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Abstract

Shape similarity and shape retrieval are very importanicgn computer vision. The recent
progress in this domain has been mostly driven by designmartsshape descriptors for providing
better similarity measure between pairs of shapes. In thiep we provide a new perspective to this
problem by considering the existing shapes as a group, adg fheir similarity measures to the query
shape in a graph structure. Our method is general and canilberbtop of any existing shape similarity
measures. For a given similarity measuyge a new similaritys is learned through graph transduction.
Intuitively, for a given query shapg the similaritys(q, p) will be high if neighbors ofp are also similar
to ¢. However, even ifs(q, p) is very high, but the neighbors gfare not similar tag, thens(g, p) will
be low. The new similarity is learned iteratively so that treéghbors of a given shape influence its final
similarity to the query. The basic idea here is related toeRamk ranking, which forms a foundation of
google web search. The presented experimental resultsrdgrate that the proposed approach yields
significant improvements over the state-of-art shape majchlgorithms. We obtained a retrieval rate
of 91% on the MPEG-7 data set, which is the highest ever reportethanliterature. Moreover, the
learned similarity by the proposed method also achievegtbeising improvements on both shape

classification and shape clustering.

Index Terms

Shape matching, shape retrieval, shape classificatiopestiastering, graph transduction

I. INTRODUCTION

Shape matching/retrieval is a very critical problem in catep vision. There are many different
kinds of shape matching methods, and the progress in inogeése matching rate has been
substantial in recent years. However, all of these appexeahe focused on the nature of shape
similarity. It seems to be an obvious statement that the rmwndar two shapes are, the smaller
is their difference, which is measured by some distancetimmcYet, this statement ignores the
fact that some differences are relevant while other diffees are irrelevant for shape similarity.
It is not yet clear how the biological vision systems perfashmpe matching; it is clear that
shape matching involves the high-level understanding apshb. In particular, shapes in the same
class can differ significantly because of distortion or mignd transformation. In other words,
even if two shapes belong to the same class, the distanceed&etthem may be very large if

the distance measure cannot capture the intrinsic promértile shape. It appears to us that
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all published shape distance measures [1]-[11] are unabéeldress this issue. For example,
based on the inner distance shape context (IDSC) [3], theesimapig. 1(a) is more similar to

(b) than to (c), but it is obvious that shape (a) and (c) bellanthe same class. This incorrect
result is due to the fact that the inner distance is unawaethie missing tail and one front leg

are irrelevant for this shape similarity judgment. On thieeothand, much smaller shape details
like the dog’s ear and the shape of the head are of high redevhaere. No matter how good a
shape matching algorithm is, the problem of relevant arelewant shape differences must be
addressed if we want to obtain human-like performance. fidgsires having a model to capture

the essence of a shape class instead of viewing each shapehsfgoints or a parameterized

™ Py XX

horse dog horze

(a) (b} {c)

function.

Fig. 1. Existing shape similarity methods incorrectly rank shape (b) as siorilar to (a) than (c).
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Fig. 2. A key idea of the proposed distance learning is to replace the drglage distance between (a) and (e) with a

geodesic path in the manifold of know shapes, which is the path (a)-(e)sifidgire.

In this paper, we propose to use a graph-based transduetiveig algorithm to tackle this
problem, and it has the following properties: (1) Insteadamusing on computing the distance
(similarity) for a pair of shapes, we take advantage of thaifold formed by the existing shapes.

(2) However, we do not explicitly learn the manifold nor camgthe geodesics [12], which are
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time consuming to calculate. A better metric is learned Hiectively propagating the similarity

measures to the query shape and between the existing shapaght graph transduction. (3)
Unlike the label propagation [13] approach, which is seopesvised, we treat shape retrieval
as an unsupervised problem and do not require knowing arpgesiaels. (4) We can build our
algorithm on top of any existing shape matching algorithrd ansignificant gain in retrieval

rates can be observed on well-known shape datasets.

Given a database of shapes, a query shape, and a shapedfstacton, which does not need
to be a metric, we learn a new distance function that is espkby shortest paths on the manifold
formed by the know shapes and the query shape. We can do thisuivexplicitly learning this
manifold. As we will demonstrate in our experimental resulbe new learned distance function
is able to incorporate the knowledge of relevant and iraaléshape differences. It is learned
in an unsupervised setting in the context of known shapes.ekample, if the database of
known shapes contains shapes (a)-(e) in Fig. 2, then theewwdd distance function will rank
correctly the shape in Fig. 1(a) as more similar to (c) thaifbjo The reason is that the new
distance function will replace the original distance (a)¢d in Fig.1 with a distance induced
by the shortest path between in (a) and (e) in Fig.2.

In more general terms, even if the difference between shiaped shap&” is large, but there
is a shapeB which has small difference to both of them, we still claimttehapeA and shape
C are similar to each other. This situation is possible for thsbgpe distances, since they do not
obey the triangle inequality, i.e., it is not true thAtA, C') < d(A, B) + d(B, C) for all shapes
A, B, C [14]. We propose a learning method to modify the originalpghdistancel( A, C). If we
have the situation that(A, C') > d(A, B)+d(B, C) for some shaped, B, C, then the proposed
method is able to learn a new distanteA, C') such that'(A, C) < d(A, B)+d(B, C). Further,
if there is a path in the distance space such that,C) > d(A, B;) + ... + d(By, C), then
our method learns a new/ (A, C') such thatd' (A,C) < d(A, By) + ...+ d(Bg, C). Since this
path represents a minimal distortion morphing of shap& shapeC, we are able to ignore
irrelevant shape differences, and consequently, we carsfon relevant shape differences with
the new distancd’.

Our experimental results clearly demonstrate that the qeeg method can improve the
retrieval results of the existing shape matching methods.otained the retrieval rate 1%
on part B of the MPEG-7 Core Experiment CE-Shape-1 data set \M&¢h is the highest ever
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Fig. 3. The first column shows the query shape. The remaining 10 oslwghow the most similar shapes retrieved from
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the MPEG-7 data set. The first row shows the results of IDSC [3]. Thergerow shows the results of the proposed learned

distance.

bull’'s eye score reported in the literature. As the input tio method we used the IDSC, which
has the retrieval rate of 85.40% on the MPEG-7 data set [8]. Fillustrates the benefits of the
proposed distance learning method. The first row shows theyghape followed by the first 10
shapes retrieved using IDSC only. Only two flies are retdeamong the first 10 shapes. The
results of the learned distance for the same query are shotreisecond row. All of the top 10
retrieval results are correct. The proposed method wastabkearn that the shape differences
in the number of fly legs and their shapes are irrelevant. Airpineary version of this paper
appeared as [16]. The remainder of this paper is organizédllag/s. In Section II, we briefly
review some well-known shape matching methods and the sep&rvised learning algorithms.
Section 1l describes the proposed approach to learningesddastances. Section IV relates the
proposed approach to the class of machine learning appmeaddlled label propagation. The
problem of the construction of the affinity matrix is addesbsn Section V. Besides, a novel
shape clustering algorithm is introduced in Section VI.teecVIl gives the experimental results
on several famous shape data sets to show the advantage mbfiesed approach. Conclusion

and discussion are given in Section VIII.

Il. RELATED WORK

The semi-supervised learning problem has attracted aeasirg amount of interest recently,
and several novel approaches have been proposed. Thengxagtproaches could be divided
into several types, multiview learning [17], generativedalo[18], Transductive Support Vector
Machine (TSVM) [19]. Recently there have been some promigjreph based transductive
learning approaches proposed, such as label propagatijn Ghussian fields and harmonic
functions (GFHF) [20], local and global consistency (LGC]}]j2and the Linear Neighborhood
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Propagation (LNP) [22]. Zhou et al. [23] modified the LGC fhetinformation retrieval. The
semi-supervised learning problem is related to manifoédrieng approaches, e.g., [24].

The proposed method is inspired by the label propagatios.réason we choose the frame-
work of label propagation is it allows the clamping of labe®énce the query shape is the only
labeled shape in the retrieval process, the label progagatlows us to enforce its label during
each iteration, which naturally fits in the framework of shaptrieval. Usually, GFHF is used
instead of label propagation, as both methods can achievedame results [13]. However, in
the shape retrieval, we can use only the label propagat@nrdason is explained in detail in
Section IV.

Since a large number of shape similarity methods have bespoped in the literature, we
focus our attention on methods that reported retrievalli®sn the MPEG-7 shape data set (part
B of the MPEG-7 Core Experiment CE-Shape-1) [15]. This allowsta clearly demonstrate
the retrieval rate improvements obtained by the proposetiade Belongie et al. [1] introduced
a novel 2D histograms representation of shapes called SBaptexts (SC). Ling and Jacobs
[3] modified the Shape Context by considering the geodeskartie between contour points
instead of the Euclidean distance, which significantly iowed the retrieval and classification
of articulated shapes. Latecki and [Zahknper [4] used visual parts represented by simplified
polygons of contours for shape matching. Tu and Yuille [2inbaned regions and contours
together within a generative model for shape matching. tireoto avoid problems associated
with purely global or local methods, Felzenszwalb and Sctevfy] described a dynamic
and hierarchical curve matching method. Other hierarthivethods include the hierarchical
graphical models in [25] and hierarchical procrustes match6]. Alajlan et al. proposed a
mutiscale representation of triangle areas for shape nmatctwvhich also included partial and
global shape information [26]. Daliri and Torre defined a bght descriptor based on Shape
Contexts, then used edit distance for final matching in ordesvercome the difficulty caused
by deformation and occlusions [27]. The methods above aliged on designing nice shape
descriptors or representation. Although the researcharted to integrate the global and partial
shape similarity recently and achieved some progress, niprovement was not obvious as
shown in Table | of Section VII (In this table, we summarizéldtiae reported retrieval results
on MPEG-7 database, and the retrieval rates of the recetitatibns are all around 85%). There

are two main reasons that limit the progress in shape ratrig¢y The case for large deformation
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and occlusions still can not be solved well. 2) The existitgpathms can not distinguish the
relevant and irrelevant shape differences, which has beeteal out by us in Section I.

There is a significant body of work on distance learning [28hg et al. [29] propose
estimating the matriX}” of a Mahalanobis distance by solving a convex optimizaticobfem.
Bar-Hillel et al. [30] also use a weight matri¥ to estimate the distance by relevant component
analysis (RCA). Athitsos et al. [31] proposed a method calledsBdap to estimate a distance
that approximates a certain distance. Hertz's work [32]susdaBoost to estimate a distance
function in a product space, whereas the weak classifiemmizes an error in the original feature
space. All these methods’ focus is a selection of suitaldtadce from a given set of distance
measures. Our method aims at learning new distance to iraptto retrieval and clustering

performance.

[Il. LEARNING NEW DISTANCE MEASURES

We first describe the classical setting of similarity refale It applies to many retrieval
scenarios like key word, document, image, and shape ratri@iven is a set of objectX =
{z1,...,2,} and a similarity function simX x X — R that assigns a similarity value (a
positive integer) to each pair of objects.

We assume that, is a query object (e.g., a query shapg),,...,z,} is a set of known
database objects (or a training set). Then by sorting theesalm (z,, z;) in decreasing order
for « = 2,...,n we obtain a ranking of database objects according to thmilagity to the
query, i.e., the most similar database object has the higlaége and is listed first. Sometimes a
distance measure is used in place of the similarity measuvehich case the ranking is obtained
by sorting the database objects in the increasing orderthe object with the smallest value is
listed first. Usually, the firstV < n objects are returned as the most similar to the query

As discussed above, the problem is that the similarity fonctim is not perfect so that
for many pairs of objects it returns wrong results, althoufgimay return correct scores for
most pairs. We introduce now a method to learn a new sinmyléuinction sim that drastically
improves the retrieval results eim for the given queryz;.

Let w, ; = sim(x;,x;), for 4,5 = 1,...,n, be a similarity matrix, which is also called an

affinity matrix. We also define a x n probabilistic transition matrix’ as a row-wise normalized
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where P;; is the probability of transit from nodéeto nodej.

b = (1)

We seek a new similarity measuse Sinces only needs to be defined as similarity of other
elements to query;, we denotef(x;) = s(xy, ;) for i = 1,...,n. We formulate now a key

equation of the proposed approach. We seek a fungtitimt satisfies
fla) => " Py f(x) 2)
j=1

Thus, the similarity ofz; to the queryx;, expressed ag(x;), is a weighted average over all
other database objects, where the weights sum to one andapertional to the similarity of
the other database objects #a In other words we seek a functioh: X — [0, 1] such that
f(x;) is a weighted average of(x;), where the weights are based on the original similarities
w; ; = sim(x;, ;). Our intuition is that the new similarity (z;) = s(z1, z;) will be large iff all
points z; that are very similar ta:; (large sim(z;,z;)) are also very similar to query, (large
stm(xy,x;)).

The recursive equation (2) is closely related to PageRanktated in [33], a slightly simplified
version of simple ranking? of a web page: in PageRank is defined as

R(u) =Y —R(), (3)

’UGBu v

where B, is a set of pages that point tg N, is the number of links from page andc is a
normalization factor.

Consequently, our equation (2) differers from PageRank emu#8) by the normalization
matrix, which is defined in Eq. (1) in our case, and is equattdor PageRank. The PageRank
recursive equation takes a simple average over neighbasst(af pages that point to a given
web page), while we take a weighted average over the origipait similarities. Therefore, our
eguation admits recursive solution analog to the solutibthe PageRank equation. Before we
present it, we point out one more relation to recently prepdsbel propagation [13].

Label propagation belongs to a set of semi-supervised ilgamethods, where it is usually
assumed that class labels are known for a small set of datdispdi/e have an extreme case of

semi-supervised learning, since we only assume that tiss dael of the query is known. Thus,
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we have only one class that contains only one labeled elebeng the query:;. We define a
sequence of labeling function$ : X — [0, 1] with fy(z1) =1 and fy(z;) =0 fori=2,... n,
where f,(z;) can be interpreted as probability that painthas the class label of the query.

We obtain the solution to Eq. (2) by the following recursivegqedure:
fea1(zs) Z - filx) (4)

fori =2, ...,n and we set

fera(zy) = 1. %)

We define a sequence of new learned similarity functionsicéstl tox; as
simy(z1, ;) = fi(x;). (6)

Thus, we interpretf; as a set of normalized similarity values to the quety Observe that
simy(xy, ;) = wy; = sim(1, ;).

We iterate steps (4) and (5) until the step= T for which the change is below a small
threshold. We then rank the similarity to the querywith s = simy. Our experimental results
in Section VII demonstrate that the replacement of the palgsimilarity measuresim with
simy results in a significant increase in the retrieval rate.

The steps (4) and (5) are used in label propagation, whickssribed in Section IV. However,
our goal and our setting are different. Although label pgaieon is an instance of semi-
supervised learning, we stress that we remain in the ungisperlearning setting. In particular,
we deal with the case of only one known class, which is thesctdsthe query object. This
means, in particular, that label propagation has a trivaéit®n in our casdim, .., f;(z;) =1
forall: =1,...,n, i.e., all objects will be assigned the class label of thergshape. Since
our goal is ranking of the database objects according to #milarity to the query, we stop the
computation after a suitable number of iteratigns 7. As is the usual practice with iterative
processes that are guaranteed to converge, the computatiatied if the differencd f,..; — fi||
becomes very slow, see Section VIl for details.

If the database of known objects is large, the computatiah &il n» objects may become
impractical. Therefore, in practice, we construct the matr using only the first\ < n most

similar objects to the query; sorted according to the original distance functiam.
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V. RELATION TO LABEL PROPAGATION

Label propagation is formulated as a form of propagation ogramh, where node’s label
propagates to neighboring nodes according to their prayirnm our approach we only have one
labeled node, which is the query shape. The key idea is th#&bel propagates “faster” along a
geodesic path on the manifold spanned by the set of knowreshi#jan by direct connections.
While following a geodesic path, the obtained new similanitgasure learns to ignore irrelevant
shape differences. Therefore, when learning is complets, able to focus on relevant shape
differences. We review now the key steps of label propagadiad relate them to the proposed
method introduced in Section IIl.

Let {(x1,y1)... (2, y)} be the labeled data, € {1...C}, and{z;;1 ... x4} the unlabeled
data, usually <« u. Letn =1+ u. We will often useL andU to denote labeled and unlabeled
data respectively. The Label propagation supposes the emofhclasses” is known, and all
classes are present in the labeled data [13]. A graph isectesdtere the nodes are all the data
points, the edge between nodeg represents their similarity; ;. Larger edge weights allow
labels to travel through more easily. Also definé xa C' label matrixYz, whoseith row is an
indicator vector fory;, i € L: Y;. = §(y;.). The label propagation computes soft labgl$or
nodes, wher¢g is an x C' matrix whose rows can be interpreted as the probabilityibigions
over labels. The initialization of is not important. The label propagation algorithm is asoie8:

1) Initially, set f(x;) =y; for i =1,...,1 and f(x;) arbitrarily (e.g., 0) forz; € X,

2) Repeat until convergence: Sgtr;) =37, P f(z;), Vx; € X, and

3) setf(z;) =y; fori=1,...,1 (the labels of the labeled objects should be fixed).

In step 2, all nodes propagate their labels to their neighlbor one step. Step 3 is critical,
since it ensures persistent label sources from labeled Hitace instead of letting the initial
labels fade way, we fix the labeled data. This constant push fabeled nodes, helps to push
the class boundaries through high density regions so tlegt ¢an settle in low density gaps.
If this structure of data fits the classification goal, thea #hgorithm can use unlabeled data to

improve learning.

fr

Let f = ( ). Sincef}, is fixed toY}, we are solely interested ify;. The matrixP is split
fu
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into labeled and unlabeled sub-matrices

P P,
p— LL LU (7)
Py Pyu
As proven in [13] the label propagation converges, and ttéiea can be computed in closed
form using matrix algebra:

fo=00—Py) ' PurYs (8)

However, as the label propagation requires all classes é&gept in the labeled data, it is not
suitable for shape retrieval. As mentioned in Section Bl, $hape retrieval, the query shape is
considered as the only labeled data and all other shapefi@nmentabeled data. Moreover, the
graph among all of the shapes is fully connected, which méan$abel could be propagated on
the whole graph. If we iterate the label propagation infitiees, all of the data will have the

same label, which is not our goal. Therefore, we stop the coatipn after a suitable number

of iterationst = T'.

V. THE AFFINITY MATRIX

In this section, we address the problem of the constructiothe affinity matrix 1. There
are some methods that address this issue, such as localgsf#d]], local liner approximation
[22], and adaptive kernel size selection [35].

However, in the case of shape similarity retrieval, a distafunction is usually defined,
e.g., [1], [3], [4], [7]. Let D = (D,;) be a distance matrix computed by some shape distance
function. Our goal is to convert it to a similarity measureontler to construct an affinity matrix

W. Usually, this can be done by using a Gaussian kernel:
2
w;; = exp(— U;]) (9)

ij
Previous research has shown that the propagation resgltyhdepend on the kernel sizg;

selection [22]. In [20], a method to learn the propey for the kernel is introduced, which has
excellent performance. However, it is not learnable in theecof few labeled data. In shape
retrieval, since only the query shape has the label, thenilegrof o;; is not applicable. In
our experiment, we use use an adaptive kernel size basedeoméhn distance to K-nearest
neighborhoods [36]:

oij = a - meart{knnd(z;), knnd(x;)}) (10)
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where meaf{knnd(z;), knnd(x;)}) represents the mean distance of the K-nearest neighbor
distance of the sample;,z; and o is an extra parameter. Botk® and « are determined

empirically.

VI. SHAPE CLUSTERING BASED ON THELEARNED DISTANCE

Besides the shape retrieval, the learned distance by thesedppproach could also be used
for improving the performance of shape clustering. Thedliffy of the shape clustering is also
from the property of the shapes, which may have high variamtiee same class and sometimes
small difference in different classes. Similar to shapeeeal, the learned distance could improve
the shape clustering results a lot. The basic idea here g ube learned distance to replace
the original distance based on shape similarity, then thsteting algorithm can be applied on
the new distance space.

In this paper, we choose Affinity Propagation [37] for shapestering. Compared to other
classic clustering algorithm, such as k-means, the maimargdge of Affinity Propagation is
that it doesn’t need the prior knowledge for the number okis. As mentioned above, two
shapes in the same class may be very different to each otldethardistribution of difference
is different for different classes. If the number of clustes fixed before clustering, it may ruin
the results because of the outliers. Therefore, Affinitypg@gation is more suitable for the task
of shape clustering, as the outliers or unusual shapes vanelotally different to other shapes
from the same class will be automatically classified to sseaclusters and it will not affect
other clusters. A simple review for Affinity Propagation aiighm is given below.

In [37], there are two kinds of messages communicated betwleg points: responsibility
and availability, and each takes a different kind of contjmetiinto account.

To begin with, the availability are initialized to zera(:, j) = 0. The responsibilityr(i, ),
sent from data point to candidate exemplar poirt reflects the accumulated evidence for how
well point j is to serve as the exemplar for pointaking into account other potential exemplars

for pointi. The responsibilities are computed as
T(Z7]) — S(Zvj) - maxj’#j{a(ivj/> + S(ivj/)} (11)

where s(7, j) represents the similarity between data pgingand i, which is directly obtained

by s(i,7) = —d(i,7), whered(i, j) is the distance between data pojnand:. For the learned
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distance, asim; is the similarities between shapes, the similarity is tfamsed to distance by
D(z;,z;) = —log(simy(z;, z;)) (12)

since the shapes;, z; are considered as the data points in the clustering algoyrithe distance
d(i,j) = D(z;, ;). For j = i, the self-responsibility-(j, j) reflects accumulated evidence that
point 7 is an exemplar, based on its input preference. In our exgerisy- (7, j) is determined
by the average distance from data pairtb all other data points.

The availability (7, j), sent from the candidate exemplar pojntto point i, reflects the
accumulated evidence for how appropriate it would be fompoito choose pointj as its
exemplar, taking into account the support from other pdingéd point; should be an exemplar.
Whereas the above responsibility update lets all candidegmplars compete for ownership of
a data point, the following availability update gathersdevice from data points as to whether
each candidate exemplar would make a good exemplar:

a(i,j) +— min{0,7(j,j) + > maz{0,r(i',j)}} (13)
i'¢{i.j}
The self-availabilitya(j, j) is updated differently:
a(j, j) «— Y maz{0,r (', j)} (14)

i'#j
This message reflects accumulated evidence that pesan exemplar, based on the positive

responsibilities sent to candidate exempidrom other points.
After the convergence, availability and responsibilitee® combined to identify exemplars.

For pointi, its corresponding exemplar is obtained as
j* = argmaz;{a(i, j) +r(i, j)} (15)
This means to either identify poirtas an exemplar if* = 4, or identify data pointj* that is
the exemplar for point.
As shown in Section VII, the clustering results by Affinitydpagation based on the learned

distance achieve a significant improvement on three clggleshape data sets than without

learning.

VIl. EXPERIMENTAL RESULTS

In this section, we show that the proposed approach carfisgmily improve the performance

of shape retrieval, shape classification and shape clogtefiexisting shape similarity methods.
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A. Improving shape retrieval/matching

1) Improving MPEG-7 shape retrievalfhe IDSC [3] significantly improved the performance
of shape context [1] by replacing the Euclidean distanch shiortest paths inside the shapes, and
obtained the retrieval rate of 85.40% on the MPEG-7 dataTdet. proposed distance learning
method is able to improve the IDSC retrieval raté91000% . For reference, Table | lists almost
all the reported results on the MPEG-7 data set. The MPEQ&/s#d consists of 1400 silhouette
images grouped into 70 classes. Each class has 20 différapeés. The retrieval rate is measured
by the so-called bull’s eye score. Every shape in the datalsasompared to all other shapes,
and the number of shapes from the same class among the 40 imdat shapes is reported.
The bull's eye retrieval rate is the ratio of the total numbgshapes from the same class to the
highest possible number (which 2§ x 1400). Thus, the best possible rate is 100%. From the
retrieval rates collected in Table |, we can clearly obséhet our method made a big progress
on this database, and the second highest result is 87.708mebttby Shape Tree [7].

In order to visualize the gain in retrieval rates by our mdttas compared to IDSC, we
plot the percentage of correct results among the firshost similar shapes in Fig. 4(a), i.e.,
we plot the percentage of the shapes from the same class atmergst k-nearest neighbors
for k = 1,...,40. Recall that each class has 20 shapes, which is why the cucweases for
k > 20. We observe that the proposed method not only increasesutl® dye score, but also
the ranking of the shapes for @ll=1, ..., 40.

We use the following parameters to construct the affinityrimaty = 0.25 and the neighbor-
hood size isiKk = 10. As stated in Section lll, in order to increase computati@&fiéciency, it is
possible to construct the affinity matrix for only part of thatabase of known shapes. Hence,
for each query shape, we first retrieve 300 the most similapas$, and construct the affinity
matrix W for only those shapes, i.8J is of size300 x 300 as opposed to &00 x 1400 matrix
if we consider all MPEG-7 shapes. Then we calculate the newasity measuresim for only
those 300 shapes. Here we assume that all relevant shapdevainong the 300 most similar
shapes. Thus, by using a larger affinity matrix we can imptbeeretrieval rate but at the cost
of computational efficiency.

In addition to the statistics presented in Fig. 4, Fig. Ssiitates also that the proposed approach

improves the performance of IDSC. A very interesting casdn@ava in the first row, where for
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TABLE |

RETRIEVAL RATES (BULL'S EYE) OF DIFFERENT METHODS ON THEMPEG-7DATA SET.

Alg. CSS Vis. Parts Shape | Aligning | Distance| Prob. Chance | Skeletal| Gen. | Optimized
Contexts | Curves Set | Approach| Prob. | Context| Model Css
(38] [4] (1] (39] [40] [41] [42] [43] (2] [44]
Score| 75.44% 76.45% 76.51% | 78.16% | 78.38% | 79.19% 79.36% | 79.92% | 80.03% | 81.12%
Alg. | Contour Shape Multiscale| Fixed Inner | Symbolic Hier. Triangle| Shape | IDSC [3]

Seg. | L Ane Rouge  Rep. Cor. Distance| Rep. Procrustes Area Tree + our
[45] [46] [47 [48] [3] [27] [6] [26] [7] method
Score| 84.33% 84.40% 84.93% | 85.40% | 85.40% | 85.92% | 86.35% | 87.23% | 87.70% | 91.00%
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Fig. 4. (a) A comparison of retrieval rates between IDSC [3] (bludesicand the proposed method (red stars) for MPEG-7.

(b) A comparison of retrieval rates between visual parts in [4] (blugles) and the proposed method (red stars) for MPEG-7.

IDSC only one result is correct for the query octopus. Iteastretrieves nine apples as the most
similar shapes. Since the query shape of the octopus isaeat|UDSC ranks it as more similar
to an apple than to the octopus. In addition, since IDSC iariant to rotation, it confuses
the tentacles with the apple stem. Even in the case of onlyconect shape, the proposed
method learns that the difference between the apple steelagant, although the tentacles of
the octopuses exhibit a significant variation in shape. Véate that this is possible because
the new learned distances are induced by geodesic pathe shdpe manifold spanned by the

known shapes. Consequently, the learned distances retriggecorrect shapes. The only wrong
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Fig. 5. The first column shows the query shape. The remaining 10 oglwimow the most similar shapes retrieved by IDSC

(odd row numbers) and by our method (even row numbers).

results is the elephant, where the nose and legs are simithettentacles of the octopus.

As shown in the third row, six of the top ten IDSC retrieval uks of lizard are wrong.
since IDSC cannot ignore the irrelevant differences betwiards and sea snakes. All retrieval
results are correct for the new learned distances, sincernbgosed method is able to learn
the irrelevant differences between lizards and the releddferences between lizards and sea
snakes. For the results of deer (fifth row), three of the top redrieval results of IDSC are
horses. Compared to it, the proposed method (sixth row) edites all of the wrong results so
that only deers are in the top ten results. It appears to usotihanew method learned to ignore
the irrelevant small shape details of the antlers. Theeeftire presence of the antlers became
a relevant shape feature here. The situation is similarferbird and hat, with three and four

wrong retrieval results respectively for IDSC, which aremafiated by the proposed method.
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Fig. 6. (a) The number of triangle inequality violations per iteration. (b) Bfdlifferences||f:+1 — f:|| as a function of.

An additional explanation of the learning mechanism of th@ppsed method is provided by
examining the count of the number of violations of the trignigequality that involve the query
shape and the database shapes. In Fig. 6(a), the curve shewsimber of triangle inequality
violations after each iteration of our distance learningoathm. The number of violations is
reduced significantly after the first few hundred iteratioe cannot expect the number of
violations to be reduced to zero, since cognitively moadashape similarity may sometimes
require triangle inequality violations [14]. Observe tlthé curve in Fig. 6(a) correlates with
the plot of differences|f.,1 — f:|| as a function oft shown in (b). In particular, both curves
decrease very slow after about 1000 iterations, and at 5@@&tions they are nearly constant.
Therefore, we selectefl = 5000 as our stop condition. Since the situation is very similaalin
our experiments, we always stop aftér= 5000 iterations.

Besides the inner distance shape context [3], we also dematms$hat the proposed approach
can improve the performance wifsual parts shape similarity [4]. We select this method since it
is based on very different approach than IDSC. In [4], in otdezompute the similarity between
shapes, first the best possible correspondence of visu igaestablished (without explicitly
computing the visual parts). Then, the similarity betweerre&sponding parts is calculated and
aggregated. The settings and parameters of our experimeetiieasame as for IDSC as reported
in the previous section except we get= 0.4. The accuracy of this method has been increased
from 76.4%% to 86.69% on the MPEG-7 data set, which is more than 10%. This makes the
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Fig. 7. Sample shapes from Kimia’s 99 shape database [8]. We showhames for each of the 9 classes.

improved visual part method one of the top scoring methodEalsle |. A detailed comparison
of the retrieval accuracy is given in Fig. 4(b).

2) Improving Kimia’s shape retrievalBesides MPEG-7 database, we also present experi-
mental results on the Kimia's 99 shape database [8]. Thebdatacontains 99 shapes grouped
into nine classes. In this dataset, some images have potsusr missing parts. Fig. 7 shows
two sample shapes for each class of this dataset. As theadataimly contains 99 shapes, we
calculate the affinity matrix based on all of the shape in thallase. The parameters used to
calculate the affinity matrix arer = 0.25 and the neighborhood size is = 4. We changed the
neighborhood size, since the data set is much smaller teMBPEG-7 data set. The retrieval
results are summarized as the number of shapes from the dass anong the first top 1
to 10 shapes (the best possible result for each of them isT@®je Il lists the numbers of
correct matches of several methods. Again we observe thaamproach could improve IDSC
significantly, and it yields a nearly perfect retrieval ratdich is the best result in the Table II.

3) Improving Face Retrieval\We used a face data set from [49], where it is calfade (all).

It addresses a face recognition problem based on the shapeadfprofiles. It contains several
head profiles extracted from side view photos of 14 subjddisre exist large variations in the
shape of the face profile of each subject, which is the maisoreavhy we select this data
set. Each subject is making different face expressions, talging, yawning, smiling, frowning,
laughing, etc. When the pictures of subjects were taken, Wese also encouraged to look a
little to the left or right, randomly. At least two subjectachglasses that they put on for half of
their samples. A few sample pictures are shown in Fig. 8.

The head profiles are converted to sequences of curvaturesyand normalized to the length
of 131 points, starting from the neck area. The data set hagasts, training with 560 profiles

and testing with 1690 profiles. The training set contains Affiles for each of the 14 classes.
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TABLE Il

RETRIEVAL RESULTS ONKIMIA’'S 99 SHAPE DATA SET[8]

Algorithm 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
SC [1] 97 91 88 85 84 77 75 66 56 3y
Gen. Model [2] 99 97 99 98 96 96 94 83 75 48

Path Similarity [5] 99 99 99 99 96 97 95 93 89 73
Shock Edit [8] 99 99 99 98 98 97 96 95 93 82
IDSC [3] 99 99 99 98 98 97 97 98 94 7P
Triangle Area [26] 99 99 99 98 98 97 98 95 93 80
Shape Tree [7] 99 99 99 99 99 99 99 97 93 86

Symbolic Rep. [27] 99 99 99 98 99 98 98 95 96 04
IDSC [3] + our method 99 99 99 99 99 99 99 99 97 99

$ $5

Fig. 8. A few sample image of theace (all) data set.

s g€ ®

As reported on [49], we calculated the retrieval accuracynlayching the 1690 test shapes to the
560 training shapes. We used a dynamic time warping (DTW)rkgo with warping window
[50] to generate the distance matrix, and obtained the 1NNeval accuracy of 88.9% By
applying our distance learning method we increased the Iifieval accuracy t85.04%. The
best reported result on [49] has the first nearest neighbdgN)Iretrieval accuracy of 80.8%.
The retrieval rate, which represents the percentage ofttapes from the same class (profiles
of the same subject) among the first k-nearest neighbor&oisrsin Fig. 9(b).

The accuracy of the proposed approach is stable, althougladburacy of DTW decreases
significantly whenk increases. In particular, our retrieval rate for 40 remains high, 88.20%,
while the DTW rate dropped to 60.18%. Thus, the learned migtaallowed us to increase the

retrieval rate by nearly 30%. Similar to the above experitsethe parameters for the affinity
matrix isa = 0.4 and K = 5.
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Fig. 9. (a) Conversion of the head profile to a curvature sequenterdtrieval accuracy of DTW (blue circles) and the

proposed method (red stars).

4) Improving leaf retrieval:The Swedish leaf data set comes from a leaf classificatioegro
at Linkoping University and Swedish Museum of Natural Higt¢51]. Fig. 10 shows some

representative examples. The data set contains isolat@dddrom 15 different Swedish tree

@+0) 60 | ®9:0008¢

Fig. 10. Typical images from the Swedish leaf database [51], one ipagsepecies. Note that some species are quite similar,

e.g., the first, third and ninth species.

species, with 75 leaves per species. Same to the experinmeataod in Inner-distance Shape
Contexts [3], 25 leaves of Each species are used for traimaing,the other 50 leaves are used
for testing. The 1NN accuracy reported in [3]94.13%, but the results we obtained with their
softwaré is 91.2%. Instead of the 1NN classification rate, we report the redtieate of the first
50 nearest neighbors. As the way we calculate the retrietalis similar to we did for MPEG-7
database, the Bull-eyes score, the score of the test is tleeafathe number of correct of all

images to the highest possible number of hits(whicBsis< 750). Therefore, the retrieval rate

http:/ivision.ucla.eduthbling/code
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will increase after the number of nearest neighbor is latigen 25. In Fig. 11, the retrieval rate
of the Swedish leaf is improved a lot by the proposed approesecially, the 1NN recognition
rate is increased froml.2% to 93.8%. Moreover,the parameters for the affinity matrixis= 0.2
and K = 5.

0.5 1

041 1

0.3 4

0.2 1

0.1 1

Fig. 11. Retrieval accuracy of Inner distance (blue circles) and tbposed method (red stars).
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Fig. 12. Sample trademarks of our dataset used for the experiment

5) Improving trademark retrievalWith the increase of the registered trademarks, trademark
retrieval is quite required by industry and commerce. Redti®f trademark images by shape

feature has proved a great challenge, though there has basitlerable research into this topic
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[52], [53]. Although Shape Contexts [1] did not give a full sttbn to shape-based trademark
retrieval, we use it to calculate the shape similarity f@adgmark images and prove that our
method has a potential to improve the retrieval results.adlédmark dataset that contains 165
images are used for the experiment, which is collected byam fjoogle. Some sample images
of this dataset are shown in Fig. 12. For each image, we figtipputed its edge images
with Canny operator [54], then randomly sample them into 30ts for matching with Shape
Contexts. After we obtained the distance matrix, the progpp@ggroach is used to learn the new
distance, where the parameters ake=5 anda = 0.4.

We only show several experimental results to demonstradé dkir method can improve
trademark retrieval. As shown in Fig. 13, the retrieval hessly Shape Contexts and the improved
retrieval results by the proposed method are listed togdtntecomparison. We can clearly see

the potential for our method to improve trademark retrieval

B. Improving 1NN shape classification

The k-nearest neighbor algorithm is amongst the simpleatlahachine learning algorithms.
An object is classified by a majority vote of its neighborsthwihe object being assigned
to the class most common amongst itnearest neighbors: is a positive integer, typically
small. If £ = 1, then the object is simply assigned to the class of its neargighbor. The
proposed distance learning algorithm could improve thegeition rate of 1NN classification.
The retrieval results oface (all) and Swedish leaf databases have shown the improvement.
Besides, we divided the MPEG-7 dataset into two sets: trgiset and testing set. For each
class, ten shapes are chosen as the training samples anelsthierr shapes are then used for
testing. The results are shown in Table Ill. We can easilyeplesthat all the performance on
these datasets have been improved. The improvements onisBwedf and MPEG-7 are not
so significant as on the Face dataset, which is normal due dontain reasons: 1) The 1NN
classification rate on the Swedish leaf and MPEG-7 have @éjrégen very perfect with the
original distances, which means there is no much potentiathem; 2) The number of the
training samples per class for the Swedish leaf and MPEGe7nauch fewer than the Face

dataset. The parameters for all of the three datasets ammathe to the retrieval setting.
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Fig. 13. The first column show the query trademark. The remaininguhue show the most similar trademarks retrieved by

Shape Contexts [1] (odd row numbers) and by our method (even vombers).

C. Improving Shape clustering

To evaluate the performance of the proposed approach ore sthagtering in Section VI, we
tried it on three standard databases: one is Kimia’'s 99 sbafsbase [8] as shown in Fig. 7.
Another one is Kimia’s 216 shape database [8], which is actsdesubset of MPEG-7 database.
Fig. 14 shows two sample shapes for each class of Kimia's Bdpesdatabase. The last database
is the whole MPEG-7 database. In order to evaluate the pedioce of the shape clustering,

an measurement is used to measure the accuracy of clustérg@ccuracy of the pairwise
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TABLE 1l

RESULTS OFINN CLASSIFICATION IMPROVEMENT

Original Distance Learned Distance
Face (all) 88.9% 95.4%
Swedish leaf 91.2% 93.8%
MPEG-7 database 94.7% 95.7%

correctly clustered objects. In other words, if two obje&ts clustered into one class and they
are actually in the same class, this pair would be considasedorrect. The score of the test
is the ratio of the number of correct hits of all pairs of oligeto the highest possible number
of hits. The IDSC [3] is used to obtain the distance matrix le# three databases. The shape
clustering results on both three databases based on theabrdistance by IDSC [3] and the
learned distance by our algorithm proposed in Section Vismawn in Table VII-C. Notice
that the learned distance achieved the significant imprewéran all of the databases, and the
numbers of the clusters are almost equal to the numbers sdadaon Kimia's two databases.
We believe that some other methods such as [12] can be alsovegpwith our method. Here
we did not compare with the shape clustering method in [li8festhey need to fix the number
of cluster centers before clustering.

As the goal of the shape clustering is different from the nagkthe number of iterations for
the distance learning should be less than the ranking. Tdsoreis there is only one labeled data
point during the learning, if the number of iterations is taoge, the difference between data
points will be small, which cannot be used to distinguish tigects in different classes. For
all of the clustering experiments, the number of iterati@hs 1000 for MPEG-7 data set and
300 for the Kimia’s two databases. The parameters to cdktte affinity matrix for MPEG-7
is the same to the retrieval. Besides, for Kimia’s 99 shapabdate, the parameters de= 5

anda = 0.33, and for Kimia’s 216 shape database, the parameter&lare? and o = 0.32.
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Fig. 14. Sample shapes from Kimia’'s 216 shape database [8]. We tstmwhapes for each of the 18 classes.

RESULTS ON THEKIMIA'S 99 DATABASE [8], KIMIA’'S 216 SHAPE DATABASE[8] AND MPEG-7DATABASE.

Kimia's 99 shape database

2 Kimia’'s 216

shape databas

e MPEG-7 shape database

25

Number of Classes 9 18 70
Original Dist. | Learned Dist| Original Dist.| Learned Dist| Original Dist.| Learned Dist,|
Number of Clusters 16 10 25 19 174 58
Accuracy 69% 95% 85% 97% 54% 86%
VIIl. CONCLUSION AND DISCUSSION

In this work, we adapted a graph transductive learning fraonk to learn new distances with
the application to shape retrieval, shape classificatiah srape clustering. The key idea is to
replace the distances in the original distance space witanttes induces by geodesic paths
in the shape manifold. The merits of the proposed technigwe been validated by significant
performance gains over the experimental results. Howékersemi-supervised learning, if there
are too many outlier shapes in the shape database, the ptbppproach cannot improve the
results. Our future work will focus on addressing this penbl We also observe that our method
is not limited to 2D shape similarity but can also be appliedD model retrieval, which will

also be part of our future work.
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