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Abstract

Texts in natural scenes carry rich semantic information, which can be used to assist a wide range of applications, such as
object recognition, image/video retrieval, mapping/navigation, and human computer interaction. However, most existing
systems are designed to detect and recognize horizontal (or near-horizontal) texts. Due to the increasing popularity of
mobile-computing devices and applications, detecting texts of varying orientations from natural images under less
controlled conditions has become an important but challenging task. In this paper, we propose a new algorithm to detect
texts of varying orientations. Our algorithm is based on a two-level classification scheme and two sets of features specially
designed for capturing the intrinsic characteristics of texts. To better evaluate the proposed method and compare it with
the competing algorithms, we generate a comprehensive dataset with various types of texts in diverse real-world scenes.
We also propose a new evaluation protocol, which is more suitable for benchmarking algorithms for detecting texts in
varying orientations. Experiments on benchmark datasets demonstrate that our system compares favorably with the state-
of-the-art algorithms when handling horizontal texts and achieves significantly enhanced performance on variant texts in
complex natural scenes.
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Introduction

Texts in a natural scene directly carry critical high-level

semantic information. Their existence is also ubiquitous in urban

environments, e.g. traffic signs, billboards, business name cards,

and license plates. Effective text detection and recognition systems

have been very useful in a variety of applications such as robot

navigation [1], image search [2], and human computer interaction

[3]. The popularity of smart phones and ubiquitous computing

devices have also made the acquisition and transmission of text

data increasingly convenient and efficient. Thus, automatically

detecting and recognizing texts from casually captured images has

become an ever important task in computer vision.

In this paper, we tackle the problem of text detection in natural

images, which remains a challenging task although it has been

extensively studied in the past decades [4–19]. The difficulty of

automatic text detection mainly stems from two aspects: (1)

diversity of text appearances and (2) complexity of cluttered

backgrounds. On one hand, texts, unlike conventional objects (e.g.

cars and horses), typically consist of a large number of different

instances and they exhibit significant variations in shapes and

appearances: different texts may have different sizes, colors, fonts,

languages, and orientations, even within the same scene. On the

other hand, many other man-made objects (such as windows and

railings) in the scene often bear a great deal of similarity to texts.

Sometimes even natural objects (such as grasses and leaves) may

happen to distribute in a similar way as a sequence of characters.

Such ambiguities have made reliable text detection in natural

images a challenging task.

In the literature, most of the existing methods [6,9,20] have

focused on detecting horizontal or near-horizontal texts, as we will

see in a survey of related work. Obviously, the requirement of

being horizontal severely limits the applicability of those methods

in scenarios where images are taken casually with a mobile device.

Detecting texts with varying orientations in complex natural scenes

remains a challenge for most practical text detection and

recognition systems [21,22]. In this work, we aim to build an

effective and efficient system for detecting multi-oriented texts in

complex natural scenes (see Fig. 1).

Most conventional text detection methods rely on features that

are primarily designed for horizontal texts (such as those used in

[7,13,19]). Thus, when such methods are applied to images that

contain multi-oriented texts, their performance usually drops

drastically. To remedy this situation, we introduce two additional

sets of rotation-invariant features for text detection. To further
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reduce false positives produced by only using such low-level

features, we have also designed a two-level classification scheme

that can effectively discriminate texts from non-texts. Hence, by

combining the strength of rotation-invariant features and well

trained text classifiers, our system is able to effectively detect multi-

oriented texts with very few false positives.

The proposed method is mostly bottom-up (data-driven) but

with additional prior knowledge about texts imposed in a top-

down fashion. Pixels are first grouped into connected compo-

nents, corresponding to strokes or characters; connected

components are then linked together to form chains, corre-

sponding to words or sentences. The connected components

and chains are verified by the orientation-invariant features and

discriminative classifiers. With this strategy, our method is able

to combine the strength of both prior knowledge about texts

(such as uniform stroke width) and automatically learned

classifiers from labeled training data. In this way, we can strike

a good balance between systematic design and machine

learning, which is shown to be advantageous over either heavy

black-box learning [7] or purely heuristic design [9].

To evaluate the effectiveness of our system, we have conducted

extensive experiments on both conventional benchmarks and

some new (more extensive and challenging) datasets. Compared

with the state-of-the-art text detection algorithms, our system

performs competitively in the conventional setting of horizontal

texts. We have also tested our system on a challenging dataset of

500 natural images containing texts of various orientations in

complex backgrounds. On this dataset, our system works

significantly better than the existing systems, with an F-measure

about 0.6, more than twice that of the closest competitor.

We have presented a preliminary version of our work in [23].

This paper extends that article with the following contributions: (1)

some steps of the algorithm are improved. Specifically, the case of

detecting single characters, which is heavily neglected by existing

methods, is discussed; (2) further evaluations, including text

detection experiments on the dataset of the latest ICDAR robust

reading competition (ICDAR 2011) and on texts of different

languages, are conducted; (3) an end-to-end multi-oriented scene

text recognition system, integrating the proposed text detection

algorithm with an off-the-shelf OCR engine, is introduced; (4) the

proposed evaluation protocol is detailed; (5) more technical details

of the proposed method are presented and (6) comprehensive

discussions and analyses are given.

Related Work
There have been a large number of systems dealing with text

detection in natural images and videos [4–18,24–28]. Compre-

hensive surveys can be found in [29,30]. Existing approaches to

text detection can be roughly divided into three categories:

texture-based, component-based, and hybrid methods.

Three categories of existing approaches.

(e.g. [6,7,24]) treat text as a

In an early work, Zhong et al. [31] proposed a method for text

localization in color images. Horizontal spatial variance was used

to roughly localize texts and color segmentation was performed

within the localized areas to extract text components. The system

of Wu et al. [32] adopted a set of Gaussian derivatives to segment

texts. Rectangular boxes surrounding the corresponding text

strings were formed, based on certain heuristic rules on text

strings, such as height similarity, spacing and alignment. The

above steps were applied to an image pyramid and the results were

fused to make final detections. Li et al. [33] presented a system for

detecting and tracking texts in digital video. In this system, the

mean and the second- and third-order central moments of wavelet

decomposition responses are used as local features. Zhong et al.

[34] proposed to localize candidate caption text regions directly in

the discrete cosine transform (DCT) compressed domain using the

Figure 1. Detected texts in natural images by the proposed algorithm.
doi:10.1371/journal.pone.0070173.g001
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  Texture-based methods
special type of texture and make use of its textural properties,

such as local intensities, spatial variance, filter responses,  and

wavelet coefficients. Generally, these methods are computation

demanding    as        all locations and scales are exhaustively scanned.

Moreover, these algorithms mostly only detect horizontal texts.

 



intensity variation information encoded in the DCT domain. The

method proposed by Gllavata et al. [24] utilized the distribution of

high-frequency wavelet coefficients to statistically characterize text

and non-text areas.

Different from the methods surveyed above, in which filter

responses or transform domain coefficients are used as features,

the algorithm of Kim et al. [6] relies merely on intensities of raw

pixels. A Support Vector Machine (SVM) classifier is trained to

generate probability maps, in which the positions and extents of

texts are searched using adaptive mean shift. Lienhart and

Wernicke [35] used complex-valued edge orientation maps

computed from the original RGB image as features and trained

neural network to distinguish between text and non-text patterns.

The method of Weinman et al. [36] used a rich representation

that captures important relationships between responses to

different scale- and orientation-selective filters. To improve the

performance, conditional random field (CRF) was used to exploit

the dependencies between neighboring image region labels. Based

on the observation that areas with high edge density indicate text

regions, text detection in [37] was carried out in a sequential

multi-resolution paradigm.

To speed up text detection, Chen et al. [7] proposed an efficient

text detector, which is a cascade Adaboost classifier. The weak

classifiers are trained on a set of informative features, including

mean and variance of intensity, horizontal and vertical derivatives,

and histograms of intensity gradient. Recently, Wang et al. [10]

present a method for spotting words in natural images. They first

perform character detection for every letter in an alphabet and

then evaluate the configuration scores for the words in a specified

list to pick out the most probable one.

Component-based methods (e.g. [4,9,14,38]) first extract

candidate text components through various ways (e.g. color

reduction [4,14] and Maximally Stable Extremal Region detection

[11,25]) and then eliminate non-text components using heuristic

rules or trained classifier, based on geometry and appearance

properties. Component-based methods are usually more efficient

than texture-based methods because the number of candidate

components is relatively small. These methods are more robust to

the variations of texts, such as changes of font, scale and

orientation. Moreover, the detected text components can be

directly used for character recognition. Due to these advantages,

recent progresses in text detection and recognition in natural

images have been largely advanced by this category of methods

[9,11,14,18,38–40].

In [4], color reduction and multi-valued image decomposition

are performed to partition the input image into multiple

foreground components. Connected component analysis is applied

to these foreground components, followed by a text identification

module, to filter out non-text components.

The great success of sparse representation in face recognition

[41] and image denoising [42] has inspired numerous researchers

in the community. The authors of [43] and [12] apply

classification procedure to candidate text components, using

learned discriminative dictionaries.

The MSER-based methods [11,18,25,40] have attracted much

attention from the community, because of the excellent charac-

teristics of MSERs (Maximally Stable Extremal Regions) [44].

MSERs can be computed efficiently (near linear complexity) and

are robust to noise and affine transformation. In [11], MSERs are

detected and taken as candidate text components. Neumann et al.

[40] modified the original MSER algorithm to take region

topology into consideration, leading to superior detection perfor-

mance. Chen et al. [25] also proposed an extension to MSER, in

which the boundaries of MSERs are enhanced via edge detection,

to cope with image blur. Recently, Neumann et al. [18] further

extend the work of [11,40] to achieve real-time text detection and

recognition.

Epshtein et al. [9] proposed a novel image operator, called

Stroke Width Transform (SWT), which transforms the image data

from containing color values per pixel to containing the most likely

stroke width. Based on SWT and a set of heuristic rules, this

algorithm can reliably detect horizontal texts.

While most existing algorithms are designed for horizontal or

near-horizontal texts, Yi et al. [14] and Shivakumara et al. [16]

consider the problem of detecting multi-oriented texts in images or

video frames. After extracting candidate components using

gradient and color based partition, the line grouping strategy in

[14] aggregates the components into text strings. The text strings

can be in any direction. However, the method of [14] relies on a

large set of manually defined rules and thresholds. In [16],

candidate text component clusters are identified by K-means

clustering in the Fourier-Laplacian domain. The component

clusters are divided into separate components using skeletoniza-

tion. Even though this method can handle multi-oriented texts, it

only detects text blocks, rather than characters, words or

sentences.

Finally, hybrid methods (e.g. [13,45]) are a mixture of

texture-based and component-based methods. In [45], edge pixels

of all possible text regions are extracted, using an elaborate edge

detection method; the gradient and geometrical properties of

region contours are verified to generate candidate text regions,

followed by a texture analysis procedure to distinguish true text

regions from non-text regions. Unlike [45], the hybrid method

proposed by Pan et al. [13] extracts candidate components from

probability maps at multiple scales. The probability maps are

estimated by a classifier, which is trained using a set of texture

features (HOG features [46]) computed in predefined patterns.

Like most other algorithms, these two methods only detect

horizontal texts.

Our Strategy
We have drawn two observations about the current text

detection algorithms: (1) methods that are purely based on

learning (nearly black-box) [7] by training classifiers on a large

amount of data can reach certain but limited level of success

(system [7] obtained from the authors produces reasonable results

on horizontal English texts but has poor performance in general

cases); (2) systems that are based on smart features, such as Stroke

Width Transform (SWT) [9], are robust to variations of texts but

they involve a lot of tuning and are still far from producing all

satisfactory results, especially for non-horizontal texts.

In this paper, we adopt SWT and also design various new

features that are intrinsic to texts and robust to variations (such as

rotation and scale change); a two-level classification scheme is

devised to moderately utilize training to remove sensitive

parameter tuning by hand. We observe significant improvement

over the existing approaches in dealing with real-world scenes.

Though widely used in the community, the ICDAR datasets

[47–49] only contain horizontal English texts. In [14], a dataset

with texts of different directions is released, but it includes only 89

images without enough diversity in the texts and backgrounds.

Here we collect a new dataset with 500 images of indoor and

outdoor scenes. In addition, the evaluation methods used in [50]

and the ICDAR competitions [47–49] are mainly designed for

horizontal texts. Hence, we propose a new protocol that is more

suitable for assessing algorithms developed for multi-oriented texts.

Rotation-Invariant Features for Text Detection
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Proposed Approach
The proposed algorithm consists of four stages: (1) component

extraction, (2) component analysis, (3) candidate linking, and (4)

chain analysis, which can be further categorized into two

procedures, bottom-up grouping and top-down pruning, as shown

in Fig. 2. In the bottom-up grouping procedure, pixels are first

grouped into connected components and later these connected

components are aggregated to form chains; in the top-down

pruning procedure non-text components and chains are succes-

sively identified and eliminated. The two procedures are applied

alternately.

Component extraction. At this stage, edge detection is

performed on the original image and the edge map is fed to the

SWT [9] module to produce an SWT image. Neighboring pixels

in the SWT image are grouped together recursively to form

connected components using a simple association rule.

Component analysis. Many components extracted at the

component extraction stage are not parts of texts. The component

analysis stage is aimed to identify and filter out those non-text

components. First, the components are filtered using a set of

heuristic rules that can distinguish between obvious spurious text

regions and true text regions. Next, a component level classifier is

applied to prune the non-text components that are hard for the

simple filter.

Candidate linking. The remaining components are taken as

character candidates. In fact, components do not necessarily

correspond to characters, because a single character in some

languages may consist of several strokes; however, we still call

them characters (or character candidates) hereafter for simplicity.

The first step of the candidate linking stage is to link the character

candidates into pairs. Two adjacent candidates are grouped into a

pair if they have similar geometric properties and colors. At the

next step, the candidate pairs are aggregated into chains in a

recursive manner.

Chain analysis. At the chain analysis stage, the chains

determined at the former stage are verified by a chain level

classifier. The chains with low classification scores (probabilities)

are discarded. The chains may be in any direction, so a candidate

might belong to multiple chains; the interpretation step is aimed to

dispel this ambiguity. The chains that pass this stage are the final

detected texts.

The remainder of this paper is organized as follows. Section

Methodology presents the details of the proposed method,

including the algorithm pipeline and the two sets of features.

Section Dataset and Evaluation Protocol introduces the

proposed dataset and evaluation protocol. The experimental

results and discussions are given in Section Experiments and
Discussions. Section Conclusions concludes the paper and

points out potential directions for future research.

Methodology

In this section, we present the details of the proposed algorithm.

Specifically, the pipeline of the algorithm will be presented in

Section Algorithm Pipeline and the details of the features will

be described in Section Feature Design.

Algorithm Pipeline
Component extraction. To extract connected components

from the image, SWT [9] is adopted for its effectiveness and

efficiency. SWT is an image operator which computes per pixel

width of the most likely stroke containing the pixel. It provides a

way to discover connected components from edge map directly,

which makes it unnecessary to consider the factors of scale and

direction. See [9] for details.

SWT runs on edge map, so we use Canny edge detector [51] to

produce an edge map (Fig. 3 (b) of [23]) from the original image

(Fig. 3 (a) of [23]). The resulting SWT image is shown in Fig. 3 (c)

of [23].

The next step of this stage is to group the pixels in the SWT

image into connected components. The pixels are associated using

a simple rule that the ratio of SWT values of neighboring pixels is

less than 3.0. The connected components are shown in Fig. 3 (d) of

[23]. Note the red rectangles in the image, where each rectangle

contains a connected component.

In fact, the proposed pipeline is general and not specific to any

kind of low level operator for component extraction. Though

SWT is employed to extract components in this paper, other

methods (such as MSER [11,25]) that are able to reliably generate

connected components corresponding to character candidates can

also be used. We leave evaluation and comparison of different

component extraction methods for future research.

Component analysis. The purpose of component analysis is

to identify and eliminate the connected components that are

unlikely parts of texts. To this end, we devise a two-layer filtering

mechanism.

The first layer is a filter consists of a set of heuristic rules. This

filter runs on a collection of statistical and geometric properties of

components, which are very fast to compute. True text

components usually have nearly constant stroke width and

compact structure (not too thin and long), so width variation,

Figure 2. Pipeline of the proposed approach.
doi:10.1371/journal.pone.0070173.g002
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aspect ratio and occupation ratio are chosen as the basic properties

to filer out obvious non-text components.

For a connected component c with q foreground pixels (black

pixels in the SWT image), we first compute its bounding box bb(c)
(its width and height are denoted by w(c) and h(c), respectively)

and the mean as well as standard deviation of the stroke widths,

m(c) and s(c). The basic properties are defined as follows:

– Width variation. Width variation measures the variation in

stroke width of the component c: WV (c)~
s(c)

m(c)
.

– Aspect ratio. In horizontal conditions aspect ratio is defined

as the ratio between the width and height of the component c.

To accommodate texts of different directions, we use a new

definition of aspect ratio: AR(c)~ minfw(c)

h(c)
,

h(c)

w(c)
g.

– Occupation ratio. Occupation ratio is used to remove non-

text components caused by spurious rays in the SWT image.

This property is defined as the ratio between the number of

foreground pixels and area of the component c:

OR(c)~
q

w(c) � h(c)
.

The valid ranges of these basic properties are empirically set to

[0,1], [0.1,1] and [0.1,1], respectively. Components with one or

more invalid properties will be taken as non-text regions and

discarded. A large portion of obvious non-text components are

eliminated after this step (notice the difference between Fig. 3 (d) of

[23] and Fig. 3 (e) of [23]), suggesting that this preliminary filter is

effective.

The second layer is a classifier trained to identify and reject the

non-text components that are hard to remove with the preliminary

filter. A collection of component level features, which capture the

differences of geometric and textural properties between text

components and non-text components, are used to train this

classifier. The criteria for feature design are: scale invariance,

rotation invariance and low computational cost. To meet these

criteria, we propose to estimate the center, characteristic scale and

major orientation of each component (Fig. 4 of [23]) before

computing the component level features. Based on these

characteristics, features that are both effective and computation-

ally efficient can be obtained. The details of these component level

features are discussed in Section Component Level Features.

For a component c, the barycenter o(c), major axis L(c), minor

axis l(c), and orientation h(c) are estimated using Camshift [52] by

taking the SWT image of component c as distribution map. The

center, characteristic scale and major orientation of component c

are defined as:

O(c)~o(c), ð1Þ

S(c)~L(c)zl(c), ð2Þ

H(c)~h(c): ð3Þ

These characteristics are invariant to translation, scale and

rotation to some degree (Fig. 4 of [23]). As we will explain in

Section Component Level Features, this is the key to the scale

and rotation invariance of the component level features.

We train a component level classifier using the component level

features. Random Forest [53] is chosen as the strong classifier. The

component level classifier is the first level of the two-level

classification scheme. The probability of component c, p1(c), is

the fraction of votes for the positive class (text) from the trees. The

components whose probabilities are lower than a threshold T1 are

eliminated and the remaining components are considered as

character candidates (Fig. 3 (f) of [23]). To ensure high recall, the

Figure 3. Typical images from the proposed dataset along with ground truth rectangles. Notice the red rectangles. They indicate the
texts within them are labeled as difficult (due to blur or occlusion).
doi:10.1371/journal.pone.0070173.g003
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threshold T1 is set very low, as high threshold may filter out true

text components.

Candidate linking. The character candidates are aggregated

into chains at this stage. This stage also serves as a filtering step

because the candidate characters cannot be linked into chains are

taken as components accidentally formed by noises or background

clutters, and thus are discarded.

Firstly, character candidates are linked into pairs. In [9],

whether two candidates can be linked into a pair is determined

based on the heights and widths of their bounding boxes.

However, bounding boxes are not rotation invariant, so we use

their characteristic scales instead. If two candidates have similar

stroke widths (ratio between the mean stroke widths is less than 2),

similar sizes (ratio between their characteristic scales does not

exceed 2.5), similar colors and are close enough (distance between

them is less than two times the sum of their characteristic scales),

they are labeled as a pair. The above parameters are optimized

using the training data of the ICDAR datasets [47–49], however,

this parameter setting turns out to be effective for all the datasets

used in this paper.

Unlike [9] and [11], which only consider horizontal or near-

horizontal linkings, the proposed algorithm allows linkings of

arbitrary directions. This endows the system with the ability of

detecting multi-oriented texts, not limited to horizontal texts.

Next, a greedy hierarchical agglomerative clustering [54]

method is applied to aggregate the pairs into candidate chains.

Initially, each pair constitutes a chain. Then the similarity between

each couple of chains that share at least one common candidate

and have similar orientations is computed; chains with the highest

similarity are merged together to form a new chain. The

orientation consistency so(C1,C2) and population consistency

sp(C1,C2) between two chains C1 and C2, which share at least

one common candidate, are defined as:

so(C1,C2)~
1{

c(C1,C2)

p=2
if c(C1,C2) ƒ C

0 otherwise

,

8<
: ð4Þ

and

sp(C1,C2)~
1{

DnC1
{nC2

D
DnC1

znC2
D

if c(C1,C2) ƒ C

0 otherwise

,

8><
>: ð5Þ

where c(C1,C2) is the included angle of C1 and C2 while nC1
and

nC2
are the candidate numbers of C1 and C2. C is used to judge

whether two chains have similar orientations and is empirically set

to p=8. The similarity between two chains C1 and C2 is defined as

the harmonic mean [55] of their orientation consistency and

population consistency:

s(C1,C2)~
2so(C1,C2)sp(C1,C2)

so(C1,C2)zsp(C1,C2)
: ð6Þ

According to this similarity definition, the chains with proximal

sizes and orientations are merged with priority. This merging

process proceeds until no chains can be merged.

At last, the character candidates not belonging to any chain are

discarded. The candidate chains after aggregation are shown in

Fig. 3 (g) of [23], in which each green line represents a chain.

Chain analysis. The candidate chains formed at the previous

stage might include false positives that are random combinations

of scattered background clutters (such as leaves and grasses) and

repeated patterns (such as bricks and windows). To eliminate these

false positives, a chain level classifier is trained using the chain level

features.

Random Forest [53] is again used. The chain level classifier is

the second level of the two-level classification scheme. The

probability of chain C, p2(C), is the fraction of votes for the

positive class (text) from the trees. The chains with probabilities

lower than a threshold T2 are eliminated.

To make better decisions, the total probability of each chain is

also calculated. For a chain C with n candidates ci,i~1,2, � � � ,n,

the total probability is defined as:

p(C)~(

Pn
i~1

p1(ci)

n
zp2(C))=2: ð7Þ

Figure 4. Ground truth generation. (a) Human annotation. The annotators are required to locate and bound each text line using a four-vertex
polygon (red dots and yellow lines). (b) Ground truth rectangle (green). The ground truth rectangle is generated automatically by fitting a minimum
area rectangle using the polygon.
doi:10.1371/journal.pone.0070173.g004

Rotation-Invariant Features for Text Detection

PLOS ONE | www.plosone.org 6 August 2013 | Volume 8 | Issue 8 | e70173



The chains whose total probabilities are lower than a threshold

T are discarded.

As texts of different orientations are considered, the remaining

chains may be in any direction. Therefore, a candidate might

belong to multiple chains. For example, in Fig. 3 (h) of [23] the

character ‘ P’ in the first line is linked in three chains (note the

green lines). In reality, however, a character is unlikely to belong to

multiple text lines. If several chains compete for the same

candidate, only the chain with the highest total probability will

survive (note the difference between Fig. 3 (h) and (i) in [23]).

The survived chains are outputted by the system as detected

texts (Fig. 3 (j) of [23]). For each detected text, its orientation is

calculated through linear least squares [54] using the centers of the

characters; its minimum area rectangle [56] is estimated using the

orientation and the bounding boxes of the characters. Word

partition, which divides text lines into separate words, is also

implemented in the proposed algorithm; but it is not shown, since

the general task of text detection does not require this step.

The whole algorithm described above is performed twice to

handle both bright text on dark background and dark text on

bright background, once along the gradient direction and once

along the inverse direction. The results of two passes are fused to

make final decisions. For clarity, only the results of one pass are

presented.

Feature Design
We design two collections of features, component level features

and chain level features, for classifying text and non-text, based on

the observation that it is the median degree of regularities of text

rather than particular color or shape that distinguish it from non-

text, which usually has either low degree (random clutters) or high

degree (repeated patterns) of regularities. At character level, the

regularities of text come from nearly constant width and

texturelessness of strokes, and piecewise smoothness of stroke

boundaries; at line level, the regularities of text are similar colors,

sizes, orientations and structures of characters, and nearly constant

spacing between consecutive characters.

Component level features. Inspired by Shape Context [57]

and Feature Context [58], we devise two templates (Fig. 5 (a) of

[23]) to capture the regularities of each component in coarse and

fine granularity, respectively. The radius and orientation of the

templates are not stationary, but adaptive to the component.

When computing descriptors for a component, each template is

placed at the center and rotated to align with the major orientation

of the component; the radius is set to the characteristic scale of the

component. Different cues from the sectors are encoded and

concatenated into histograms. In this paper, the following cues are

considered for each sector:

– Contour shape [59]. Contour shape is a histogram of

oriented gradients. The gradients are computed on the

component contour (Fig. 5 (c) of [23]).

– Edge shape [59]. Edge shape is also a histogram of oriented

gradients; but the gradients are computed at all the pixels in the

sector (Fig. 5 (d) of [23]).

– Occupation ratio. Occupation ratio is defined as the ratio

between the number of the foreground pixels of the component

within the sector and the sector area (Fig. 5 (e) of [23]).

To achieve rotation invariance, the gradient orientations are

rotated by an angle H(c), before computing contour shape and

edge shape. Then, the gradient orientations are normalized to the

range ½0,p�. Six orientation bins are used for computing

histograms of contour shape and edge shape, to cope with

different fonts and local deformations.

For each cue, the signals computed in all the sectors of all the

templates are concatenated to form a descriptor. We call these

descriptors scalable rotative descriptors, because they are com-

puted based on templates that are scalable and rotative. Scalable

rotative descriptors are similar to PHOG [60], as they both adopt

spatial pyramid representation [61]. Different from the templates

used for computing PHOG, our templates are circular and their

scale and orientation are adaptive to the component being

described. This is the key to the scale and rotation invariance of

these descriptors.

It is widely accepted in the community that alignment is very

important for recognition and classification tasks [62,63], as it can

moderate or even eliminate the negative effects caused by

transformations and thus lead to more robust measurement and

similarity. Our strategy for computing scalable rotative descriptors,

i.e. estimating center, characteristic scale and major orientation of

components and calculating features using adaptive templates, is

actually a kind of implicit alignment of components. This strategy

can be generalized to multi-oriented text recognition either.

The characteristic scale is crucial for the computation of

scalable rotative descriptors, because it directly determines the

scales of the templates. Too small templates may miss important

information of components while too large templates may

introduce noises and interferences from other components and

background. The value of characteristic scale calculated using

Eqn. 2 is a good trade-off in practice.

We have found through experiments (not shown in this paper)

that using finer templates can slightly improve the performance,

but will largely increase the computational burden.

In addition, another three types of rotation and scale invariant

features are considered:

– Axial ratio. Axial ratio is computed by dividing the major

axis of the component c with its minor axis: XR(c)~L(c)=l(c).

– Width variation. This feature is the same as defined in Sec.

Component Analysis.

– Density. The density of component c is defined as the ratio

between its pixel number q and characteristic area (here the

characteristic area is p:S2(c), not the area of the bounding

box): D(c)~q=(p:S2(c)).

Chain level features. Eleven types of chain level features,

which are not specific to rotation and scale, are designed to

discriminate text lines from false positives (mostly repeated

patterns and random clutters) that cannot be distinguished by

the component level features.

For a candidate chain C with n (n§2) candidates

ci,i~1,2, . . . ,n, the features are defined as below and summarized

in Tab. 1:

– Candidate count. This feature is adopted based on the

observation that false positives usually have very few (for

random clutters) or too many (for repeated patterns) candi-

dates.

– Average probability. The probabilities given by the

component level classifier are reliable. This feature is the

average of all the probabilities (p1(ci),i~1,2, . . . ,n) of the

candidates belonging to C.

– Average turning angle. Most texts present in linear form, so

for a text line the mean of the turning angles at the interior

characters (t(ci),i~2,3, . . . ,n{1) is very small; however, for
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random clutters this property will not hold. t(ci) is the included

angle between the line O(ci{1)O(ci) and O(ci)O(ciz1).

– Size variation. In most cases characters in a text line have

approximately equal sizes; but it’s not that case for random

clutters. The size of each component is measured by its

characteristic scale S(ci).

– Distance variation. Another property of text is that

characters in a text line are distributed uniformly, i.e. the

distances between consecutive characters have small deviation.

The distance between two consecutive components is the

distance of their centers O(ci{1) and O(ci).

– Average direction bias. For most text lines, the major

orientations of the characters are nearly perpendicular to the

major orientation of the text line. Direction bias of component

ci, b(ci), is the included angle between ci and the orientation of

the chain.

– Average axial ratio. Some repeated patterns (e.g. barriers)

that are not texts consist of long and thin components, this

feature can help differentiate them from true texts.

– Average density. On the contrary, other repeated patterns

(e.g. bricks) consist of short and fat components, this feature can

be used to eliminate this kind of false positives.

– Average width variation. False positives formed by foliage

usually have varying widths while texts have constant widths.

This feature is defined as the mean of all the width variation

values of the candidates.

– Average color self-similarity. Characters in a text line

usually have similar but not identical color distributions with

each other; yet in false positive chains, color self-similarities

[64] of the candidates are either too high (repeated patterns) or

too low (random clutters). The color similarity cs(x,y) is

defined as the cosine similarity of the color histograms of the

two candidates x and y.

– Average structure self-similarity. Likewise, characters in

a text line have similar structure with each other while false

positives usually have almost the same structure (repeated

patterns) or diverse structures (random clutters). The structure

similarity ss(x,y) is defined as the cosine similarity of the edge

shape descriptors of the two components x and y.

Dataset and Evaluation Protocol

In this section, we introduce a large dataset for evaluating text

detection algorithms, which contains 500 natural images with real-

world complexity. In addition, a new evaluation methodology

which is suitable for benchmarking algorithms designed for texts of

arbitrary directions is proposed.

Dataset
Although widely used in the community, the ICDAR datasets

[47–49] have two major drawbacks. First, most of the text lines (or

single characters) in the ICDAR datasets are horizontal. In real

scenarios, however, text may appear in any orientation. The

second drawback is that all the text lines or characters in this

dataset are in English. Therefore it is unable to use these datasets

to assess detection systems designed for multilingual scripts.

These two shortcomings have been pointed out in [13,14]. Two

separate datasets are therefore created: one contains non-

Figure 5. Calculation of overlap ratio between detection rectangle and ground truth rectangle.
doi:10.1371/journal.pone.0070173.g005
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horizontal text lines [14] and the other one is a multilingual

dataset [13]. In this work, we generate a new multilingual text

image dataset with horizontal as well as slant and skewed texts. We

name this dataset MSRA Text Detection 500 Database (MSRA-

TD500), because it includes 500 natural images in total. These

images are taken from indoor (office and mall) and outdoor (street)

scenes using a packet camera. The indoor images are mainly signs,

doorplates and caution plates while the outdoor images are mostly

guide boards and billboards in complex background. The

resolutions of the images vary from 12966864 to 192061280.

This dataset is available at http://www.loni.ucla.edu/,ztu/

publication/MSRA-TD500.zip.

MSRA-TD500 is very challenging because of both the diversity

of the texts and the complexity of the backgrounds in the images.

The texts may be in different languages (Chinese, English and

mixture of both), fonts, sizes, colors and orientations. The

backgrounds may contain vegetation (e.g. trees and grasses) and

repeated patterns (e.g. windows and bricks), which are not so

distinguishable from text.

Some typical images from this dataset are shown in Fig. 3. It is

worth mentioning that even though the purpose of this dataset is to

evaluate text detection algorithms designed for multi-oriented

texts, horizontal and near-horizontal texts still dominate the

dataset (about 2/3) because these are the most common cases in

practice.

The dataset is divided into two parts: training set and test set.

The training set contains 300 images randomly selected from the

original dataset and the rest 200 images constitute the test set. All

the images in this dataset are fully annotated. The basic unit in this

dataset is text line rather than word, which is used in the ICDAR

dataset, because it is hard to partition Chinese text lines into

individual words based on their spacings; even for English text

lines, it is non-trivial to perform word partition without high level

information. The procedure of ground truth generation is shown

in Fig. 4.

Evaluation Protocol
Before presenting our novel evaluation protocol for text

detection, we first introduce the evaluation method used in the

ICDAR competitions [47,48] as background. Under the ICDAR

evaluation protocol, the performance of an algorithm is measured

by F-measure, which is the harmonic mean of precision and recall.

Different from the standard information retrieval measures of

precision and recall, more flexible definitions are adopted in the

ICDAR competitions [47,48]. The match m between two

rectangles is defined as the ratio of the area of intersection and

that of the minimum bounding rectangle containing both

rectangles. The set of rectangles estimated by each algorithm are

called estimates while the set of ground truth rectangles provided in

the ICDAR dataset are called targets. For each rectangle, the match

with the largest value is found. Hence, the best match for a

rectangle r in a set of rectangles R is:

m(r; R)~ maxfm(r,r’)Dr’[Rg: ð8Þ

Then, the definitions of precision and recall are:

precision~

P
re[E m(re; T)

DED
, ð9Þ

recall~

P
rt[T m(rt; E)

DT D
, ð10Þ

Table 1. Chain level features.

Feature Definition

Candidate count CC(C)~n

Average probability AP(C)~
Pn

i~1 p1(ci)=n

Average turning angle

ATA(C)~

Pn{1
i~2 t(ci)

n{2
if n w2

0 otherwise

8<
:

Size variation SV (C)~ss(C)=ms(C)

ms(C)~
Pn

i~1 S(ci)=n

ss(C)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i~1
(S(ci ){ms (C))2

n

r

Distance variation DV (C)~sd (C)=md (C)

md (C)~
Pn

i~2 d(ci{1,ci)=(n{1)

sd (C)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i~2
(d(ci{1 ,ci ){md (C))2

n{1

r

Average direction bias ADB(C)~
Pn

i~1 b(ci)=n

Average axial ratio AAR(C)~
Pn

i~1 XR(ci)=n

Average density AD(C)~
Pn

i~1 D(ci)=n

Average width variation AWV (C)~
Pn

i~1 WV (ci)=n

Average color self-similarity ACS(C)~
Pn

i~1 CS(ci)=n

CS(ci)~
P

k=i cs(ck ,ci)=(n{1)

Average structure self-similarity ASS(C)~
Pn

i~1 SS(ci)=n

SS(ci)~
P

k=i ss(ck ,ci)=(n{1)

doi:10.1371/journal.pone.0070173.t001
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where E and T are the sets of ground truth rectangles and

estimated rectangles, respectively. The F-measure, which is a

single measure of algorithm performance, is a combination of the

two above measures. The relative weights of precision and recall

are controlled by a parameter a, which is set to 0.5 to give equal

weights to precision and recall:

f ~
1

a

precision
z

1{a

recall

: ð11Þ

Minimum area rectangles [56] are used in our protocol because

they (green rectangle in Fig. 4 (b)) are much tighter and more

accurate than axis-aligned rectangles (red rectangle in Fig. 4 (b)).

However, a problem imposed by using minimum area rectangles is

that it is difficult to judge whether a text line is correctly detected.

As shown in Fig. 5, it is not trivial to directly compute the overlap

ratio between the estimated rectangle D and the ground truth

rectangle G. Instead, we calculate the overlap ratio using axis-

aligned rectangles G’ and D’, which are obtained by rotating G
and D round their centers CG and CD, respectively. The overlap

ratio between G and D is defined as:

m(G,D)~
A(G’\D’)
A(G’|D’)

, ð12Þ

where A(G’\D’) and A(G’|D’) denote the areas of the

intersection and union of G’ and D’. Obviously, the overlap ratio

computed in this way is not accurate. Besides, the ground truth

rectangles annotated are not accurate either, especially when the

texts are skewed. Because of the imprecision of both ground truth

and computed overlap ratio, the definitions of precision and recall

used in the ICDAR protocol do not apply. Alternatively, we return

to their original definitions.

Similar to the evaluation method for the PASCAL object

detection task [65], in our protocol detections are considered true

or false positives based on the overlap ratio between the estimated

minimum area rectangles and the ground truth rectangles. If the

included angle of the estimated rectangle and the ground truth

rectangle is less than p=8 and their overlap ratio exceeds 0.5, the

estimated rectangle is considered a correct detection. Multiple

detections of the same text line are taken as false positives. The

definitions of precision and recall are:

precision~
DTPD
DED

, ð13Þ

recall~
DTPD
DT D

, ð14Þ

where TP is the set of true positive detections while E and T are

the sets of estimated rectangles and ground truth rectangles.

Moreover, to accommodate difficult texts (too small, occluded,

blurry, or truncated) that are hard for text detection algorithms,

we introduce an elastic mechanism which can tolerate detection

misses of difficult texts. The basic criterion of this elastic

mechanism is: if the difficult texts are detected by an algorithm, it counts;

otherwise, the algorithm will not be punished. Accordingly, the

annotations of the images in the proposed dataset should be

changed. Each text line considered to be difficult is given an

additional ‘‘ difficult’’ label (Fig. 3). Thus the ground truth

rectangles can be categorized into two sub sets: ordinary sub set To

and difficult sub set Td ; ditto, the true positives TP can also be

categorized into ordinary sub set TPo, which is the set of

rectangles matched with To, and ordinary sub set TPd , which is

the set of rectangles matched with Td . After incorporating the

elastic mechanism, the definitions of precision and recall become:

precision~
DTPoDzDTPd D

DED
~

DTPD
DED

, ð15Þ

recall~
DTPoDzDTPd D
DToDzDTPd D

~
DTPD

DToDzDTPd D
: ð16Þ

Experiments and Discussions

We have implemented the proposed algorithm in C++ and have

evaluated it on a common server (2.53 GHz CPU, 48G RAM and

Windows 64-bit OS). 200 trees are used for training the

component level classifier and 100 trees for the chain level

classifier. The threshold values are: T1~0:1, T2~0:3 and T~0:4.

We have found empirically that the text detectors under this

parameter setting work well for all the datasets used in this paper.

Results on Horizontal Texts
In order to compare the proposed algorithm with existing

methods designed for horizontal texts, we have evaluated the

algorithm on the standard dataset used in the ICDAR 2003

Rubust Reading Competition [47] and the ICDAR 2005 Text

Locating Competition [48]. This dataset contains 509 fully

annotated text images. 258 images from the dataset are used for

training and 251 for testing. We train a text detector (denoted by

TD-ICDAR) on the training images.

Some detected texts of the proposed algorithm are presented in

Fig. 7 of [23]. Our algorithm can handle several types of

challenges, e.g. variations in text font, color and size, as well as

repeated patterns and background clutters. The quantitative

comparison of different methods evaluated on the ICDAR test

set is shown in Tab. 2 of [23]. As can be seen, our method

compares favorably with the state-of-the-art when dealing with

horizontal texts.

It is noted that existing algorithms seem to converge in

performance (with F-measure around 0.66) on the ICDAR

dataset. This might be due to three reasons: (1) the ICDAR

evaluation method is different from the conventional methods for

object detection (e.g. the PASCAL evaluation method [65]). The

ICDAR evaluation method actually requires pixel-level accuracy

(see Eqn. 9 and Eqn. 10), which is rigorous for detection

algorithms, considering that the ground truth is given in the form

of rough rectangles. (2) The ICDAR evaluation method requires

word partition, that is, dividing text lines into individual words.

This limits the scores of text detection algorithms either; because it

is non-trivial to perform word partition without high level

information. Moreover, the definitions of ‘‘word’’ are not

consistent among different images. (3) Most algorithms assume

that in the image a word or text line consists of at least two

characters. However, in the ICDAR dataset some images contain

single characters. In these images, most existing algorithms will fail

to detect the single characters.

The ICDAR 2011 Robust Reading Competition Challenge 2

[49] was held to track the recent progress in the filed of scene text

detection and recognition. Due to the problems with the dataset
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used in the previous ICDAR competitions (for example, imprecise

bounding boxes and inconsistent definitions of ‘‘word’’), the

dataset in the ICDAR 2011 competition is extended and relabeled

[49]. Moreover, the evaluation method proposed by Wolf et al.

[66] is adopted as the standard for performance evaluation, to

replace the previous evaluation protocol, which is unable to handle

the cases of one-to-many and many-to-many matches and thus

consistently underestimates the capability of text detection

algorithms.

To enable fair comparison, we have also trained a text detector

(denoted by TD-ICDAR2011) using the training set of the ICDAR

2011 competition dataset, performed text detection on the test

images and measured the performance using the method of Wolf

et al. [66]. Fig. 6 illustrates several detection examples of our

method on this dataset. The quantitative results of different text

detection methods on the ICDAR 2011 dataset are shown in

Tab. 2. The proposed algorithm achieves the second highest F-

measure on this dataset.

Results on Multi-oriented Texts
We have also trained a text detector (denoted by TD-MSRA) on

mixture of the training set of the proposed dataset and that of

ICDAR and compared it to the systems of Epshtein et al. [9] and

Chen et al. [7]. The executables of these system are obtained from

the authors. Detection examples of the proposed algorithm on this

dataset are shown in Fig. 8 (a) of [23]. The proposed algorithm is

able to detect texts of large variation in natural scenes, e.g., skewed

and curved text. The images in the last row of Fig. 8 (a) of [23] are

some typical cases where our algorithm failed to detect the texts or

gave false positives. The misses (pink rectangles) are mainly due to

strong highlights, blur and low resolution; the false positives (red

rectangles) are usually caused by elements that are very alike text,

such as windows, trees, and signs.

The performances are measured using the proposed evaluation

protocol and shown in Tab. 3 of [23]. Compared with the

competing algorithms, the proposed method achieves significantly

enhanced performance when detecting texts of different orienta-

tions. The performances of other competing algorithms are not

presented because of unavailability of their codes/executables.

The average processing time of our algorithm on this dataset is

7.2 s and that of Epshtein et al. is 6 s. Our algorithm is a bit slower,

but with the advantage of being able to detect multi-oriented texts.

In [14], a dataset called Oriented Scene Text Database

(OSTD), which contains texts of various orientations, is released.

This dataset includes 89 images of logos, indoor scenes and street

views. We perform text detection on all the images in this dataset.

The quantitative results are presented in Tab. 4 of [23]. Our

method outperforms [14] on the Oriented Scene Text Database

(OSTD), with an improvement of 0.17 in F-measure.

From Tab. 3 and 4 of [23], we observe that even TD-ICDAR

(only trained on horizontal texts) achieves much better perfor-

mance than other methods on non-horizontal texts. It demon-

strates the effectiveness of the proposed rotation-invariant features.

Results on Texts of Different Languages
To further verify the ability of the proposed algorithm to detect

texts of different languages, we have collected a multilingual text

image database (Will be available at http://www.loni.ucla.edu/

z̃tu/publication/) from the Internet. The database contains 94

natural images with texts of various languages, including both

oriental and western languages, such as Japanese, Korean, Arabic,

Greek, and Russian. We apply TD-MSRA to all the images in this

database. Fig. 7 shows some detected texts in images from this

database. The algorithms of Epshtein et al. [9] and Chen et al. [7]

are adopted as baselines. The quantitative results of these

algorithms are presented in Tab. 3. The proposed algorithm and

the method of Epshtein et al. [9] both give excellent performance

on this benchmark. Though TD-MSRA is only trained on

Chinese and English texts, it can effortlessly generalize to texts

in different languages. This indicates that the proposed algorithm

is quite general and it can serve as a multilingual text detector.

Special Consideration on Single Characters
Most existing algorithms cannot handle single characters, since

they assume that in the image a word or text line consists of at least

two characters. To overcome this limitation, we have modified the

proposed algorithm to handle single characters. In the candidate

linking stage, we no longer simply discard all single character

candidates but instead retain the character candidates with high

probabilities (p1(c)w0:8), even if they do not belong to any chain.

After this modification, the proposed algorithm is able to detect

obvious single characters in natural images. Fig. 8 depicts some

detected single characters by the proposed algorithm.

To assess the effectiveness of the proposed strategy for single

character detection, we have conducted an additional experiment.

The algorithm is applied to the images containing single characters

from the ICDAR dataset [47,48], with and without single

character detection. Without single character detection, the

algorithm achieves precision = 0.56, recall = 0.28 and F-mea-

sure = 0.36; with single character detection, the algorithm achieves

precision = 0.62, recall = 0.40 and F-measure = 0.47. The perfor-

mance is significantly improved after enabling single character

detection.

End-to-End Scene Text Recognition
As can be seen from previous experiments, the proposed text

detection algorithm works very well under fairly broad realistic

conditions. Thus, one could combine it with any of the existing

Optical Character Recognition (OCR) engines to build an end-to-

end recognition system for multi-oriented text. A likely pipeline of

such a system is illustrated in Fig. 9: We first apply our text

detection algorithm to the original image. If the detected text

regions have significant deformation, we then rectify them by the

low-rank structure based rectification technique TILT [67]. Next,

we binarize the text regions with adaptive thresholding and feed

the binary images into an off-the-shelf OCR software [68] to

produce the final recognition result.

Table 2. Performances of different text detection methods
evaluated on the ICDAR 2011 dataset [49].

Algorithm Precision Recall F-measure

TD-ICDAR2011 0.7215 0.5952 0.6523

Kim et al. [49] 0.8298 0.6247 0.7128

Yi et al. [49] 0.6722 0.5809 0.6232

Yang et al. [49] 0.6697 0.5768 0.6198

Neumann et al. [49] 0.6893 0.5254 0.5963

Shao et al. [49] 0.6352 0.5352 0.5809

Guyomard et al. [49] 0.6297 0.5007 0.5578

Lee et al. [49] 0.5967 0.4457 0.5103

Sun et al. [49] 0.3501 0.3832 0.3659

Hanif et al. [49] 0.5505 0.2596 0.3419

doi:10.1371/journal.pone.0070173.t002
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Since there is no standard benchmark for multi-oriented English

text recognition (The NEOCR dataset [69] includes images with

multi-oriented texts in natural scenes. However, the texts in this

database are in different languages, such as Hungarian, Russian,

Turkish and Czech, which are not supported by our end-to-end

recognition system currently), we collect a dataset (Will be

available at http://www.loni.ucla.edu/,ztu/publication/) of 80

natural images with slant and skewed English texts and Arabic

numbers, to evaluate the proposed end-to-end text recognition

system. Majority of the images are from the MSRA-TD500

database and the rest images are from the Internet. Fig. 10 shows

several typical images from this database.

For comparison, we have tested the end-to-end text recognition

system of Epshtein et al. [9] on this dataset. To demonstrate how

text detection can help effectively extract text information from

natural images, we have also performed character recognition

directly on the original images (denoted by Direct OCR). The

quantitative performances are computed at character level and

shown in Tab. 4. As can be seen, applying OCR directly to natural

images gives very poor performance, because of the variations of

texts and background clutters. In contrast, both our scene text

recognition system and that of Epshtein et al. [9] achieve much

higher performance. This suggests that text detection is a crucial

step when extracting text information from natural images.

We have also examined why in this experiment the improve-

ment of our system over that of Epshtein’s is not so dramatic as in

previous pure detection experiments. The main reason is that

although our system can detect more texts, some of the fonts in

these natural images cannot be handled well by the current OCR

system. This suggests that to build a truly high-performance text

recognition system for texts in natural images, there is still

significant challenge for further improvement in the text recog-

nition component, especially in recognizing texts with more

diverse fonts, sizes, and orientations. From our observation and

preliminary study, some of the discriminative features that we have

extracted for detection purpose can be very useful for subsequent

text recognition as well. We leave a more careful study of a unified

text detection and recognition system for future work.

Conclusions
We have presented a text detection system that is capable of

detecting texts of varying directions in complex natural scenes.

Our system compares favorably with the state-of-the-art algo-

rithms when handling horizontal texts and achieves significantly

Figure 6. Detected texts in images from the ICDAR 2011 test set.
doi:10.1371/journal.pone.0070173.g006

Table 3. Performances of different text detection methods
evaluated on texts of different languages.

Algorithm Precision Recall F-measure

TD-MSRA 0.73 0.64 0.66

Epshtein et al. [9] 0.58 0.65 0.59

Chen et al. [7] 0.06 0.08 0.07

doi:10.1371/journal.pone.0070173.t003

Table 4. End-to-end scene text recognition performances.

System Precision Recall F-measure

Ours 0.58 0.51 0.53

Epshtein et al. [9] 0.57 0.49 0.51

Direct OCR 0.13 0.10 0.11

doi:10.1371/journal.pone.0070173.t004
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Figure 7. Detected texts in various languages. The images are collected from the Internet.
doi:10.1371/journal.pone.0070173.g007

Figure 8. Detected single characters in images. Images are from the ICDAR dataset [47,48].
doi:10.1371/journal.pone.0070173.g008
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enhanced performance on multi-oriented texts. Furthermore, we

have proposed a multilingual database with horizontal as well as

non-horizontal texts and specifically designed an evaluation

protocol for benchmarking algorithms for multi-oriented texts.

The component level features are actually character descriptors

that can distinguish among different characters, thus they can be

adopted to recognize characters. We plan to make use of this

property and develop a unified framework for text detection and

character recognition in the future.
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