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Abstract

In this paper, a new learning framework–probabilistic
boosting-tree (PBT), is proposed for learning two-class and
multi-class discriminative models. In the learning stage, the
probabilistic boosting-tree automatically constructs a tree
in which each node combines a number of weak classifiers
(evidence, knowledge) into a strong classifier (a conditional
posterior probability). It approaches the target posterior
distribution by data augmentation (tree expansion) through
a divide-and-conquer strategy. In the testing stage, the con-
ditional probability is computed at each tree node based on
the learned classifier, which guides the probability propa-
gation in its sub-trees. The top node of the tree therefore
outputs the overall posterior probability by integrating the
probabilities gathered from its sub-trees. Also, clustering is
naturally embedded in the learning phase and each sub-tree
represents a cluster of certain level. The proposed frame-
work is very general and it has interesting connections to a
number of existing methods such as the �� algorithm, de-
cision tree algorithms, generative models, and cascade ap-
proaches. In this paper, we show the applications of PBT
for classification, detection, object recognition. We have
also applied the framework in segmentation.

1. Introduction
The task of classifying/recognizing, detecting, and cluster-
ing general objects in natural scenes is extremely challeng-
ing. The difficulty is due to many reasons: large intra-
class variation and inter-class similarity, articulation and
motion, different lighting conditions, orientations/viewing
directions, and the complex configurations of different ob-
jects. The first row of Fig. (1) displays some face im-
ages. The second row shows some typical images from the
Caltech-101 categories of objects [5]. Some of them are
highly non-rigid and some of the objects in the same cate-
gory bear little similarity among each other. For the cate-
gorization task, it requires very high level knowledge to put
different instances of a class into the same category.

The problem of general scene understanding can be
viewed in two aspects: Modeling and Computing. Modeling

Figure 1: Faces cropped from natural images and some typi-
cal objects cropped from the Caltech-101 categories by Fei-
fei et. al. [5].

addresses the problem of how to learn/define the statistics
of general patterns/objects of variation. Computing tackles
the inference problem. Let � be an image sample and its
interpretation be �. Ideally, one wants to obtain the gener-
ative models ������ for a pattern to measure the statistics
about any sample �. Unfortunately, not only are such gen-
erative models often out of reach, but also they create big
computational burdens in the computing stage. For exam-
ple, faces are considered a relatively easy class to study.
Yet, there is no existing generative model which captures
all the variations for a face such as multi-view, shadow, ex-
pression, occlusion, and hair style. Some sample faces can
be seen in Fig. (1). Alternatively, one seeks to directly learn
the discriminative model ������ in which � is just a simple
variable, to say, “yes” or “no”, or a class label.

AdaBoost, invented by Freund and Schapire [8], and its
variants [9] have been successfully applied in many prob-
lems in vision and machine learning. They have been
shown [9] to approach the posterior ������ by selecting
and combining a set of weak classifiers into a strong clas-
sifier. However, there are several problems with the current
AdaBoost algorithm. First, though it asymptotically con-
verges to the target distribution, it may need to pick hun-
dreds of weak classifiers. This poses a big computational
burden. Second, the order in which features are picked in
the training stage is not preserved. The order of a set of fea-
tures may correspond to high-level semantics and, thus, it is
very important for the understanding of objects/patterns [1].
Third, the re-weighting scheme of AdaBoost may cause



samples previously correctly classified to be miss-classified
again. Fourth, though extensions from two-class to multi-
class classification have been proposed [8, 18], learning
weak classifiers in the multi-class case using output coding
is more difficult and computationally expensive.

In this paper, a new learning framework called prob-
abilistic boosting-tree (PBT) is introduced to tackle the
above problems. In the training stage, a tree is recursively
constructed in which each tree node is a strong classifier.
The input training set is divided into two new sets, left and
right ones, according to the learned classifier. Each of which
is then used to train the left and right sub-trees recursively.
We show that the discriminative model obtained at the top
of the tree is approaching the target posterior distribution by
data augmentation. Each level of the tree is an augmented
variable. Also, clustering is intrinsically embedded in the
learning stage with clusters automatically discovered and
formed in a hierarchical way. The procedure of construct-
ing such a tree is simple. It has connections to many exist-
ing methods such as the cascade approach, �� algorithm,
decision tree, and generative models.

For the multi-class classification problem, the goal is to
learn a discriminative model while keeping the nice hierar-
chical tree structure. This is done by treating the multi-class
classification problem as a special two-class classification
problem. At each node, either a positive or negative label
is assigned to each class in minimizing the total entropy.
Through this procedure, the multi-class and two-class learn-
ing procedures become unified. Clusters of multi-classes
are again directly formed.

A relevant algorithm to PBT is AdaTree [11] proposed by
Grossmann, which also combines the AdaBoost with deci-
sion tree. However, PBT and AdaTree are different in many
aspects. First, the main goal of the AdaTree algorithm is to
speed up the AdaBoost algorithm by pruning, whereas the
major focus of PBT is to construct a general framework for
learning the posterior distribution ������ for complex pat-
tern x, which is of great importance to vision and machine
learning. Second, the AdaTree algorithm learns a strong
classifier by combining a set of weak classifiers into a tree
structure. But PBT constructs a tree in which each node
itself is a strong classifier. Third, the multi-class classifica-
tion problem was not addressed in [11].

In this paper, we show two applications using PBT: (I)
Categorization of multi-class objects of the ETH-80 im-
age set [15], NORB jittered-cluttered images [13] , and the
Caltech-101 categories [5]; (II) Multi-view face detection.

2. Generative vs. Discriminative

Let an image sample � and its interpretation � be

���� �� � � ��� �����

where � is the label of the object, e.g., category id. � is
the underling template dictionary from which � is generated
and � specifies all the variations such as transformations
and lighting changes which govern the generation process
of �. The likelihood term ������ �� �� decides the sample
�. In classification, the label � is often of interest. Thus,
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�
�
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The integral is troublesome for both modeling and com-
puting. Instead, one may seek to directly learn the relations
between � and � as a generative model ������or a discrim-
inative model ������ without explicitly specifying the hid-
den variables �.

Next, we briefly discuss the discriminative model learn-
ing framework, AdaBoost, and the generative model learn-
ing framework, MinMax Entropy Principle.

AdaBoost
It is shown in [9] that the AdaBoost procedure is essen-

tially approaching logistical regression. Further, AdaBoost
and its variations are shown to approximate the true poste-
rior distribution ������ by
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where ����� �� is an evaluation function. For example in
binary AdaBoost, ����� �� � �

��
����, � � �������, and

� is a weak classifier. At each step, AdaBoost selects 
�
from a set of candidate weak classifiers and estimates �� by
minimizing the exponential loss.

MiniMax Entropy Principle
The MiniMax entropy principle [22] learns the model
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where 
���� is a feature of �, which can also be a vector, say
the histogram of a projection of �. Under this principle, it
picks the 
� that minimizes the entropy��������	�������,
for the � that achieves the maximum likelihood.

Both methods have a procedure to perform feature selec-
tion (greedy), and they both have direct relations to maxi-
mum likelihood when estimating the parameters. However,
eq. (2) is in general much easier to calculate than eqn. (3)
since its partition function (the normalization term) in on
� instead of �. Learning the discriminative model is more
computationally tractable. For the rest of the paper, we fo-
cus on the learning of discriminative model ������.



3. Probabilistic Boosting-Tree
Sect. (2) shows that AdaBoost is approximating the poste-
rior distribution, ������. Our goal is to learn this distribu-
tion for � with high complexity. Also, the configuration of
the features, like those in grammar, poses very important
knowledge for understanding complex patterns. This shall
be learned and preserved. Further, we are seeking a natural
and direct way to extend the two-class learning scheme to
the multi-class case.

3.1. Two-class Probabilistic Boosting-Tree
The general AdaBoost algorithm[8] and its variants learn
a strong classifier by combining a set of weak classifiers
���� �

��

��� ��
���� in which 
���� is a weak classifier.
For each sample �� with probability ��, the error rate � ��

� �������������� �� ��� is shown to be bounded by

� � 	�
��
���

�
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When dealing with �� with a complex distribution, ��
quickly approaches �

� , and the convergence becomes slow.
One possible remedy lies in designing more effective weak
classifiers that are better separating the positives from the
negatives. Unfortunately, it is often hard to obtain good
weak classifiers and we are also constrained by the compu-
tational complexity in computing these classifiers and fea-
tures. One of the key ideas in the AdaBoost is that samples
incorrectly classified receive more weights the following
time. Due to the update rule and normalization for � �, pre-
viously correctly classified samples may be miss-classified
again and thus receive penalty. Therefore, after some steps,
weak classifiers become ineffective. Instead of putting all
the weak classifiers together into a single strong classifier,
we instead take a divide-and-conquer approach.

Fig. (2) gives the procedure for training a boosting-tree.
Friedman et al. have shown in [9] that AdaBoost is approxi-
mating logistic regression. For notational simplicity, we de-
note the probabilities computed by each learned AdaBoost
method as
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The algorithm is intuitive. It recursively learns a tree. At
each node, a strong classifier is learned using the standard
boosting algorithm. The training samples are then divided
into two new sets using the learned classifier, the left one
and the right one, which are then used to train a left sub-tree
and right sub-tree respectively. Variable � is used to con-
trol, to some degree, the overfitting problem. Those sam-
ples falling in the range of � �� � �� �� � �� are confusing ones
and will be used in both the left and the right sub-trees for
training. If � � �

� then all the training samples are past

To train a tree of maximum depth of �:

� Given: A training set � �
����� ��� ���� ���� ���� ��� ���� �� � �� �� �
��������

�
�
�� � �.

� Compute the empirical distribution ����� �
�

�
��Æ��� � ��.

� On training set �, train a strong classifier using a boosting al-
gorithm with T weak classifiers but exit early if 	� 
 �, e.g.
� � ���	.

� If the current tree depth is � then exits.

� Initialize two empty sets ����� and ������.

� For each sample ���� ���, compute the probability �������� and
�������� using the learned strong classifier.

� If ���������
�
�

 � then ���� ��� �� � ������

else If ��������� �
�

 � then ���� ��� �� � �����

else ���� ��� ��������� � ������ and
���� ��� ��������� � �����.

� Normalize all the weights of the samples in �����.

� Repeat the procedure recursively.

� Normalize all the weights of the samples in ������.

� Repeat the procedure recursively.

Figure 2: Training for a probabilistic boosting-tree. We set � � ���	
and 	 � ��� for all the experiments in the paper. The strong classifier can
be AdaBoost, RealBoost, or even algorithms other than Boosting.

into both the sub-trees with weights re-computed based on
the strong classifier. PBT then become similar to Boosting.
If � � 
 then each sample is past either into right or left
tree. Therefore, positive and negative samples are almost
sure to be separated, if there are no identical ones. But it
may overfit the data. In this paper, � is fixed at 
�� for all
the experiments reported.

If we split a training set into two parts, the new error rate

��	��� �
�
�

������������ �� ����
�
�

������������ �� ��� � ��

(4)
where � �

�
� �������� �� ���.

It is straight forward to see that the equality holds when
�� � � and �� � � . In general, reducing the number of
input samples reduces the complexity of the problem lead-
ing to a better decision boundary.

Under this model, positive and negative samples are nat-
urally divided into sub-groups. Fig. (3) shows an example
of how a tree is learned and the training samples are divided.
Samples which are hard to classify are passed further down
leading to the expansion of the tree. Clustering of positives
and negatives is naturally performed. One group serves as
an auxiliary variable to the other group. Since each tree
node is a strong classifier, it can deal with samples with
complex distribution. Also, there is no need to pre-specify
the number of clusters. The hierarchical structure of the tree
allows us to report the clusters according to different levels
of discrimination.

The testing stage is consistent with the training stage.



Figure 3: Illustration of PBT on a synthetic dataset of 2,000 points.
Weak classifiers are likelihood classifiers on features such as position and
distance to 2D lines. The first level of the tree divides the whole set into
two parts. The right side mostly has blue (dark) points since they are away
from the rest of the clouds. The tree expands on the parts where positive
and negative samples are tangled.

Function 
	 ��� ��: to compute posterior distribution 
�	 ����� at tree
node � .

� For a given sample �, compute �	 ������ and �	 ������ using
the learned boosting model at the current tree node � .

� 
�	 ����� � �������
��������� � �������
�������� in which

��������� and 
�������� are computed below.

� If �������� �
�

 � then


��������� � 
������	���� ��, and


�������� � �������	����.

else if ��� � ����� �
�

 � then


������ � ����������, and 
����� � 
�����	���� ��.

else


��������� � 
������	���� ��, and


�������� � 
�����	���� ��.

Figure 4: Testing for probabilistic boosting-tree. The overall posterior
is 
�������. �������	���� is the empirical distribution of the left tree.

Figure (4) gives the details of how to compute the approx-
imated posterior �������. At the top of the tree node, it
gathers the information from its descendants and reports
an overall approximated posterior distribution. This algo-
rithm can also be turned into a classifier which makes hard
decision. After computing 	������ and 	������, one can
decide to go into the right or left sub-trees by comparing
	������ and 	������. The empirical distribution �	��� con-
tained at the leaf node of the tree is then passed back to the
top node of the tree. However, the advantage of using prob-
ability is apparent. Once a PBT is trained, the ������� can
be used as a threshold to balance between precision and re-
call. In contrast, a traditional cascade approach [21] needs
to train different classifiers based on different precision re-
quirements. Moreover, learning the discriminative models
is of great importance to many vision problems, especially

scene understanding. They can be used either directly in
inference [12] or used as proposals to guide the generative
model search [19].

Understanding the tree
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Figure 5: Illustration of the probabilistic model of the tree. The dark
nodes are the leaf nodes. Each level of the tree corresponds to an aug-
mented variable. Each tree node is a strong classifier.

As shown in eqn. (1), a complex pattern � is generated
by a generation process which has a set of hidden variables.
PBT can be viewed as having a similar aspect by doing im-
plicit data augmentation. Fig. (5) gives an illustration. The
goal of the learning algorithm is to learn the posterior distri-
bution ������. Each tree level �� is an augmented variable.
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At a tree node, if the exact model can be learned, then

�������� ��� ��� �� �
�
����

Æ�� � �����	��������� ��� ��� ���

which means the model 	��������� ��� ��� �� perfectly predicts
the � and, thus, the tree stops expanding. The augmented
variables �� gradually decouples � from � to make a better
prediction.

3.2. Multi-class Probabilistic Boosting-Tree
Section (3.1) introduces the two-class boosting-tree algo-
rithm. Traditional boosting algorithms for multi-class clas-
sification [8, 9] require multi-class weak classifiers, which
are in general much more computationally expensive to
learn and compute than two-class weak classifiers. This
is specially a problem when the number of class becomes
large. Interestingly, different classes of patterns are often
similar to each other in a certain aspect. For example, a
donkey may look like a horse from a distance. Torralba et
al. [18] designed a multi-class classification algorithm for



different classifiers to share features/weak classifiers. How-
ever, each individual class still has its own classification
function and it is not clear how a unified posterior distribu-
tion can be obtained. Also, clustering is not directly related
to the learning procedure in their approach.

Next, we give the training algorithm for the multi-class
boosting tree in Fig. (6).

To train a tree of maximum depth of �:

� Given: A training set � �
���� � ��� ���� ���� ���� ��� ���� �� � �� �� �
��� ��� ����

�
�
�� � �.

� Compute the empirical distribution ����� �
�

�
��Æ��� � ��.

� For each feature �
 at value �
 , compute the histogram
���������� � �

����


�
�
Æ�� � ����� for �� � �
 and

����������� �
�

����	


�
�
Æ�� � ����� for �� � �


� Find the optimal �
 and �
 that achieve the minimum entropy
��������������������� � �����������������������.

� Create a new set �� � ����� ��

�� ���� ���� ���� ��

�� ���� �� �
�� �� � �������

� ��

� � �� if ���������������� � ������������������ and ��

� �
�� otherwise. (A sampling strategy can be adopted also.)

� Now it becomes a two-class learning problem. Follow the same
procedure as in Fig. 2

� Repeat the procedure.

Figure 6: Training for multi-class probabilistic boosting-
tree.

This algorithm first finds the optimal feature that divides
the multi-class patterns into 2 classes and then use the pre-
vious two-class boosting-tree algorithm to learn the classi-
fiers. Interestingly, the first feature selected by the boosting
algorithm after transforming the multi-class into two-class
is often the one chosen for splitting the multi-classes. In-
tuitively, the rest of the features/weak classifiers picked are
supporting the first one to make a stronger decision. Thus,
the two-class classification problem is a special case of the
multi-class classification problem. Similar objects of differ-
ent classes, according to the features, are grouped against
the others. As the tree expansion continues, they are gradu-
ally clustered and set apart. The expansion stops when each
class has been successfully separated or there are too few
training samples. The testing procedure for multi-class PBT
is nearly the same as that in the two-class problem. Again,
the top node of the tree integrates all the probabilities from
its sub-trees, and outputs an overall posterior probability.
The scale of the problem is ��������� w.r.t. to the num-
ber of classes, �. This multi-class PBT is very efficient in
computing the probability due to the hierarchical structure.
This is important when we want to recognize hundreds or
even thousands of classes of objects, which is the problem
human vision systems are dealing with every day. In the
worst case, each tree node may be traversed. However, this
is rarely the case in practice.

3.3. Relations with the Existing Methods

The proposed framework has many interesting connections
to other methods. We briefly discuss them below.

Cascade approaches
The cascade approach used together with AdaBoost [21,

23] has shown to be very effective in doing rare event de-
tection. We view the cascade method as a special case of
the boosting-tree. In the cascade, a threshold is picked such
that all the positive samples are pushed to the right side of
the tree. However, pushing positives to the right side may
cause a big false positive rate, specially when the positives
and negatives are hard to separate. The boosting-tree, in-
stead, naturally divides the training sets into two parts. In
the case where there are many more negative samples than
positive samples, most of the negatives are passed into leaf
nodes close to the top. Deep tree leaves focus on classifying
the positives and negatives which are hard to separate.

Decision trees
Decision tree algorithms [1] have been widely used in vi-

sion and AI. The key difference here is that each tree node is
a strong decision maker and it learns a distribution 	�����.
Whereas in the traditional decision tree, each node is a weak
decision maker and thus the result at each node is more ran-
dom. Also, boosting-trees are much more compact.

�� algorithm
The �� algorithm [3] is a heuristic search algorithm and

it is guaranteed to find the global optimum if the heuristics
are always conservative. At each tree node, we also face
the problem of which side to go into. In the worst case, the
entire tree is traversed. Similar to the �� algorithm, we use
the learned 	����� at each node in guiding our search for
propagating probabilities.

Generative model and EM
As shown before, the PBT implicitly augments data to

better approach the posterior. At the top of the node, it gath-
ers information from its descendant trees by integrating out
the augmented data, similar to the setup in EM. However,
this augmented data may not directly relate to the hidden
variables which control the underling generation processes
of the � in the generative model. This causes the framework
to be hard to deal with, e.g., objects which are highly flex-
ible. The positive side is that we don’t need to specifically
model any hidden variables.

Semantics and grammar
Grammar has been extensively used in AI but shows

very little success in vision. It is often easy to define a
grammar but the difficulty mostly comes in the computing
stage. The tree structure here automatically picks the fea-
tures/evidences/knowledge and implicitly combines them
into semantics. It captures the sequential relations and con-
figurations among the features, which can lead to high-level
semantics.



4. Experiments
In this section, we show two applications using the proposed
framework: object categorization and multi-view face de-
tection.

4.1. Object Categorization
Several datasets have been recently provided for testing ob-
ject categorization/recognition algorithms. We design an
object categorization algorithm based on multi-class PBT
proposed in the paper. The algorithm is tested on the ETH-
80 dataset by Leibe and Schiele [15], the NORB database
by LeCun et al. [13], and the Caltech-101 categories by Fei-
Fei et al. [5].
(I) ETH-80 dataset

Figure 7: Histograms of four object images from [5] on in-
tensity and three Gabor filtering results. Eight images here
are from four categories, “bonsai”, “cougar body”, “dollar
bill”, and “ketch”.

Haar type filters have been shown very effective in de-
tecting faces. However, objects in the same category show
a great deal of variation and the correct recognition of them
often needs the help from high-level knowledge. PCA based
patches are used to characterize object parts in [7, 5]. How-
ever, each category has it own set of PCAs and it is not clear
how to generalize them to cover all the categories. His-
tograms [22] are shown to be robust against translation and
rotation and have good discriminative power. Histograms
on different filter responses of an image serve as different
cues, which can be used and combined to perform scene
analysis and object recognition. Fig. (7) shows four his-
tograms of eight images on their intensity and Gabor filter
responses. To learn discriminative models, we compute up
to the 3rd order moments for each histogram 
��� to make
use of integral image for fast computing.

The goal is to learn a discriminative model so that it
outputs the posterior distribution on the category label for
each input image patch. Each object image is resized into
an 

 � 

 patch. For each image patch, we compute the
edge maps using Canny edge detector at three scales, ori-
entation of the edges, and filtering results by 10 Gabor fil-
ters. These are the cue images for the image patch. We

Figure 8: Some samples image in ETH-80 and the clusters
learned. In the second row, only one image in the category
is shown for illustration.

put 1,000 rectangles with different aspect ratios and sizes
centered at various locations in the 

 � 

 image patch.
Features are the moments of the histogram for each rect-
angle on every cue image. The multi-class PBT algorithm
then picks and combines these features forming hierarchical
classifiers. We randomly pick 29 out total 80 categories in
the ETH-80 image set to illustrate the algorithm. There are
41 images for each category and some of them are shown in
Fig. (8). These images are taken for objects at different view
directions and illuminations. We randomly pick 25 images
out of each category for training. Fig. (8) shows the clus-
ters formed in the boosting-tree after learning. We can see
the the algorithm is capable of automatically discovering
the intra-class similarity and inter-class similarity and dis-
similarity. For the images not picked in training we test the
recognition/categorization rate. The one with the highest
probability is considered as correct recognition. Table (1)
shows the recognition rate on the remaining 16 images for
each category.

apple1 100% cup1 100% tomato3 100% horse1 94%
pear10 94% apple4 94% pear3 94% pear9 94%
cup4 88% cow1 88% pear8 88% dog2 81%
car1 81% pear1 81% apple3 75% car9 75%

tomato1 75% tomato10 75% horse3 75% cup9 75%
dog10 69% dog1 69% horse8 69% car11 56%
car11 56% cow2 50% cow10 44% horse10 44%
cow8 0.19

Table 1: Recognition results on the ETH-80 image set. 25
images in each category are randomly picked for training.
The recognition rate is computed based on the remaining
16 image in each category. The average recognition rate is
���

(II) NORB jittered-textured dataset
LeCun et al. created a data set [13] in which there are

5 generic categories, namely, four-legged animals, human
figures, airplanes, trucks, and cars. There is an extra cat-
egory of background for training. There are 10 object in-
stances for each category. 1,944 stereo pairs of images for
each object instance are captured under different viewing



angles and lighting conditions. They embedded the cap-
tured images into different backgrounds to create different
datasets. We consider single image only and focus on the
most difficult dataset, jittered-textured. The 10 object in-
stances are split into two groups, with 5 for training and 5
for testing. This gives a total of 291,600 training images
and 291,600 testing images. Some of the training images
are shown in Fig. (9).a and some testing images are dis-
played in Fig. (9).b. We use the same algorithm for ETH-80
and train it with 29,160 training samples of size 

 � 

.
The categorization rate on the testing set after training is
75.3%, which is an improvement over the rate 60.1% re-
ported in [13].

animals figures airplanes trucks cars background

(a) Some samples in the training set of 291,600 images.

(b) Some samples in testing set of 291,600 images.

Figure 9: Some of the training and testing samples from
the NORB jittered-cluttered dataset. There are 5 generic
categories: four-legged animals, human figures, airplanes,
trucks, and cars. The sixth category is random background
image patch. The overall classification rate is 75.3%.

(III) Caltech-101 dataset
The task of categorizing Caltech-101 image categories

is much more challenging. Some of the typical images
are shown in Fig. (1). Instead of working on the original
images, we cropped all the objects out and resize them to


 � 

. Learning and testing are performed based on the
cropped image. We use the same learning algorithm for
the ETH-80 and NORB. 25 images are randomly selected
from each category for training. Fig. (10) shows some of
the clusters formed after training. However, the clusters are
sparser than the ones in the ETH-80 case due to complex
object categories. For each image category �� , we compute
the histogram
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�
�

Æ�� �������

where � is a leaf node and ����� is the leaf node at
which training sample �� is finally located. The entropy of
the 
��� tells us how tight the samples of each category
are in the tree. For objects which are “similar” to each other
in the category, they should form tight clusters. Wheres
for objects having large variation, they are more scattered
among the tree. In table 2, the third column after the cat-
egory name gives the entropy measure for each category.
Object categories like “ying yang” have very low entropy
and, not surprisingly, the background category has the most

object r1 r2 entropy object r1 r2 epy
inline skate 100% 100% 0.39 garfield 100% 100% 1.26
yin yang 83% 83% 0.52 stop sign 66% 81% 1.09
revolver 63% 80% 1.16 metronome 63% 75% 1.26

dollar bill 61% 78% 0.80 motorbikes 56% 75% 0.52
. . . . . . . .

joshua tree 0% 19% 1.19 beaver 0% 25% 1.36
chair 0% 9% 1.75 wild cat 0% 22% 1.56
crab 0% 0% 1.92 background 2.82

Table 2: The categorization rates and entropy measure for
the Caltech-101 image set [5]. 25 images are randomly
picked for training for each category. Categorization is per-
formed on the rest of the image in each category. Note that
the number of images in each category varies a lot. �� is
measured as the category id has the biggest probability, and
the average rate is 	
�. �	 is measured as the id is among
the top ten, and the average rate is �
�.

variability and the highest entropy. This entropy measure
loosely tells us how difficult it will be to recognize each
category. The categorization/recognition result is shown in
table 2. The first column after the category name, �� , is the
recognition rate when the discriminative model outputs its
category id as the one with the highest probability. The av-
erage recognition rate for �� is 	
�. A random guess would
get the rate around ��. The second column, �	, is the cat-
egorization rate when the category id is among the top ten
choices. The average rate for �	 is �
�. The result in [5]
is 16%. Recently, Berg et al. have obtained a rate of 48%
using geometric blur and shape matching. The intention of
the experiment using PBT in this paper is to illustrate a dis-
criminative approach. Its advantage is the computational
efficiency and intrinsic clustering. A generative approach is
expected to outperform a discriminative approach, when the
training samples are limited. The discriminative approach
is better suited when a large number of training samples are
available, like in the NORB dataset. To design an algorithm
effectively detect and recognize a wide class of objects in
the scene, an integration of discriminative and generative
methods is probably needed.

Figure 10: Some of the clusters formed in the 101 image
category by PBT.



Figure 11: Some face detection results tested on the CMU
frontal and profile image dataset.

4.2. Multi-view Face Detection
There has been significant progress made recently in the
area of face detection [21, 17, 16, 10, 6], most of which
focuses on faces in frontal view. In [21, 16], viewing angles
are descritized and each training image is clustered before-
hand. Instead, PBT can be applied for multi-view face de-
tection without the explicit pre-clustering stage. The Haar
features proposed by Viola and Jones [21] are used to form
weak classifiers. The CMU frontal and profile training sets
are used for testing. We have obtained some preliminary re-
sults and some of which are shown in Fig. 11. The speed of
the algorithm is comparable to the algorithm in [21]. The
result can be improved by using a larger template of a face
and obtaining more training samples.

5. Discussions and Conclusions
In this paper, a new framework–probabilistic boosting-tree
is introduced for learning and computing two-class and
multi-class discriminative models. The PBT learns a tar-
get distribution by constructing a tree in which each node is
a strong decision maker. Learning is carried out in a hier-
archical way by a divide-and-conquer strategy. Also, clus-
tering is intrinsically embedded in the learning procedure.
The proposed framework integrates aspects of many exist-
ing algorithms such as decision tree, cascade approaches,
boosting algorithms, and the�� algorithm. Experiments are
reported on two challenging tasks in vision: multi-class ob-
ject categorization/recognition and multi-view face detec-
tion. The scalability of the framework is very attractive due
to its hierarchical structure and it has the potential to model
hundreds of classes of patterns.

Justification for probability
Again, being able to compute the discriminative proba-

bility is very important for many problems in vision. It is
especially useful for scene understanding in which objects
have complex configurations and hard decisions can not be
made locally. In separate work, we used PBT for computing
pairwise affinity for grouping object parts in [20]. Also, we

have applied the PBT to learn a complex appearance model
for 3D segmentation.

Limitations
One major problem with the framework is overfitting, es-

pecially when there is limited number of training samples.
The current framework can almost alway separate two sam-
ples, and this may overfit the training data. In the PBT al-
gorithm, overfitting is controlled by limiting the maximum
depth of a tree and passing confusing samples to both sides
of the tree. Another possible way is to perform tree prun-
ing [4]. The overfitting problem deserves further investiga-
tion.
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