect of the solution’s magnitude—
that is, a spatial–numerical association of response
codes (SNARC) effect driven by the solution?
To answer this question, we modelled MD and
AUC as functions of both SNARC- and SOAR-
congruency. Since all numbers were between 1
and 9, we assumed that any spontaneous SNARC
effect would associate solutions less than 5 with
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left space and solutions greater than 5 with right
space (Dehaene et al., 1993). We thus began by
removing trials where the solution was 5, since 5
was the midpoint of the range of numbers used in
the experiment (1–9) and thus was associated
with neither left nor right space. Next, we con-
structed mixed-effects models of MD and AUC
with SNARC-congruency and SOAR-congruency
as fixed effects, subject and solution as random
effects, and by-subject and by-solution random
slopes for SNARC-congruency and SOAR-con-
gruency (Barr, Levy, Scheepers, & Tily, 2013).
Visual inspection of residual plots did not reveal
any obvious deviations from homoscedasticity or
normality. To test the influence of SOAR-con-
gruency, these full models were then compared to
reduced models that were identical except that
they lacked a fixed effect of SOAR-congruency
(i.e., with only the fixed effect of SNARC-
congruency).

Even after controlling for the congruency
between the solution’s magnitude and its location,
there was a significant effect of SOAR-congruency
on hand movements. The full models with SOAR-
congruency fitted the data significantly better than
the reduced models [MD: χ2(1)= 5.12, p= .02;
AUC: χ2(1)= 4.06, p= .04], demonstrating that
SOAR-incongruent trials were significantly
deflected compared to SOAR-congruent trials,
above and beyond any deflection due to final sol-
ution magnitude. According to the full model, a
mismatch between arithmetic operation and
response direction increased MD by 0.028+
0.012 (standard errors) and AUC by 0.040+
0.020 (standard errors). Therefore, the incon-
gruency of arithmetic operation and response direc-
tion produced a reliable deflection of hand
trajectories, and this deflection was in addition to
any spatial deflection associated with the solution
(i.e., a SNARC effect of the solution).

Figure 2. Spatial deflection of incongruent trajectories. Mean hand trajectories on trials where the motion was incongruent or congruent with

the arithmetic operation, remapped rightwards for comparison (left panel). Circles indicate even time-steps from 0 to 100. SOAR-incongruent

trajectories (SOAR = spatial–operation association of responses) were reliably deflected in the opposite direction, as indicated by significantly

larger maximum deviation (MD; top right) and area under the curve (AUC; bottom right). MD and AUC were normalized by subject before

plotting. Error bars show standard error of the mean.
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Next, we asked whether individuals’ spatial–
arithmetical biases were related to the size of their
SNARC effects. To measure the size of each
participant’s SNARC effect, we adapted the
regression method of Fias, Brysbaert, Geypens,
and d’Ydewalle (1996). We first calculated
“dMD” and “dAUC”, the difference in mean
MD and AUC between left and right responses
for each possible numerical solution.1 These are
thus measures of the left-side advantage for each sol-
ution magnitude: Positive values of dMD and
dAUC indicate that responses for that numerical
solution were deflected leftward, while negative
values indicate that responses for that numerical sol-
ution were deflected rightward. Next, for
each participant, we regressed both dMD and
dAUC onto solution magnitude. The slope of this
regression line is an index of participants’ SNARC
effect: More negative values of β are evidence of a
larger SNARC effect, since they indicate that right-
ward responses are increasingly favoured as magni-
tude increases. To measure the size of each
individual’s SOAR effect, we computed the standar-
dized mean difference (SMD) between mean MD
and AUC on SOAR-congruent and SOAR-incon-
gruent trials. A negative SMD, therefore, indicates
the presence of a SOAR effect: increased deflection
on SOAR-incongruent trials compared to SOAR-
congruent trials. For both measures, therefore,
more negative values indicate a larger canonical
effect (following Fias et al., 1996).

First, we checked that these measures did,
indeed, capture reliable spatial biases associated
with the solution’s numerical magnitude and the
arithmetic operation. Overall, the slopes of the
SNARC linear regressions were significantly less
than zero [MD: Mβ=−0.015, t(43)=−3.05,
p= .004; AUC: Mβ=−0.027, t(43)=−2.92,
p= .005], confirming the presence of a SNARC
effect associated with the solutions. Moreover,
whether calculated with MD or AUC, 30 out of
44 participants (68%) had negative regression
slopes, evidence of a canonical SNARC, in line
with previous studies that found a canonical

SNARC effect in ∼70% of participants (e.g.,
Cipora & Nuerk, 2013). This is a significantly
higher proportion than expected by chance
(p= .01, one-tailed binomial test). Similarly, indi-
viduals’ SMDs differed significantly from zero
[MD: MSMD=−0.074, t(43)=−3.27, p= .002;
AUC: MSMD=−0.063, t(43)=−2.88,
p= .006], and 28 out of 44 participants had nega-
tive values of SMD when calculated with MD, evi-
dence of a canonical SOAR effect (p= .04, one-
tailed binomial test; for AUC: 27/44, p= .09).
These measures thus successfully indexed individ-
uals’ SNARC (β) and SOAR (SMD).

Next, we looked at individual differences in the
relation between the SNARC and SOAR effects
(see Figure 3). As predicted, a linear regression
analysis found that the size of an individual’s
SNARC effect was significantly predictive of their

Figure 3. Relations between spatial–numerical association of

response codes (SNARC) and spatial–operation association of

responses (SOAR). Individuals’ SNARC effect (horizontal axis)

and SOAR effect (vertical axis), calculated on the basis of

maximum deviation (MD). For both axes, negative values

indicate larger canonical effects (following Fias et al., 1996). The

size of an individual’s SNARC effect was significantly predictive

of their SOAR effect. The solid line shows the least squares

regression of SOAR onto SNARC. Points below the horizontal

dotted line indicate participants with a canonical SOAR effect;

those to the left of the vertical dotted line indicate a canonical

SNARC effect.

1To illustrate: If an individual’s meanMD for calculations with a solution of 3 was 0.35 for rightward responses and 0.3 for leftward

responses, then their dMD for 3 would be 0.05, the difference between 0.35 and 0.3.
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SOAR effect [MD: β= 3.22, t(42)= 6.33,
p, .001; AUC: β= 1.54, t(42)= 5.37, p, .001],
and that the SNARC effect explained a significant
amount of the variance in the SOAR effect [MD:
r2= .49, F(1, 42)= 40.05, p, .001; AUC:
r2= .41, F(1, 42)= 28.82, p, .001]. To further
confirm this coupling of numerical and arithmetical
spatial biases, we used two separate k-means cluster
analyses to sort individuals into three groups based
on the size of their SOAR and SNARC effects, cor-
responding roughly to standard, reversed, and no
effect (cf. Beecham, Reeve, & Wilson, 2009). We
then looked at whether these clusters were indepen-
dent. They were not: The presence or absence of a
SOAR effect differed by the presence or absence
of a SNARC effect (p, .001 for both AUC and
MD, Fisher’s Exact Test). Inspection of these clus-
ters revealed that a majority of participants (MD: 30
out of 44; AUC: 25 out of 44) were in corresponding
clusters for SNARC and SOAR: either showing a
standard effect for both SNARC and SOAR, a
reversed effect for both, or no effect for both.

In sum, an individual’s sensitivity to the con-
gruency between the location of a response button
and the magnitude of the response (i.e., SNARC
effect) was coupled to their sensitivity to the con-
gruency between arithmetic operation and the
direction of motion (i.e., SOAR effect). This was
true despite the fact that the SOAR effect was dis-
tinct from the SNARC-like effect of the final sol-
ution’s magnitude. The spatial deflection of hand
trajectories due to the arithmetic operation was
therefore distinct from, but related to, any spatial
deflection due to numerical magnitude.

Time-course of spatial processing
Tracking the real-time trajectory of the hand in
motion allows us to evaluate not only the global
properties of the response, but also the dynamic
time-course of spatial deflection. To do so, we con-
ducted a series of pairwise t-tests of the mean x
coordinates of SOAR-congruent and SOAR-
incongruent trajectories at each normalized time-
step, using an α level of .05. To correct for multiple
comparisons, we conducted a bootstrap simulation

(n= 1000) to estimate the number of significant t-
tests that would be expected by chance alone (Dale,
Kehoe, & Spivey, 2007). This simulation revealed
that random variability alone should have produced
significant differences at 11 or more consecutive
time-steps only 1.6% of the time and at 12 or
more consecutive time-steps, only 0.7% of the
time. We therefore settled on 11 consecutive sig-
nificant time-steps as a threshold for statistical sig-
nificance, assuring a false-positive rate of p, .05.

Pairwise t-tests comparing the horizontal
deflection of SOAR-incongruent to SOAR-con-
gruent trajectories first reached statistical signifi-
cance halfway through the trial—on average, 734
ms after the onset of the second term—and
remained significant until 75% through the trajec-
tory (Figure 4A). Congruent and incongruent tra-
jectories, therefore, differed significantly at 25
consecutive time-steps, a highly significant diver-
gence (p, .001).

As an exploratory analysis, we next looked at the
time-course of spatial deflections due to various
subparts of the arithmetic problems: the magnitude
of the first number, the arithmetic operation, and
the magnitude of the final solution. When calculat-
ing “6–2= 4”, for instance, at what point is motor
activity influenced by the facts that the first term is
greater than 5, that the operation is subtraction, or
that the final solution is less than 5? To answer this,
we analysed the mean horizontal position (x-coor-
dinate) at each time-point using a repeated
measures ANOVA with the following three
factors: SNARC-congruency associated with the
first term; SOAR-congruency associated with the
arithmetic operation; and SNARC-congruency
associated with the final solution.2

In accord with the spatial account, we found a
cascade of spatial perturbations (Figure 4B).
Recall that participants were able to begin moving
the cursor as soon as the second term appeared
on the screen. By the time participants could start
moving, therefore, they had already seen the first
term for a full second. In line with this, there was
a very early effect of the relative magnitude of the
first term, deflecting the trajectory toward the

2We did not include a factor for the second term because it only ranged from 0 to 3.
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corner that was congruent with the term’s magni-
tude (left for numbers less than 5, right for
numbers greater than 5). This influence was
already marginally significant at the first time
point and lasted for the first 13% of the trajectory.
Next, halfway through the trajectory, the effect of
SOAR-congruency kicked in, deflecting the trajec-
tory in the direction congruent with the arithmetic
operation. This influence of arithmetic operation
lasted from 47% to 74% of the trajectory. For the
last part of this period, there was again a marginal
influence of the first term’s magnitude. Finally,
towards the very end of the trajectory, there was a
marginal influence of the final solution’s magni-
tude, from 79% to 87% of the trajectory.
Participants’ hand trajectories, therefore, revealed
a cascade of distinct, sequential spatial influences:
starting with the first term, an anchor of sorts for
the calculation; followed by the arithmetic

operation; and finally, the solution (Figure 4B).
Although these analyses, unlike the previous
time-course analyses, are not corrected for multiple
comparisons, they may capture subtle contributions
of early and late spatial–numerical associations, in
coordination with spatial–arithmetic associations.
Since the current experiment used a design in
which the first operand, the arithmetic operation,
and the second operand were presented in order,
it remains to be seen whether the same cascade of
spatial influences appears when the entire
problem is presented simultaneously rather than
sequentially.

Discussion

During mental addition and subtraction, partici-
pants’ hand movements were deflected dynamically
to the right and left (Figure 2, Figure 4B),

Figure 4. Time-course of spatial perturbations. (A) Time-course of the spatial attraction due to arithmetic operation. Normalized time is

plotted along the horizontal axis, from start (0%) to end (100%) of the trial. The horizontal distance between congruent and incongruent

trajectories is plotted on the vertical axis. The grey area indicates the period during which this spatial deflection reached significance. (B)

Hand trajectories revealed a cascade of distinct spatial influences. Colour indicates the statistical significance of each problem component at

each time-point; corresponding p-values are indicated in the legend at the right. There was an early influence of the first number, deflecting

hand trajectories toward the canonical side of egocentric space (left for small, right for large numbers). Halfway through the trajectory, the

arithmetic operation began to affect concurrent manual action. The final solution had a marginal influence toward the end of the trial. To

view this figure in colour, please visit the online version of this Journal.
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respectively, suggesting that both mental arithmetic
and motor control rely on shared resources for con-
trolling spatial attention. This was true despite the
fact that the calculation was exact and symbolic,
rather than approximate or nonsymbolic. While
these results do not contradict the compression or
heuristic accounts of operational momentum (e.g.,
Chen & Verguts, 2012; McCrink & Wynn,
2009), the observed spatial–arithmetical biases are
neither explained nor predicted by these nonspatial
alternatives. Correct responses were controlled for
location (left, right) and relative magnitude
(greater or lesser of the responses), so spatial
biases were not due to initial over- or underestima-
tion. Spatial–arithmetical biases, moreover, con-
tributed above and beyond biases associated with
the final solution, reinforcing their distinctly arith-
metical character. We thus observed for the first
time that calculation—even when exact and sym-
bolic—is associated unequivocally with systematic
spatial biases.

Could exact calculation rely on an integrated system
of spatial resources?
We turn now to an outstanding question: What
might this spatial processing actually do during cal-
culation? After all, spatial–arithmetical and spatial–
numerical associations may be epiphenomenal;
spatial processing could be entirely downstream
from the cognitive work of calculation. This is a
general concern about research conducted under
the umbrella of grounded cognition. If thinking
about dogs, for instance, prompts visual imagery
of dogs, this might be due to spreading activation
from abstract “dog” concepts to associated visual
percepts, without visual processing contributing to
conceptual representation (Mahon & Caramazza,
2008). Both spatial–arithmetical and spatial–
numerical biases, similarly, could reflect simple
associations between distinct neural circuits
responsible for calculation and for spatial attention.

What, then, are some plausible contributions to
mental calculation of systematic spatial processing?
We briefly consider three: computing the exact or
approximate solution; supplying intuitions that
complement and possibly constrain rote,

algorithmic strategies; and scaffolding the learning
of arithmetic.

First, spatial processing may help determine the
solution of a calculation. This is the heart of the
spatial account: Numbers are mapped to locations
along a mental number-line, and then arithmetic
is computed by simulating movement along that
number-line. Biases in spatial processing would
thus produce the systematic over- and underesti-
mation that characterizes operational momentum
(McCrink et al., 2007). But to make this functional
contribution, diverse spatial resources need to be
integrated appropriately. Recall that spatial proces-
sing during arithmetic is thought to rely on the pos-
terior superior parietal lobule (PSPL; Knops,
Thirion, et al., 2009); interactions between
number and space, by contrast, are thought to
occur within the intraparietal sulcus (IPS;
Dehaene, Piazza, Pinel, & Cohen, 2003;
Hubbard et al., 2005). These neural circuits need
to be coordinated in at least two ways: in the way
they recruit space and in their time-course. First,
they need to recruit space in a coordinated
fashion, with arithmetic-related shifts in spatial
attention aligned with spatial representations of
number (e.g., associating right-space with both
large numbers and addition). Given that nearly a
third of participants typically show no or reversed
SNARC effects (e.g., Cipora & Nuerk, 2013),
these spatial associations should sometimes be
reversed (i.e., associating right-space with both
small numbers and subtraction). Second, these
spatial resources must coordinate temporally: first
associating the initial operand with a location and
then deploying more posterior neural resources to
shift attention. In short, the neural resources
responsible for spatial–arithmetic and spatial–
numerical associations must form an integrated
system, coordinated both in the way they recruit
space and in their time-course.

There were hints that these spatial–arithmetic
biases were, indeed, part of an integrated spatial
system for processing both numerical magnitude
and arithmetic. For starters, we found evidence
that calculation was accompanied by a cascade of
spatial perturbations (Figure 4B), due initially to
the first term, then to the arithmetic operation,
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and finally to the solution—although this may have
been a product of the experiment’s sequential
design. Spatial biases associated with numerical
magnitude and arithmetic, moreover, were distinct
but coupled: Individuals’ spatial–numerical biases
reliably predicted the size and direction of their
spatial–arithmetical biases, and more than two
thirds of participants exhibited spatial–arithmetical
biases that were coordinated with their spatial–
numerical biases (e.g., they associated both subtrac-
tion and smaller numbers with the left; Figure 3). If
this coordination is necessary for the spatial system
to play a functional role in calculation, then we
should see improved performance among individ-
uals with coordinated spatial–arithmetical and
spatial–numerical biases—that is, individuals
should perform better on calculation tasks if they
have the same spatial association (either left or
right) for both larger numbers and addition.
Suggestively, there was a trend toward better per-
formance among such participants. They made
fewer errors (M= 2.3 vs. M= 3.2), responded
faster (M= 1454 ms vs. M= 1494 ms), and pro-
duced trajectories with less deflection (MD=
0.18 vs. MD= 0.21), although none of these
differences were statistically significant (all
ps. .2). In short, mental arithmetic prompted a
series of coordinated but distinct spatial deflections,
unfolding over time throughout the process of cal-
culation. The origin of this coordination is an open
question. Spatial–numerical and spatial–arithmeti-
cal biases may have a common origin—perhaps a
general predilection to associate abstract notions
with space, or experience with cultural artefacts
that associate both numbers and arithmetic with
space (e.g., number-lines). Alternatively, one
spatial association may build on the other, so that,
for instance, spatial–arithmetical biases may derive
from preexisting, culturally shaped spatial–numeri-
cal biases. The coordination of SOAR and
SNARC—its source and implications—is ripe for
investigation.

A second potential functional role for spatial
processing is to supply intuitions that complement
rote, algorithmic calculation. To repurpose a mili-
tary aphorism, “quantity has a quality all its own”.
Correct calculations often just feel right—and

spatial intuitions are a good candidate for the
source of this quality of quantity. In the case of
incorrectly recalled arithmetic facts or algorithmic
errors (e.g., “operation errors” like 20× 3= 23,
where multiplication is confused for addition;
Campbell, 1994), the subjective “quality of quan-
tity” can flag these errors if the solution violates
our spatial intuitions (i.e., 20× 3 should be con-
siderably greater than 23!). In this way, spatial pro-
cessing may provide an intuitive check on rote or
algorithmic calculation, supplying a rough sense
of expected magnitude against which the algorith-
mically derived solution can be compared.
Individuals who deploy spatial processing during
symbolic calculation should thus be insulated
against gross errors due to the misapplication of
an algorithm.

Third and finally, spatial processing may
support initial learning during development, sup-
plying a spatial scaffold for the acquisition of
abstract arithmetical concepts and procedures
(Núñez & Marghetis, in press). Early spatial skills
are highly predictive of long-term mathematical
success (for review, see Mix & Cheng, 2012).
This correlation, moreover, is mediated by the
ability to map numbers to a physical number-line
in a linear fashion (Gunderson, Ramirez, Beilock,
& Levine, 2012), and game-based intervention
studies with children have found that training this
linear number–space mapping improves number
estimation and calculation (Siegler & Ramani,
2009). Conversely, a failure to deploy spatial
resources may contribute to mathematics learning
disability (e.g., Geary, 1993). Additionally, spatial
processing may give meaning and value to other-
wise meaningless calculations, improving children’s
affective relation to mathematics and increasing the
likelihood that they will gravitate towards science,
technology, engineering, and mathematics
(STEM) fields.

Beyond simple calculation
An integrated spatial system, therefore, may con-
tribute in a variety of ways to calculation. But as
mathematical expertise develops, this system may
be retooled for new purposes. Goldstone, Landy,
and Son (2010) argued that solving equations
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relies on perceptual systems “rigged up” for symbol
manipulation (see also Schneider, Maruyama,
Dehaene, & Sigman, 2012). On their proposal,
solving equations involves a visuospatial simulation
of moving terms from one side of the equation to
the other. In support of this, they report that the
ability to solve equations was selectively impaired
when participants were concurrently viewing
incongruent motion (e.g., rightward motion when
a term is to be “moved” leftward). What is more,
this effect was strongest in participants with more
mathematical training; mathematical expertise was
associated with more, not less, use of a visuospatial
strategy. This suggests one reason why Cipora and
Nuerk (2013) failed to find a relation between the
SNARC effect and performance on an equation
verification task: Verifying equations might
require the use of the spatial system to simulate
the motion of the equation’s terms (as proposed
by Goldstone et al., 2010) rather than to represent
numerical magnitude and arithmetic, as manifest in
SNARC and SOAR effects.3 Furthermore, when
mathematics PhD students collaborate on proofs,
they complement their technical, nonspatial
language with gestures that express dynamic,
spatial reasoning (Marghetis & Núñez, 2013), con-
firming Hadamard’s (1954) classic claim that
expert mathematicians rely on spatial or sensorimo-
tor intuitions. This suggests a productive way to
think about the relation between space and math-
ematics: Different mathematical activities (e.g., cal-
culation vs. equation verification) may require
distinct assemblies of spatial resources, recruited
and coordinated by cultural practices. Calculation
may rely on spatial–numerical representations
coupled with shifts in attention; algebra may use
similar resources, rigged up differently to support
the internal manipulation of external inscriptions.

More generally, the present study contributes
to a growing body of evidence that abstract
thought in general—and mathematical cognition
in particular—is tightly and dynamically coupled
to perception and action (Barsalou, 2008; Lakoff
& Núñez, 2000; Spivey, 2007). This entangling

of body and mind is often manifest in the hands.
We have shown here, for instance, that hand move-
ments reflect the spatial character of addition and
subtraction, adding to the literature on how hand
trajectories can reveal the dynamics of thought
(Freeman et al., 2011). But the hands take place
of prominence even when they are not directly
called upon by the task. Situated mathematical
practice requires the hands to interact with external
artefacts—equations, diagrams, computers. And
during communication, manual gestures reflect
speakers’ sensorimotor or spatial simulations (e.g.,
Hostetter & Alibali, 2007) and also shape the
simulations of both listener and speaker (e.g.,
Alibali, Spencer, Knox, & Kita, 2011; Wu &
Coulson, 2007; for review, see Marghetis and
Bergen, in press). This is particularly true in math-
ematics, where gesture reveals spatial conceptualiz-
ations of abstract concepts in calculus (Marghetis,
Edwards, & Núñez, in press; Marghetis &
Núñez, 2013; Núñez, 2006) and arithmetic
(Marghetis, 2014; Núñez & Marghetis, in press)
and can even give the gesturer entirely new ideas
(Goldin-Meadow, Cook, & Mitchell, 2009). One
possible account of these varied online interactions
between body and mind is that evolutionarily older
neural resources (Anderson, 2010; Dehaene &
Cohen, 2007), recruited and regimented by cultural
practices and artefacts (Hutchins, 2008; Núñez,
2011), are redeployed during advanced cognitive
activities like mathematics, thus grounding abstract
thought in action and space.

Conclusions

Converging evidence suggests that mathematics
builds upon a foundation of spatial skills (Mix &
Cheng, 2012; Núñez & Marghetis, in press).
Here we demonstrated, for the first time, that
exact, symbolic calculation is accompanied by sys-
tematic spatial processing. The arithmetic oper-
ation influenced the spatiotemporal dynamics of
participants’ concurrent motor activity while they
were engaged in exact arithmetic. We argued that

3Giaquinto (2007) distinguishes between syntactic and semantic manipulation of symbols, which may relate to the use of space to

simulate movement of the terms rather than to ground the calculation in meaningful spatial intuitions.

14 THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2014

MARGHETIS, NÚÑEZ, BERGEN

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
 D

ie
go

] 
at

 1
5:

24
 2

1 
M

ar
ch

 2
01

4 



this reflected the deployment of a coordinated
system of spatial resources, co-opted to run a
mental simulation of abstract motion along a
spatial representation of number. Spatial processing
may play a number of roles, from helping compute
the outcome of a calculation to supplying meaning
during mathematical development. This spatial
processing during arithmetic, moreover, is an
instance of a more general strategy in which we
associate abstract objects with spatial locations
and then take advantage of our evolved spatial
skills to support reasoning. Learning and doing
mathematics may involve navigating metaphorical
spaces.
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APPENDIX

List of arithmetic problems

First number Operation Second number

Solution

(addition/subtraction)

3 + 0 3/3

3 + 1 4/2

3 + 2 5/1

4 + 0 4/4

4 + 1 5/3

4 + 2 6/2

4 + 3 7/1

5 + 0 5/5

5 + 1 6/4

5 + 2 7/3

5 + 3 8/2

6 + 0 6/6

6 + 1 7/5

6 + 2 8/4

7 + 0 7/7

7 + 1 8/6
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