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Abstract

With the increasing popularity of practical vision sys-
tems and smart phones, text detection in natural scenes be-
comes a critical yet challenging task. Most existing meth-
ods have focused on detecting horizontal or near-horizontal
texts. In this paper, we propose a system which detects texts
of arbitrary orientations in natural images. Our algorithm
is equipped with a two-level classi�cation scheme and two
sets of features specially designed for capturing both the
intrinsic characteristics of texts. To better evaluate oural-
gorithm and compare it with other competing algorithms,
we generate a new dataset, which includes various texts
in diverse real-world scenarios; we also propose a proto-
col for performance evaluation. Experiments on benchmark
datasets and the proposed dataset demonstrate that our al-
gorithm compares favorably with the state-of-the-art algo-
rithms when handling horizontal texts and achieves signi�-
cantly enhanced performance on texts of arbitrary orienta-
tions in complex natural scenes.

1. Introduction

The great success of smart phones and large demands in
content-based image search/understanding have made text
detection a crucial task in human computer interaction. It
is desirable to build practical systems that are robust and
fast enough to deal with natural scenes of various condi-
tions; as shown in Fig. 1, we want to detect texts of large
variations in language, font, color, scale and orientationin
complex scenes. Although text detection has been studied
extensively in the past [19, 15], the problem remains un-
solved. The dif�culties mainly come from two aspects: (1)
the diversity of the texts and (2) the complexity of the back-
grounds. On one hand, text is a high level concept but better
de�ned than the generic objects [8]; on the other hand, re-
peated patterns (such as windows and barriers) and random
clutters (such as grasses and leaves) may be similar to texts,
and thus lead to potential false positives.

As our survey of related work shows below, most ex-

Figure 1.Detected texts in natural images.

isting methods [16, 7, 22] have focused on detecting hori-
zontal or near-horizontal texts. Detecting texts of arbitrary
orientations in complex natural images has received much
less attentions and remains a challenge for most practical
systems. In this work, we make an effort to build an ef-
fective and practical detection system for texts of arbitrary
orientations in complex natural scenes.

When directly applied to detect texts of arbitrary orienta-
tions, conventional features (such as SWT used in [7]) that
are primarily designed for horizontal texts would lead to
signi�cant false positives. In this paper, we introduce two
additional sets of rotation invariant features for text detec-
tion. To further reduce false positives produced by these
low-level features, we have also designed a two-level classi-
�cation scheme that can effectively discriminate texts from
non-texts. Hence, combining the strengths of specially de-
signed features and discriminatively trained classi�ers,our
system is able to effectively detect texts of arbitrary orien-
tations but produce fewer false positives.

To evaluate the effectiveness of our system, we have con-
ducted extensive experiments on both conventional and new
image datasets. Compared with the state-of-the-art text de-
tection algorithms, our system performs competitively in
the conventional setting of horizontal texts. We have also
tested our system on a very challenging large dataset of 500
natural images containing texts of various orientations in
complex backgrounds (see Fig. 8 (a)). On this dataset, our
system works signi�cantly better than any of the existing
systems, with an F-measure about 0.6, more than twice that
of the closest competitor.



2. Related Work

There have been a large number of methods dealing with
text detection in natural images and videos [18, 16, 30, 27,
22, 26]. Comprehensive surveys can be found in [15, 19].

Existing approaches to text detection can be roughly di-
vided into three categories: texture-based methods, region-
based methods, and hybrid methods. Texture-based meth-
ods [16, 6, 10] treat texts as a special type of texture and
make use of their properties, such as local intensities, �l-
ter responses and wavelet coef�cients. These methods are
computation demanding as all locations and scales are ex-
haustively scanned. Moreover, these algorithms mostly de-
tect horizontal texts. Region-based methods [14, 7, 22]
�rst extract candidate text regions through edge detection
or clustering and then eliminate non-text regions using vari-
ous heuristic rules. The third category, hybrid methods [23],
is a mixture of texture-based and region-based methods.

Most existing algorithms, e.g. [23, 7], have focused on
detecting horizontal texts. In this paper, we address the
problem of detecting texts of large variations in natural im-
ages, which has great practical importance but has not been
well studied. In [29, 26], methods that can detect text strings
of arbitrary directions are proposed but they have a large set
of rules and parameters; how general and applicable they
are in dealing with scenes of large variation is unclear.

We observe two-sides aspects about the current text de-
tection algorithms: (1) methods built on heavy learning
(nearly black-box) [6] by training classi�ers on a large
amount of data reach certain but limited level of success
(system [6] obtained from the authors produces reason-
able results on horizontal English texts but has poor per-
formances in the general cases); (2) systems based on smart
features, such as Stroke Width Transform (SWT) [7], are
robust to variations in texts but they involve many hand tun-
ings and are still far from producing all satisfactory results,
especially for non-horizontal texts.

In this paper, we adopt SWT and also design various
features that are intrinsic to texts and robust to variations;
a two-level classi�cation scheme is devised to moderately
utilize training to remove sensitive manual parameter tun-
ing. We observe signi�cant improvement over the existing
approaches in dealing with real-world scenes.

Though widely used in the community, the ICDAR
datasets [20, 24] only contain horizontal English texts.
In [29], a dataset with texts of different directions is re-
leased, but it includes only89 images without enough di-
versity in the texts and backgrounds. Here we collect a new
dataset with500 images of indoor and outdoor scenes. In
addition, the evaluation methods used in [13] and the IC-
DAR competitions [21, 20] are designed for horizontal texts
only. Hence, we use a different protocol that is suitable to
handle texts of arbitrary orientations (see Sec. 4).

Figure 2. Pipeline of the proposed approach.

3. Methodology

In this section, we present the details of the proposed
algorithm. Speci�cally, the pipeline of the algorithm will
be presented in Sec. 3.1 and the details of the features will
be described in Sec. 3.2.
3.1. Algorithm Pipeline

3.1.1 overview

The proposed algorithm consists of four stages: (1) com-
ponent extraction, (2) component analysis, (3) candidate
linking, and (4) chain analysis, which can be further cat-
egorized into two procedures, bottom-up grouping and top-
down pruning, as shown in Fig. 2. In the bottom-up group-
ing procedure, pixels �rst form connected components and
later these connected components are aggregated to form
chains; in the top-down pruning procedure non-text compo-
nents and chains are successively identi�ed and eliminated.
Component extraction: At this stage, edge detection is
performed on the original image and the edge map is input
to SWT [7] module to produce an SWT image. Neighbor-
ing pixels in the SWT image are grouped together to form
connected components using a simple association rule.
Component analysis: Many components extracted at the
component extraction stage are not parts of texts. The
component analysis stage therefore identi�es and �lters out
those non-text components by a trained classi�er.
Candidate linking: The remaining components are taken
as character candidates1. The �rst step of the candidate link-
ing stage is to link the character candidates into pairs. Two
adjacent candidates are grouped into a pair if they have sim-
ilar geometric properties and colors. The candidate pairs are
then aggregated into chains in a recursive fashion.
Chain analysis: At the chain analysis stage, the chains de-
termined at the former stage are veri�ed by a chain level

1In fact, components do not necessarily correspond to characters, be-
cause a single character in some languages may consist of several strokes;
however, we still call them characters (or character candidates) hereafter
for simplicity.



Table 1.Basic component properties and their valid ranges.

Property De�nition Range

width variation W V (c) =
� (c)

� (c)
[0; 1]

aspect ratio AR (c) = min f
w(c)

h(c)
;

h(c)

w(c)
g [0:1; 1]

occupation ratio OR(c) =
q

w(c) � h(c)
[0:1; 1]

classi�er. The chains with low classi�cation scores (proba-
bilities) are discarded. The chains may be in any direction,
so a candidate might belong to multiple chains; the inter-
pretation step is aimed to dispel this ambiguity. The chains
that pass this stage are the �nal detected texts.

3.1.2 Component Extraction

To extract connected components from the image, SWT [7]
is adopted for its effectiveness and ef�ciency. In addition,
it provides a way to discover connected components from
edge map directly. We use Canny edge detector [5] to
produce an edge map (Fig. 3 (b)) from the original image
(Fig. 3 (a)). SWT is a local image operator which com-
putes per pixel width of the most likely stroke containing
the pixel. See [7] for details. The resulting SWT image is
shown in Fig. 3 (c).

The next step of this stage is to group the pixels in the
SWT image into connected components. The pixels are as-
sociated using a simple rule that the ratio of SWT values of
neighboring pixels is less than3:0. The connected compo-
nents are shown in Fig. 3 (d). Note the red rectangles in the
image. Each rectangle contains a connected component.

3.1.3 Component Analysis

The purpose of component analysis is to identify and elim-
inate the connected components that are unlikely parts of
texts. Towards this end, we devise a two-layer �ltering
mechanism. The �rst layer is a �lter consists of a set of
heuristic rules. This �lter runs on a collection of statis-
tical and geometric properties of components, which are
very fast to compute. For a connected componentc with
q foreground pixels (black pixels in the SWT image), we
�rst compute its bounding boxbb(c) (its width and height
are denoted byw(c) andh(c), respectively) and the mean
as well as standard deviation of the stroke widths,� (c) and
� (c). The de�nitions of these basic properties and the cor-
responding valid ranges are summarized in Tab. 1.

The components with one or more invalid properties will
be taken as non-text regions and discarded. This prelimi-
nary �lter proves to be both effective and ef�cient. A large
portion of obvious non-text regions are eliminated after this
step. Notice the difference between Fig. 3 (d) and Fig. 3 (e).

The second layer is a classi�er trained to identify and re-
ject the non-text components that are hard to remove with
the preliminary �lter. A collection of component level fea-
tures, which capture the differences of geometric and textu-
ral properties between text components and non-text com-

Figure 4.Component characteristics. The green points are the centers of
the components. The radii of the pink circles represent their characteristic
scales while the yellow lines indicate the major orientations. The two im-
ages, which contain the same text line, are taken from different viewpoints
and distances.
ponents, are used to train this classi�er. The criteria for
feature design are: scale invariance, rotation invarianceand
low computational cost. To meet these criteria, we propose
to estimate the center, characteristic scale and major ori-
entation of each component (Fig. 4) before computing the
component level features. Based on these characteristics,
features that are both effective and computational ef�cient
can be obtained. The details of these component level fea-
tures are discussed in Sec. 3.2.1.

For a componentc, the barycentero(c), major axisL (c),
minor axis l (c), and orientation� (c) are estimated using
Camshift algorithm [3] by taking the SWT image of com-
ponentc as distribution map. The center, characteristic
scale and major orientation of componentc are de�ned as:
O(c) = o(c), S(c) = L (c) + l(c), and�( c) = � (c).

These characteristics are invariant to translation, scale
and rotation to some degree (Fig. 4). As we will explain
in Sec. 3.2.1, this is the key to the scale and rotation invari-
ance of the component level features.

We train a component level classi�er using the compo-
nent level features. Random Forest [4] is chosen as the
strong classi�er. The component level classi�er is the �rst
level of the two-level classi�cation scheme. The probabil-
ity of componentc, p1(c), is the fraction of votes for the
positive class (text) from the trees. The components whose
probabilities are lower than a thresholdT1 are eliminated
and the remaining components are considered as character
candidates (Fig. 3 (f)).

3.1.4 Candidate Linking

The character candidates are aggregated into chains at this
stage. This stage also serves as a �ltering step because the
candidate characters cannot be linked into chains are taken
as components casually formed by noises or background
clutters, and thus are discarded.

Firstly, character candidates are linked into pairs. In [7],
whether two candidates can be linked into a pair is deter-
mined based on the heights and widths of their bounding
boxes. However, bounding boxes of candidates are not ro-
tation invariant, so we use their characteristic scales instead.
If two candidates have similar stroke widths (ratio between
the mean stroke widths is less than2:0), similar sizes (ra-
tio between their characteristic scales does not exceed2:5),
similar colors and are close enough (distance between them



Figure 3. Text detection process. See text for details.

is less than two times the sum of their characteristic scales),
they are labeled as a pair. Unlike [7], which only considers
horizontal linkings, the proposed algorithm allows linkings
of arbitrary directions. This endows the system with the
ability of detecting texts of arbitrary orientations, not lim-
ited to horizontal texts (see Fig. 1). Note that a character
candidate may belong to several pairs.

Next, a greedy hierarchical agglomerative clustering [12]
method is applied to aggregate the pairs into candidate
chains. Initially, each pair constitutes a chain. Then the sim-
ilarity between each couple of chains that share at least one
common candidate and have similar orientations is com-
puted; chains with the highest similarity are merged to-
gether to form a new chain. The orientation consistency
so(C1; C2) and population consistencysp(C1; C2) between
two chainsC1 andC2, which share at least one common
candidate, are de�ned as:

so(C1; C2) =

(
1 �


 (C1 ; C2 )

�= 2
if 
 (C1 ; C2) �

�

8
0 otherwise

; (1)

and

sp(C1; C2) =

(
1 �

jnC 1 � nC 2 j

jnC 1 + nC 2 j
if 
 (C1 ; C2 ) �

�

8
0 otherwise

; (2)

where
 (C1; C2) is the included angle ofC1 andC2 while
nC1 andnC2 are the candidate numbers ofC1 andC2. The
similarity between two chainsC1 andC2 is:

s(C1; C2) = ! � so(C1; C2) + (1 � ! ) � sp(C1; C2); (3)

where! 2 [0; 1] is a control parameter.! is set to 0.5 to
give equal weights toso(C1; C2) andsp(C1; C2). Accord-
ing to this similarity de�nition, the chains with proximal
sizes and orientations are merged with priority. This merg-
ing process proceeds until no chains can be merged.

At last, the character candidates not belonging to any
chain are discarded. The candidate chains after aggrega-
tion are shown in Fig. 3 (g). Each green line represents a
candidate chain.

3.1.5 Chain Analysis

The candidate chains formed at the previous stage might in-
clude false positives that are random combinations of scat-
tered background clutters (such as leaves and grasses) and
repeated patterns (such as bricks and windows). To elimi-
nate these false positives, a chain level classi�er is trained
using the chain level features (Sec. 3.2.2). Random For-
est [4] is again used. The chain level classi�er is the second
level of the two-level classi�cation scheme. The probability
of chainC, p2(C), is the fraction of votes for the positive
class (text) from the trees. The chains with probabilities
lower than a thresholdT2 are eliminated.

To make better decisions, the total probability of each
chain is also calculated. For a chainC with n candi-
datesci ; i = 1 ; 2; � � � ; n, the total probability is de�ned as:

p(C) = (

P n
i =1 p1(ci )

n
+ p2(C))=2: The chains whose total

probabilities are lower than a thresholdT are discarded.
As texts of arbitrary orientations are considered, the re-

maining chains may be in any direction. Therefore, a can-
didate might belong to multiple chains. For example, in
Fig. 3 (h) the character `P' in the �rst line is linked in three
chains (note the green lines). In reality, however, a char-
acter is unlikely to belong to multiple text lines. If several
chains compete for the same candidate, only the chain with
the highest total probability will survive (note the difference
between Fig. 3 (h) and Fig. 3 (i)).

The survived chains are outputted by the system as de-
tected texts (Fig. 3 (j)). For each detected text, its orienta-
tion is calculated through linear least squares [12] using the
centers of the characters; its minimum area rectangle [9] is
estimated using the orientation and the bounding boxes of



Figure 5.Templates and calculation of scalable rotative descriptors. (a)
Two templates used for computing the descriptors. The radius space and
angle space are partitioned evenly in a coarse-to-�ne manner. The red
arrows indicate the reference orientations of the templates. (b) Component
and its characteristics. (c)(d)(e) Calculation of contourshape, edge shape
and occupation ratio. See text for details.

the characters. Word partition, which divides text lines into
separate words, is also implemented in the proposed algo-
rithm; but it is not shown in Fig. 3 since the general task of
text detection does not require this step.

The whole algorithm is performed twice to handle both
bright text on dark background and dark text on bright back-
ground, once along the gradient direction and once along
the inverse direction. The results of two passes are fused
to make �nal decisions. For clarity, only the results of one
pass are presented in Fig. 3.

3.2. Feature Design
We design two collections of features, component level

features and chain level features, for classifying text and
non-text, based on the observation that it is the median de-
gree of regularities of text rather than particular color or
shape that distinguish it from non-text, which usually has
either low degree (random clutters) or high degree (repeated
patterns) of regularities. At character level, the regularities
of text come from nearly constant width and texturelessness
of strokes, and piecewise smoothness of stroke boundaries;
at line level, the regularities of text are similar colors, sizes,
orientations and structures of characters, and nearly con-
stant spacing between consecutive characters.

3.2.1 Component Level Features

Inspired by Shape Context [1] and Feature Context [28], we
devise two templates (Fig. 5 (a)) to capture the regularities
of each component in coarse and �ne granularity, respec-
tively. The radius and orientation of the templates are not
stationary, but adaptive to the component. When comput-
ing descriptors for a component, each template is placed at
the center and rotated to align with the major orientation of
the component; the radius is set to the characteristic scale
of the component. Different cues from the sectors are en-
coded and concatenated into histograms. In this paper, the
following cues are considered for each sector:

– Contour shape [11]. Contour shape is a histogram
of oriented gradients. The gradients are computed on the
component contour (Fig. 5 (c)).

– Edge shape [11].Edge shape is also a histogram of
oriented gradients; but the gradients are computed at all the
pixels in the sector (Fig. 5 (d)).

– Occupation ratio. Occupation ratio is de�ned as the
ratio between the number of the foreground pixels of the
component within the sector and the sector area (Fig. 5 (e)).

To achieve rotation invariance, the gradient orientations
are rotated by an angle�( c), before computing contour
shape and edge shape. Then, the gradient orientations are
normalized to the range[0; � ]. 6 orientation bins are used
for computing histograms of contour shape and edge shape,
to cope with different fonts and local deformations. For
each cue, the signals computed in all the sectors of all the
templates are concatenated to form a descriptor. We call
these descriptors scalable rotative descriptors, becausethey
are computed based on templates that are scalable and rota-
tive. Scalable rotative descriptors are similar to PHOG [2],
as they both adopt spatial pyramid representation [17].

Different from the templates used for computing PHOG,
our templates are circular and their scale and orientation are
adaptive to the component being described. This is the key
to the scale and rotation invariance of these descriptors. We
found through experiments (not shown in this paper) that
using �ner templates can slightly improve the performance,
but will largely increase the computational burden.

Another three types of features are also considered:
– Axial ratio. Axial ratio is computed by dividing

the major axis of the componentc with its minor axis:
XR (c) = L (c)=l(c).

– Width variation. This feature is the same as de�ned
in Tab. 1.

– Density. The density of componentc is de�ned as
the ratio between its pixel numberq and characteristic area
(here the characteristic area is� � S2(c), not the area of the
bounding box):D (c) = q=(� � S2(c)) .

3.2.2 Chain Level Features

Eleven types of chain level features are designed to discrim-
inate text lines from false positives (mostly repeated pat-
terns and random clutters) that cannot be distinguished by
the component level features.

For a candidate chainC with n (n � 2) candidates
ci ; i = 1 ; 2; : : : ; n, the features are de�ned as below:

– Candidate count.This feature is adopted based on the
observation that false positives usually have very few (ran-
dom clutters) or too many (repeated patterns) candidates.

– Average probability. The probabilities given by the
component level classi�er are reliable. This feature is the
average of all the probabilities (p1(ci ); i = 1 ; 2; : : : ; n) of
the candidates belonging toC.

– Average turning angle. Most texts present in linear
form, so for a text line the mean of the turning angles at the
interior characters (� (ci ); i = 2 ; 3; : : : ; n � 1) is very small;



however, for random clutters this property will not hold.
� (ci ) is the included angle between the lineO(ci � 1)O(ci )
andO(ci )O(ci +1 ).

– Size variation. In most cases characters in a text line
have approximately equal sizes; but it's not that case for
random clutters. The size of each component is measured
by its characteristic scaleS(ci ).

– Distance variation. Another property of text is that
characters in a text line are distributed uniformly, i.e. the
distances between consecutive characters have small devia-
tion. The distance between two consecutive components is
the distance of their centersO(ci � 1) andO(ci ).

– Average direction bias.For most text lines, the major
orientations of the characters are nearly perpendicular tothe
major orientation of the text line.

– Average axial ratio. Some repeated patterns (e.g. bar-
riers) that are not texts consist of long and thin components,
this feature can help differentiate them from true texts.

– Average density.On the contrary, other repeated pat-
terns (e.g. bricks) consist of short and fat components, this
feature can be used to eliminate this kind of false positives.

– Average width variation. False positives formed by
foliage usually have varying widths while texts have con-
stant widths. This feature is de�ned as the mean of all the
width variation values of the candidates.

– Average color self-similarity. Characters in a text
line usually have similar but not identical color distribu-
tions with each other; yet in false positive chains, color
self-similarities [25] of the candidates are either too high
(repeated patterns) or too low (random clutters). The color
similarity cs(x; y) is de�ned as the cosine similarity of the
color histograms of the two candidatesx andy.

– Average structure self-similarity. Likewise, charac-
ters in a text line have similar structure with each other
while false positives usually have almost the same structure
(repeated patterns) or diverse structures (random clutters).
The structure similarityss(x; y) is de�ned as the cosine
similarity of the edge shape descriptors of the two compo-
nentsx andy.

4. Dataset and Evaluation Protocol
In this section, we introduce a dataset for evaluating text

detection algorithms, which contains images of real-world
complexity; a new evaluation method is also proposed.

Although widely used in the community, the ICDAR
dataset [21, 20] has two major drawbacks. First, most of
the text lines (or single characters) in the ICDAR dataset
are horizontal. In real scenarios, however, text may appear
in any orientation. The second drawback is that all the text
lines or characters in this dataset are in English. These two
shortcomings are also pointed out in [23, 29]. In this work,
we generate a new multilingual image dataset with horizon-
tal as well as skewed and slant texts. We name this dataset

Figure 6.Ground truth generation and overlap ratio calculation. (a)Hu-
man annotations. The annotators are required to bound each text line using
a four-vertex polygon (red dots and yellow lines). (b) Ground truth rect-
angles (green). The ground truth rectangle is generated automatically by
�tting a minimum area rectangle using the polygon. (c) Calculation of
overlap ratio between detection rectangle and ground truthrectangle.

MSRA Text Detection 500 Database (MSRA-TD500)2, be-
cause it contains500 natural images in total. These im-
ages are taken from indoor (of�ce and mall) and outdoor
(street) scenes using a packet camera. The indoor images
are mainly signs, doorplates and caution plates while the
outdoor images are mostly guide boards and billboards in
complex background. The resolutions of the images vary
from 1296� 864 to 1920� 1280. Some typical images
from this dataset are shown in Fig. 8 (a).

This dataset is very challenging because of both the di-
versity of the texts and the complexity of the backgrounds in
the images. The texts may be in different languages (Chi-
nese, English or mixture of both), fonts, sizes, colors and
orientations. The backgrounds may contain vegetation (e.g.
trees and grasses) and repeated patterns (e.g. windows and
bricks), which are not so distinguishable from text.

The dataset is divided into two parts: training set and
test set. The training set contains300 images randomly
selected from the original dataset and the rest200 images
constitute the test set. All the images in this dataset are
fully annotated. The basic unit in this dataset is text line
rather than word, which is used in the ICDAR dataset, be-
cause it is hard to partition Chinese text lines into individual
words based on their spacings; even for English text lines,
it is non-trivial to perform word partition without high level
information. The procedure of ground truth generation is
shown in Fig. 6 (a) and (b).

Minimum area rectangles [9] are used in our protocol be-
cause they (green rectangles in Fig. 6 (b)) are much tighter
than axis-aligned rectangles (red rectangles in Fig. 6 (b)).
However, a problem imposed by using minimum area rect-
angles is that it is dif�cult to judge whether a text line is
correctly detected. As shown in Fig. 6 (c), it is not trivial
to directly compute the overlap ratio between the estimated
rectangleD and the ground truth rectangleG. Instead, we
compute the overlap ratio using axis-aligned rectanglesG0

and D 0, which are obtained by rotatingG and D round
their centersCG andCD , respectively. The overlap ratio

betweenG andD is de�ned as:m(G; D ) =
A(G0 \ D 0)
A(G0 [ D 0)

whereA(G0 \ D 0) andA(G0 [ D 0) denote the areas of the
intersection and union ofG0 andD 0. Similar to the evalu-

2http : ==users:loni:ucla:edu= � ztu=Download front:htm



Figure 7.Detected texts in images from the ICDAR test set.

ation method for the PASCAL object detection task [8], in
our protocol detections are considered true or false positives
based on the overlap ratio between the estimated minimum
area rectangles and the ground truth rectangles. If the in-
cluded angle of the estimated rectangle and the ground truth
rectangle is less than�= 8 and their overlap ratio exceeds
0:5, the estimated rectangle is considered a correct detec-
tion. Multiple detections of the same text line are taken
as false positives. The de�nitions of precision and recall
are: precision = jT Pj=jE j, recall = jT Pj=jT j where
T P is the set of true positive detections whileE and T
are the sets of estimated rectangles and ground truth rectan-
gles. The F-measure, which is a single measure of algorithm
performance, is a combination of the two above measures:
f = 2 � precision � recall=(precision + recall ).

5. Experiments
We implemented the proposed algorithm and trained two

text detectors, one on the mixture of the ICDAR training set
and the training set of the proposed dataset, and the other
only on the ICDAR training set. These two text detectors
are denoted by TD-Mixture and TD-ICDAR, respectively.
200 trees are used for training the component level classi-
�er and 100trees for the chain level classi�er. The threshold
values are:T1 = 0 :1, T2 = 0 :3 andT = 0 :4. We found em-
pirically that the text detectors under this parameter setting
work well for all the datasets used in this paper.

In order to compare the proposed algorithm with exist-
ing methods, we evaluated the algorithm on the standard
benchmark ICDAR dataset [21, 20]. The ICDAR dataset
contains509fully annotated text images.258images from
the dataset are used for training and251for testing.

Some text detection examples of the proposed algorithm
are presented in Fig. 7. The algorithm can handle several
types of challenging scenarios, e.g. variations in text font,
color and size, as well as repeated patterns and background
clutters. The quantitative comparisons of different meth-
ods evaluated on the ICDAR test set are shown in Tab. 2.
Our algorithm compares favorably with the state-of-the-art
algorithms when dealing with horizontal texts.

Besides the ICDAR dataset, we also tested the proposed
algorithm and the systems of Chen et al. [6] and Epshtein
et al. [7] on the proposed dataset. Examples of our algo-
rithm on this dataset are shown in Fig. 8 (a). Our algorithm
is able to detect texts of large variation in natural scenes,

Table 2.Performances of different text detection methods evaluated on
the ICDAR test set.

Algorithm Precision Recall F-measure

TD-Mixture 0.69 0.66 0.67

TD-ICDAR 0.68 0.66 0.66

Epshtein et al. [7] 0.73 0.60 0.66

Yi et al. [29] 0.71 0.62 0.62

Becker et al. [20] 0.62 0.67 0.62

Chen et al. [6] 0.60 0.60 0.58

Zhu et al. [20] 0.33 0.40 0.33

Kim et al. [20] 0.22 0.28 0.22

Ezaki et al. [20] 0.18 0.36 0.22

Table 3.Performances of different text detection methods evaluated on
the proposed dataset.

Algorithm Precision Recall F-measure

TD-Mixture 0.63 0.63 0.60

TD-ICDAR 0.53 0.52 0.50

Epshtein et al. [7] 0.25 0.25 0.25

Chen et al. [6] 0.05 0.05 0.05

Table 4.Performances of different text detection methods evaluated on
the Oriented Scene Text Database (OSTD) [29].

Algorithm Precision Recall F-measure

TD-Mixture 0.77 0.73 0.74

TD-ICDAR 0.71 0.69 0.68

Yi et al. [29] 0.56 0.64 0.55

Epshtein et al. [7] 0.37 0.32 0.32

Chen et al. [6] 0.07 0.06 0.06

with the presence of vegetation and buildings. The images
in the last row of Fig. 8 (a) are some typical cases where
our algorithms failed to detect the texts or gave false posi-
tives. The misses (pink rectangles) are mainly due to strong
highlights, blur and low resolution; the false positives (red
rectangles) are usually caused by windows, trees, or signs
that are very alike text.

The performances are measured using the proposed eval-
uation protocol and shown in Tab. 3. Our algorithm
achieves signi�cantly enhanced performance when detect-
ing texts of arbitrary orientations. The performances of
other competing algorithms are not presented because of
unavailability of their executables. The average process-
ing time of our algorithm on this dataset is7:2s and that of
Epshtein et al. is6s (both tested on a 2.53GHz CPU with-
out optimization). Our algorithm is a bit slower, but with
the advantage of being able to detect multi-oriented texts.

In [29], a dataset called Oriented Scene Text Database
(OSTD), which contains texts of various orientations, is re-
leased. This dataset contains89 images of logos, indoor
scenes and street views. We perform text detection on all
the images in this dataset. The quantitative results are pre-
sented in Tab. 4. Our method outperforms [29] on the Ori-
ented Scene Text Database (OSTD), with an improvement
of 0:19 in F-measure.



Figure 8.(a) Detected texts in images from the proposed dataset. Yellow rectangles: true positives, pink rectangles: false negatives, red rectangles: false
positives. Best viewed in color. (b) Detected texts in various languages in images collected from the internet. Note that the texts are detected in full images.
We only show cropped sub images because of space limitation.

From Tab. 3 and Tab. 4, we observe that even TD-
ICDAR (only trained on horizontal texts) achieves much
better performance than other methods on non-horizontal
texts. It demonstrates the effectiveness of the proposed fea-
tures. Fig. 8 (b) shows some detected texts in various lan-
guages, including both oriental and western languages, such
as Japanese, Korean, Arabic, Greek, and Russian. Though
our text detector is only trained on Chinese and English
texts, it can effortlessly generalize to texts in differentlan-
guages. It indicates that the proposed algorithm is quite
general and it can serve as a multilingual text detector if
suf�cient training examples are available.

6. Conclusions and Future Work
We have presented a text detection system that detects

texts of arbitrary directions in natural images. Our sys-
tem compares favorably with the state-of-the-art algorithms
when handling horizontal texts and achieves signi�cantly
enhanced performance on texts of arbitrary orientations in
complex natural scenes.

The component level features are actually character de-
scriptors that can distinguish among different characters,
thus they can be adopted to recognize characters. We plan to
make use of this property and develop an uni�ed framework
for text detection and character recognition in the future.
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