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We introduce a new method for brain MRI segmentation, called the auto context model (ACM), to segment
the hippocampus automatically in 3D T1-weighted structural brain MRI scans of subjects from the
Alzheimer's Disease Neuroimaging Initiative (ADNI). In a training phase, our algorithm used 21 hand-labeled
segmentations to learn a classification rule for hippocampal versus non-hippocampal regions using a
modified AdaBoost method, based on ~ 18,000 features (image intensity, position, image curvatures, image
gradients, tissue classification maps of gray/white matter and CSF, and mean, standard deviation, and Haar
filters of size 1x1x1 to 7x7x7). We linearly registered all brains to a standard template to devise a basic
shape prior to capture the global shape of the hippocampus, defined as the pointwise summation of all the
training masks. We also included curvature, gradient, mean, standard deviation, and Haar filters of the shape
prior and the tissue classified images as features. During each iteration of ACM - our extension of AdaBoost -
the Bayesian posterior distribution of the labeling was fed back in as an input, along with its neighborhood
features as new features for AdaBoost to use. In validation studies, we compared our results with hand-
labeled segmentations by two experts. Using a leave-one-out approach and standard overlap and distance
error metrics, our automated segmentations agreed well with human raters; any differences were com-
parable to differences between trained human raters. Our error metrics compare favorably with those
previously reported for other automated hippocampal segmentations, suggesting the utility of the approach
for large-scale studies.

Published by Elsevier Inc.

Introduction

cutive function, and all aspects of behavior. A major therapeutic goal is
to assess whether treatments delay or resist disease progression in

Alzheimer's disease (AD) is the most common type of dementia,
and affects over 5 million people in the United States alone (Jorm et al.,
1987). The disease is associated with the pathological accumulation of
amyloid plaques and neurofibrillary tangles in the brain, and first
affects memory systems, progressing to involve language, affect, exe-
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the brain before widespread cortical and subcortical damage occurs.
For this, sensitive neuroimaging measures have been sought to
quantify structural changes in the brain in early AD which are auto-
mated enough to permit large-scale studies of disease and the factors
that affect it.

To track the disease process, several MRI- or PET-based imaging
measures have been proposed. Many studies have sought optimal
volumetric measures (e.g., of the hippocampus or entorhinal cortex) to
differentiate normal aging from AD, and from mild cognitive
impairment (MCI), a transitional state that carries a 4-6 fold increased
risk of imminent decline to AD relative to the normal population
(Petersen, 2000; Petersen et al., 1999, 2001). A common biological
marker of disease progression is morphological change in the hippo-
campus, assessed using volumetric measures (Jack et al., 1999;
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Kantarci and Jack, 2003) or by mapping the spatial distribution of
atrophy in 3D (Apostolova et al., 2006a,b; Csernansky et al., 1998;
Frisoni et al., 2006; Thompson et al., 2004).

Using MRI at millimeter resolution, subtle hippocampal shape
changes may be resolved. However, isolating the hippocampus in a
large number of MRI scans is time-consuming, and most studies still
rely on manual outlining guided by expert knowledge of the location
and shape of each region of interest (ROI) (Apostolova et al., 2006a; Du
et al,, 2001). To accelerate epidemiological studies and clinical trials,
this process should be automated. Some automated systems have been
proposed for hippocampal segmentation (Barnes et al., 2004; Crum et
al.,, 2001; Fischl et al., 2002; Hogan et al., 2000; Powell et al., 2008;
Wang et al., 2007; Yushkevich et al., 2006), but none is yet widely used.

Pattern recognition techniques (Duda et al., 2001) offer a range of
promising algorithms for automated subcortical segmentation. Most
pattern recognition (or machine learning) algorithms attempt to
assign a probability to a specific outcome. In image segmentation,
image cues are pooled to determine with a specific probability
whether each image voxel is part of an ROI (e.g., the hippocampus) or
not. In pattern recognition, cues are usually referred to as features, and
different pattern recognition algorithms combine these features in
different ways. When using pattern recognition approaches, it is
standard practice to divide a dataset into two non-overlapping classes
for training and testing. The training set is used to learn the patterns
(e.g., estimate a function or decision rule for classifying voxels), and
the testing set is used to validate how well new datasets can be
classified, based on the patterns that were learned.

Since medical images are complex, many possible features may be
created to represent each voxel. Given the large number of voxels in an
MRI scan, computing and storing this amount of data may become
unmanageable. For example, features may consist of image intensity, x, ,
and z positions, image curvature, image gradients, or the output of any
other general image filter. To overcome this problem, we use a variant of a
machine learning algorithm called AdaBoost (Freund and Schapire,
1997). AdaBoost is a weighted voting algorithm, which combines “weak
learners” into a “strong learner.” A weak learner is any pattern
recognition algorithm that guesses correctly greater than half of the
time. At each iteration, AdaBoost selects a weak learner that minimizes
the error for all voxels based on the classification of previously selected
weak learners. Therefore, an incorrectly classified example at one
iteration will receive more weight on subsequent iterations.

To segment the hippocampus in an MRI scan, we use AdaBoost
inside a new pattern recognition algorithm we call the auto context
model (ACM). ACM is not specific to AdaBoost and may be used with
any classification technique, but here we use it with AdaBoost, which
has previously been found to be effective for subcortical segmentation
in smaller samples of subjects (Morra et al., 2007; Quddus et al., 2005;
Tu et al., 2008).

This paper presents a validation study of ACM using data from an
Alzheimer's disease study. We show that this approach accurately
captures the hippocampus and may therefore be useful in large-scale
studies of AD where manual tracing would be prohibitive.

Methods
Subjects

The Alzheimer's Disease Neuroimaging Initiative (ADNI) (Mueller
et al,, 2005a,b) is a large multi-site longitudinal MRI and FDG-PET
(fluorodeoxyglucose positron emission tomography) study of 800
adults, ages 55 to 90, including 200 elderly controls, 400 subjects
with mild cognitive impairment, and 200 patients with AD. The
ADNI was launched in 2003 by the National Institute on Aging (NIA),
the National Institute of Biomedical Imaging and Bioengineering
(NIBIB), the Food and Drug Administration (FDA), private pharma-
ceutical companies and non-profit organizations, as a $60 million, 5-

year public-private partnership. The primary goal of ADNI has been
to test whether serial MRI, PET, other biological markers, and clinical
and neuropsychological assessment can be combined to measure the
progression of MCI and early AD. Determination of sensitive and
specific markers of very early AD progression is intended to aid
researchers and clinicians to develop new treatments and monitor
their effectiveness, as well as lessen the time and cost of clinical
trials. The Principal Investigator of this initiative is Michael W.
Weiner, M.D., VA Medical Center and University of California, San
Francisco.

All subjects underwent thorough clinical/cognitive assessment at
the time of scan acquisition. As part of each subject's cognitive
evaluation, the Mini-Mental State Examination (MMSE) was adminis-
tered to provide a global measure of cognitive status based on evalua-
tion of five cognitive domains (Cockrell and Folstein, 1988; Folstein
etal., 1975); scores of 24 or less (out of a maximum of 30) are generally
consistent with dementia. Two versions of the Clinical Dementia Rating
(CDR) were also used as a measure of dementia severity (Hughes et al.,
1982; Morris, 1993). The global CDR represents the overall level of
dementia, and a global CDR of 0, 0.5, 1, 2 and 3, respectively, indicate no
dementia, very mild, mild, moderate, or severe dementia. The “sum-of-
boxes” CDR score is the sum of 6 scores assessing different areas of
cognitive function: memory, orientation, judgment and problem
solving, community affairs, home and hobbies, and personal care. The
sum of these scores ranges from 0 (no dementia) to 18 (very severe
dementia). Table 1 shows the clinical scores and demographic measures
for our sample. The elderly normal subjects in our sample had MMSE
scores between 26 and 30, a global CDR of 0, a sum-of-boxes CDR
between 0 and 0.5, and no other signs of MCI or other forms of
dementia. The MCI subjects had MMSE scores ranging from 24 to 30, a
global CDR of 0.5, a sum-of-boxes CDR score between 0.5 and 5, and
mild memory complaints. Memory impairment was assessed via
education-adjusted scores on the Wechsler Memory Scale — Logical
Memory II (Wechsler, 1987). All AD patients met NINCDS/ADRDA
criteria for probable AD (McKhann et al., 1984) with an MMSE score
between 20 and 26, a global CDR between 0.5 and 1, and a sum-of-boxes
CDR between 1.0 and 9.0. As such, these subjects would be considered
as having mild, but not severe, AD. Detailed exclusion criteria, e.g.,
regarding concurrent use of psychoactive medications, may be found in
the ADNI protocol (page 29, http://www.adni-info.org/images/stories/
Documentation/adni_protocol_03.02.2005_ss.pdf). Briefly, subjects
were excluded if they had any serious neurological disease other than
incipient AD, any history of brain lesions or head trauma, or
psychoactive medication use (including antidepressants, neuroleptics,
chronic anxiolytics or sedative hypnotics, etc.).

The study was conducted according to Good Clinical Practice, the
Declaration of Helsinki and U.S. 21 CFR Part 50-Protection of Human
Subjects, and Part 56-Institutional Review Boards. Written informed
consent for the study was obtained from all participants before protocol-
specific procedures, including cognitive testing, were performed.

Table 1
Demographic data and clinical scores are shown for the subjects whose scans were
analyzed in this paper

N Males/] Age MMSE Global Sum-of-boxes
females (years) CDR CDR
Normal 7 4/3 67.45 (3.71)  29.00 (0.82) 0(0) 0.071 (0.19)
Mcl 7 43 6747 (2.43) 2728 (138)** 0.5 (0)** 1.71 (0.91)**
AD 7 3/4 68.14 (2.44) 2229 (0.76)** 0.57 (019)**  3.57 (1.4)**

Means are shown with standard deviations in parentheses. This data is provided to
show that our individuals encompassed a wide variety of cognitive impairment.
Throughout the paper, p-values for group differences were obtained from two sided
t-tests.

*p<0.01.
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Training and testing set descriptions

As noted earlier, when using a pattern recognition approach to
identify structures in images, two non-overlapping sets of images
must be defined, for training and testing (Morra et al., 2007; Powell
et al,, 2008). The training set consists of a small sample of brain
images, representative of the entire dataset, which are manually
traced by experts. The testing set is a group of brain images that are
to be segmented by the algorithm, but have not been used for
training the algorithm. Our training set consisted of 21 brain
images, from 7 healthy elderly individuals, 7 individuals with MCI,
and 7 individuals with AD. Since we only have manual tracings of
these brains, we construct our testing set using a leave-one-out
approach. For testing, we train 21 models, each one ignoring one
subject (i.e., not using that subject for training), and we then test
each model on the subject that it ignored. This gives a testing set of
the same 21 brains, each with a ground truth segmentation for
comparison purposes; even so, it ensures the independence of the
training and testing sets, a common requirement in validating
machine learning methods. We chose to train on 21 subjects
because this number was sufficient in previous studies that varied
the training sample size (Morra et al., 2007); smaller training sets
degraded segmentation performance. Each of the three groups (AD,
MCI, and controls) were age- and gender-matched as closely as
possible as shown in Table 1.

MRI acquisition and pre-processing

All subjects were scanned with a standardized MRI protocol, deve-
loped after a major effort evaluating and comparing 3D T1-weighted
sequences for morphometric analyses (Jack et al., 2008; Leow et al.,
2006).

High-resolution structural brain MRI scans were acquired at multiple
ADNI sites using 1.5 T MRI scanners manufactured by General Electric
Healthcare and Siemens Medical Solutions. ADNI also collects dataat 3.0 T
from a subset of subjects, but to avoid having to model field strength
effects in this initial study, only 1.5 T images were used. All scans were
collected according to the standard ADNI MRI protocol (http://www.loni.
ucla.edu/ADNI/Research/Cores/index.shtml). For each subject, two T1-
weighted MRI scans were collected using a sagittal 3D MP-RAGE sequence.
Typical 1.5 T acquisition parameters are repetition time (TR) of 2400 ms,
minimum full excitation time (TE), inversion time (TI) of 1000 ms, flip
angle of 8°, 24 cm field of view, acquisition matrix was 192x192x 166 in
the x-, y-, and z-dimensions yielding a voxel size of 1.25x1.25x1.2 mm>
(Jack et al.,, 2008). In plane, zero-filled reconstruction yielded a 256 x 256
matrix for a reconstructed voxel size of 0.9375x0.9375x1.2 mm>. The
ADNI MRI quality control center at the Mayo Clinic (in Rochester, MN, USA)
selected the MP-RAGE image with higher quality based on standardized
criteria (Jack et al., 2008). Additional phantom-based geometric correc-
tions were applied to ensure spatial calibration was kept within a specific
tolerance level for each scanner involved in the ADNI study (Gunter et al.,
2006).

Additional image corrections were also applied, using a processing
pipeline at the Mayo Clinic, consisting of: (1) a procedure termed
GradWarp for correction of geometric distortion due to gradient non-
linearity (Jovicich et al., 2006), (2) a “B1-correction”, to adjust for image
intensity non-uniformity using B1 calibration scans (Jack et al., 2008),
(3) “N3” bias field correction, for reducing intensity inhomogeneity
(Sled et al., 1998), and (4) geometrical scaling, according to a phantom
scan acquired for each subject (Jack et al., 2008), to adjust for scanner-
and session-specific calibration errors. In addition to the original
uncorrected image files, images with all of these corrections already
applied (GradWarp, B1, phantom scaling, and N3) are available to the
general scientific community, as described at http://www.loni.ucla.edu/
ADNI. Ongoing studies are examining the influence of N3 parameter
settings on measures obtained from ADNI scans (Boyes et al., 2008).

Image pre-processing

To adjust for global differences in brain positioning and scale across
individuals, all scans were linearly registered to the stereotactic space
defined by the International Consortium for Brain Mapping (ICBM-53)
(Mazziotta et al., 2001) with a 9-parameter (9P) transformation
(3 translations, 3 rotations, 3 scales) using the Minctracc algorithm
(Collins et al., 1994). Globally aligned images were resampled in an
isotropic space of 220 voxels along each axis (x, y, and z) with a final
voxel size of 1 mm?>.

Feature selection

All discriminative pattern recognition techniques involve taking
some set of examples with a label and learning a pattern based on
those examples. Usually the examples are themselves each a vector of
problem-specific information, referred to as features. Each feature
must be calculable for each example (for implementation purposes,
hopefully quickly), and the features should provide some insight into
the classification task. For medical image segmentation, these features
are derived at each voxel in all brains, so at each voxel, there exists a
vector for which each entry is a specific feature evaluated at that voxel.

In our case, we chose features based on image intensity, tissue
classification maps of gray matter, white matter, and CSF (maps
obtained by an unsupervised classifier, PVC (partial volume classifier;
(Shattuck et al., 2001))) and neighborhood-based features derived
from the tissue classified maps, x, ¥, and z positions (along with
combinations of positions such as x+y or x*z), curvature filters,
gradient filters, mean filters, standard deviation filters, and Haar filters
(Viola and Jones, 2004) of sizes varying from 1x1x1to 7x7x7.x,y, z
positions were determined using stereotaxic coordinates after spatial
normalization to the standard space. In addition to these features, we
exploited the fact that all the brains had been registered to devise a
basic shape prior to capture the global shape of the hippocampus. Our
shape prior was defined as the pointwise summation of all the
training masks. Differential positional effects in the x, y, and z
positions are therefore captured by using a shape prior, and also by
including products of x, y, and z voxel indices as features.

Since brain MRIs consist of many voxels, the product of the number
of features and the number of voxels can be exceedingly large.
However, because all of our brains are registered to the same template,
the hippocampi will always appear in approximately the same
localized region. We can exploit this fact to reduce our search space
by constructing a bounding box, and only classifying examples (feature
vectors at each voxel) for voxels that fall in this bounding box. To define
the box we scan over all the training examples and find the minimum
and maximum x, y, z positions of the hippocampus. Next, we add the
size of the largest neighborhood feature (in this case, 7 voxels) and
some additional voxels to cope with as yet unseen testing brains (in
this case, 10 voxels). Then training commences on only voxels inside of
this box. Also, when testing a new brain, only voxels inside this box are
classified, all others are assumed negative. All features are computed at
each voxel, rather than averaging them over the bounding box. When
classifying each voxel, features such as image intensity, image gradient,
and tissue classification are computed voxel-wise. The number of
features is approximately 18,000 per voxel, and the same set of
candidate features are available to the classifier at every voxel, so the
number of features does not depend on the size of the bounding box.

AdaBoost description

AdaBoost is a machine learning method that uses a training set of
data to develop rules for classifying future data; it combines individual
rules that do not work especially well into a pool of rules that can be
used to more accurately classify new data. The overall classifier can
greatly outperform the component classifiers. The component
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classifiers are often called “weak learners,” as they may perform only
slightly better than random; for example, a classifier of hippocampal
voxels based on the binary feature “voxel is gray matter” could classify
the hippocampus only slightly better than chance (i.e., 50% correct), as
there are many non-hippocampal gray matter voxels. AdaBoost
iteratively selects weak learners, h(x), from a candidate pool and
combines them into a strong learner, H(x) (Freund and Schapire, 1997).
In what follows, an example is defined as the feature vector at a voxel in
the training dataset, with its associated classification; a weak learner
classifies example voxels as belonging to the hippocampus or not
belonging to the hippocampus. When classifying an example, a weak
learner gives a binary output value of +1 for example voxels that it
regards as positive (i.e., in the hippocampus) and -1 for example voxels
it regards as negative (i.e., outside the hippocampus).

Fig. 1 gives an overview of the AdaBoost algorithm. In our
implementation, labeling the hippocampus is formulated as a two-
class classification problem, in which the training data consists of
input vectors of features, x;...Xy, also called examples, and associated
labels, y;. The components of the features are the outputs of the Haar
filters, intensity measures, positions, and other feature detectors
detailed earlier. The training phase of AdaBoost attempts to find the
best combination of classifiers. Each data point, or example, is initially
given a weight, D;(i). The weighting parameter for each data point is
initially set to 1/N for all data points.

At this point, the construction of the set of weak learners h; (of size
J) needs to be defined. We define a weak learner to be any feature, a
threshold, and a boolean function representing whether or not
observations above that threshold are positive (belong to the ROI) or
negative (do not belong to the ROI). Therefore, our weak learner
selects the feature that best separates the data into positive and
negative examples given D.. In order to do this, two histograms are
constructed for each feature based on D,, one that is only the positive
examples, and another that is only the negative examples, these are
then normalized and converted into cumulative distribution functions
(CDFs). Finally, the threshold that minimizes the error based on these
CDFs is chosen, and the lowest error over all features determines
which weak learner is selected.

More formally, as detailed in Fig. 1, at each stage t of the algorithm
(t=1to T), AdaBoost trains a new weak learner in which the weighting
coefficients, D((i), on the example data points are adjusted to give
greater weight to the previously misclassified data points. In Fig. 1, ¢; is
the total error of the jth weak learner, determined by counting up all
the examples misclassified, 1(y;#h;(x;)), weighted by their current

Given: N labeled training examples (&£, y:) with 3 €
{~1,+1} and £ € RM (we assume each & is of length M), a
set of J weak learners h; € W, and an initial uniform distribu-
tion of weights D1 (z) over the examples

Fort=1,...,T:

o &5= 31, Do(i)1(y: # hy(33))
o [he, €] = arg hI:lean €5

e Setay = 2log ((1 —e¢)/ee)
o Set Diy1(3) = De(d)exp(—oeyihe(£1)) /2
Zy = 24/€4(1 — £¢), a normalization factor
In order to evaluate a new example () we do the following:
F(@) = 5, athe(3)
P(z) =1/ (exp(—f(Z)) + 1)

N 1 (P(@)>05
H(z)={ 0 EPEgzo.sg

Fig. 1. An overview of the AdaBoost algorithm. 1 is an indicator function, returning 1 if
the statement is true and 0 otherwise.

weights at time t, D(i). As such, they are weighted measures of the
error rates of the weak learners. The best weak learner for stage t is
the one with the lowest error, . This learner is based on a feature that
is most “independent” of the previous learners. The best weak learner
at each step is chosen from the full set of weak learners, not just from
the new ones computed in successive steps by AdaBoost. The
coefficient a;=(1/2) log((1-¢.)/e;) is defined to be a weighting
coefficient for the t-th weak learner, which favors learners with very
low error. The key to AdaBoost is that the influence of each example in
the training set is re-weighted using the following rule: D;.; = D, exp
(-ay yi he (x;)) | Z;, with Z; a normalizer defined in Fig. 1, chosen so that
the D;.(i) will be a probability distribution, i.e., sum to 1 over all
examples x;. This re-weighting emphasizes examples that were
wrongly labeled at the prior iteration. Successive classifiers are
therefore forced to prioritize examples that were incorrectly classified,
and these data points receive increasing priority, D,(i). The formula for
a, is chosen such that it is the unique o that minimizes Z; analytically,
by satisfying dZ; (o;)/da=0; picked in this way ¢ is guaranteed to
minimize Z,. The final vote H(x) is based on a thresholded weighted
sum of all weak learners (Fig. 1).

Because of the large number of examples to be classified, instead of
using AdaBoost just once, a cascade was created, where at each node
in the cascade examples that are clearly negative are discarded (a
probability below 0.1). This allows the classifier to use different
features for examples that are difficult to classify. The value of 0.1 was
chosen because it was empirically shown to give good results in our
other studies (Morra et al., 2007).

Probabilistic interpretation

Friedman et al. (2000) noted that the update rule for weights (the
“boosting” steps) in AdaBoost can be given a probabilistic interpreta-
tion, i.e. it can be derived by assuming that the goal is to sequentially
minimize an exponential error function. Given a linear combination of
weak learners f(?) =Z{=1atht(x_>), then the exponential error of a
mislabeling may be defined as E=YN_, exp(—ynfy(}Tn’)), where y; are
the training set target values. If we wish to minimize E by optimizing
the weak learner ht(Y), then it can be shown that the best re-
weighting of the examples is given by the update rule for D;. (i)
(Friedman et al., 2000). Two comments are necessary: first, other
AdaBoost variants have proposed altering the exponential error
function, which AdaBoost minimizes, to be the cross-entropy, which
is the log-likelihood of a well-defined probabilistic model and
generalizes to the case of K>2 classes (Friedman et al., 2000); and
second, if the exponential error function is used, AdaBoost will find its
variational minimizer over all the functions in the span of the weak
learners. In fact, AdaBoost iteratively seeks a minimizer of the
expected exponential error

Evy(exp(-yH(X')) = Xan S exp(-yH (X))P(y|X)P(X)dx

and arrives at the final classification by constrained minimization.
Although minimization of the number of classification errors may
seem like a better goal, in general the problem is intractable (Hoffgen
and Simon, 1992), so it is conventional to minimize some other
nonnegative loss function such as E. The process of selecting o, and
ht(?) may be interpreted as a single optimization step minimizing
the upper bound on the empirical error; improvement of the bound is
guaranteed, so long as &<1/2, and choosing h; and ¢ in this way
results in the greatest decrease in the exponential loss, in the space of
weak learners, and converges to the infimum of the exponential loss
(Collins et al., 2002).

Also, traditionally, AdaBoost does not define the P(?) term, and
just uses the sign of f (7’) as the strong learner. However, when
using ACM, it is necessary that the output not be a decision rule, but
rather a value in the range [0 1] representing the confidence that the
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given example is positive or negative. Therefore, we employ the
LogOdds transform (Pohl et al., 2007) to map the interval (-« «) to
(0 1). The LogOdds transform essentially makes the optimal classifier
produce Bayesian maximum likelihood estimates of the labeling,
under the premise of using an exponential loss function.

As noted by Collins et al. (2002), instead of using f(X) as a
classification rule, one can consider that the y; are generated through a
generative probability law, using f (7) to estimate the probability of
the associated label y; A common way to do this is to pass f (7)
through a logistic function, and use the estimate
P(y=+1|%)=1/(1+ exp(=f(X"))). The likelihood of the labels occur-
ring in the training set is then [TV, ,1/(1+ exp(-yif (¥))). Maximizing
this likelihood is equivalent to minimizing the log loss of this model

i In(1/(1+ exp(-yif (X))
Auto context model

According to Bayesian theory, the goal of pattern recognition
algorithms is to correctly model the posterior distribution defined as
P(y=+1|x)=P(xly=+1)P(y=+1)/P(x). AdaBoost itself may be
regarded as providing an approximation to this probability (Shi et
al., 2005), and since we are using a shape prior, AdaBoost models the
combination of the conditional and prior probabilities (the marginal
probability is a constant). In the simplest case, Bayes' rule looks at
each example independently of all others. However, in our case, and
in fact in most image segmentation cases, the posterior distribution
of nearby voxels should influence each other. In any pattern
recognition algorithm that attempts to model the Bayesian poster-
ior, this information is mostly ignored, although some Markov
methods have been proposed that make use of empirically esti-
mated prior distributions on the joint labeling of contiguous voxels
(Fischl et al., 2001). Here, we include this information by modeling
P(y=i1|xaxneighbors) =P(x:xneighbors ‘y=i1)P(.y= i‘1)/13(vaneighbors)~

ACM attempts to model the above distribution iteratively; a
description is given in Fig. 2.

In our context, H is the cascade of AdaBoosts without the final
binary classification step. In order to improve ACM, instead of
starting P; with a uniform distribution, we instead start with our
shape prior. Also, in order to give more information about the
classifications of neighboring voxels, when running AdaBoost inside
of ACM, we included neighborhood features defined on P..
Specifically we included the same Haar, curvature, gradient, mean,
and standard deviation filters on the posterior map as we do on the
images.

We can prove that for each iteration of ACM, the error is mono-
tonically decreasing. Define the error of the classification algorithm
(in our case a cascade of AdaBoosts) at iteration t to be &, we then
prove that ¢<e¢-q. First, we define pyi|x;) to be the probability
change associated with iteration t of ACM. Next, since P;—; includes
all previous iterations of ACM, we can write ¢ =-YN_, log P (i)y;
and &=-YN  logp:(yilx,P1()). In the trivial case,
De(VilXi, Pi-1(i)) = P—1 (I)y; by simply choosing p, to be a uniform
distribution. However, since it has been shown that AdaBoost
decreases the error at every iteration, it must choose weak learners
that decrease p,, therefore e<e;-1.

Given: N labeled images (Zi, y:) withy: € {-1,+1}. alearn-
ing algorithm H, and a posterior distribution P
Fort=1,...,T:

o Py =H(zy, P)

= 1 (P& >05
H(Z):{ 0 EP%E; < 0.53

Fig. 2. An overview of the auto context model.

o B prery

a
N
Our algorithm

Fig. 3. A schematic description of the comparisons performed. For all of the tests
performed in this paper, training was performed on rater 1's tracings.

Segmentation overview

When implementing our method there are a number of
parameters that must be set, but very few that need to be tweaked.
We used approximately 18,000 features in our feature pool. This
includes both features based on the images, and those based on the
posterior maps from ACM. We chose to run each AdaBoost for 200
iterations, obtaining 200 weak learners per AdaBoost cascade node, a
cascade depth of two nodes, and five ACM iterations. This leads to
running ten iterations of AdaBoost during the training phase. Overall,
training takes about twelve hours. Even so, testing is very short,
taking less than one minute to segment the hippocampus on a new
brain image.

It is also of interest to note which features AdaBoost chose in order
to obtain insight into the segmentation process. During the first
iteration of ACM, AdaBoost chose mostly features based on the Haar
filter and based on the tissue classified image (i.e., binary maps of gray
and white matter and CSF). Later iterations of ACM chose mostly Haar
filter outputs and mean filter outputs based on the previously selected
posterior distribution, which means that neighboring voxels are
influencing each other, as is to be expected. These features are not
totally independent, since most are based on the same underlying
image intensities; however each adds some classification ability to the
final decision rule. An advantage of this approach is that the algorithm
does not have to rely on the same small subset of features when
trained on different training sets, and can select different features
when trained on different examples, if they are optimal. As with other
boosting methods, it is not expected or even desirable that the same
feature sets be recovered when analyzing images from different
sources, and it is not expected that each of the features used has good
classification ability in its own right; in fact, any boosting method uses
so-called “weak learners,” with individual classification performance
only slightly better than chance, and combines them effectively using
the boosting strategy.

Results

When validating a machine learning approach it is essential to
examine error metrics on both the training and testing sets. A test set
independent of the training set is vital in machine learning, in order to
show the effectiveness of a classifier on data totally withheld from the
training set. Since we used 21 hand-labeled brains to train the
algorithm, we employed a leave-one-out analysis to guarantee a
separation between the training and testing sets. In order to put our
error metrics in context and decide whether they were acceptable for
the application, we had a second independent expert rater trace the
same 21 brains. We were then able to create a triangle of comparisons
as shown in Fig. 3, in which the algorithm's segmentations can be
compared with those of the human rater who trained the algorithm
(rater 1; A.G.) and with those of an independent rater (rater 2; C.A.)
who did not train the algorithm.

In order to show agreement with a human expert not involved
with training the algorithm, we only trained our algorithm on manual
segmentations from rater 1 and were still able to achieve good seg-
mentation results that agreed well with rater 2's manual tracings. We
emphasize that the validation against rater 1 is also an independent
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Table 2
Precision, recall, relative overlap (R.0.), similarity index (S.L.), Hausdorff distance, and
mean distance are reported for the training set (N=21)

Precision Recall R.O. S.L Hausdorff Mean
Left 0.892 0.930 0.836 0.911 2.09 mm 0.00262 mm
Right 0.885 0.927 0.828 0.906 2.25 mm 0.00299 mm

Note that lower values are better for the Hausdorff distance and mean error (reported
here in millimeters); higher values are better for the other metrics.

validation in the sense that our algorithm was classifying images that
it was not trained on (i.e. a leave-one-out approach).

Secondly, we further validated our approach using volumetric
results of three kinds. We hypothesized that hippocampal volume
would decrease as the disease progresses further, and verified this by
comparing mean volumes in groups of controls, MCI subjects, and AD
patients. We also examined whether, in the full sample, hippocampal
volume was correlated with clinical measurements of cognitive
impairment; encouragingly, we found that measures from our
segmentations correlated more strongly with cognition, in the
hippocampus, than measures from a popular technique for quantifica-
tion of brain atrophy, tensor-based morphometry, which is closely
related to voxel-based morphometry.

Finally, since longitudinal follow-up scans were available for the
individuals tested in this paper, we used scans taken six months later
to assess the longitudinal stability of the segmentations of the same
subject. We showed that the amount of hippocampal volume change
was consistent with prior reports in the literature.

Error metrics

To assess our segmentations' performance, we first define a
number of error metrics based on the following definitions: A, the
ground truth segmentation, and B, the testing segmentation.
Additionally, we define d(a,b) as the Euclidean distance between
points a and b.

.. ANB
* Precision = B

ANB

* Recall= A

* Relative Overlap = 48
* Similarity Index = ?‘%
2
* Hi=maXqe4 (minyep (d(a,b)))

* Hy=max, 5 (ming =4 (d(b.a)))

* Hausdorff = M

* Mean=avg, =4 (miny<p (d(a,b)))

First, Table 2 presents our segmentation performance on the
training set. For this analysis, we used all 21 brains as training data,
and tested on all 21 brains. These performance results on the training
set represent an upper bound for the expected accuracy on the testing
set. Next, we used our leave-one-out approach to obtain testing

Table 3

Precision, recall, relative overlap (R.0.), similarity index (S.I.), Hausdorff distance, and
mean distance are reported for the leave-one-out analysis (N=21) when the algorithm
was trained on 20 segmentations from rater 1 and tested on a single independent
segmentation from rater 1, for all possible selections of the independent segmentation,
using a jack-knifing procedure

Precision Recall R.O. S.L Hausdorff Mean
Left 0.845 0.882 0.757 0.860 2.85 mm 0.00459 mm
Right 0.845 0.867 0.744 0.852 3.56 mm 0.00587 mm

Table 4

Precision, recall, relative overlap (R.0.), similarity index (S.I.), Hausdorff distance, and
mean distance are reported for the leave-one-out analysis (N=21) when trained on rater
1 and tested on rater 2

Precision Recall R.O. S.IL Hausdorff Mean
Left 0.860 0.863 0.754 0.859 3.08 mm 0.00416 mm
Right 0.833 0.848 0.719 0.835 3.82 mm 0.00633 mm

We note that the Hausdorff errors are only slightly higher than in Table 3, which is to be
expected as these errors incorporate differences of opinion between the two human
raters.

metrics comparing our results to rater 1 (leg “b” in Fig. 3), shown in
Table 3. Table 4 compares our method with rater 2 (leg “c” in Fig. 3),
again using the leave-one-out technique. Finally, we compared the
two human raters directly with one another (leg “a” in Fig. 3) in
Table 5.

The first thing to note is that the error metrics from the training
and test sets are very close to each other, with the testing metrics
being slightly worse than the training metrics (which is to be
expected). This shows that ACM is not memorizing the data, but
instead learning the underlying structure of the hippocampus. Next,
our algorithm shows only a small difference in the error metrics as
opposed to the difference between the two human raters. Specifically,
if Tables 4 and 5 are compared, the relative overlap between two
human raters is on average 74.9% for the left and 74.3% for the right
hippocampus (Table 5), while the relative overlap between the
algorithm and a rater not involved in training it was 75.4% for the
left and 71.9% for the right hippocampus (Table 4). This shows that the
errors in our algorithm are comparable to the differences between two
raters. In terms of precision, the agreement between the two human
raters is about 3% higher than the agreement between the algorithm
and the rater not used to train it, with all values in the 83-89% range.
For recall, the algorithm agrees with the 2nd rater at least as well as
the 1st rater agrees with the 2nd rater, with all values in the 82-86%
range. The only metric for which the human raters agree with each
other more than they do with the algorithm is the mean error (see
Tables 4 and 5), but for that metric agreement is very high between all
three suggesting that any biases are very small.

To further compare the performance of our approach with other
segmentation methods, in Table 6 we present error metrics from three
other papers that report either fully or semi-automated hippocampal
segmentations. We present these only to show that ours is within the
same range as other automated approaches. Since each study uses a
different set of scans, an exact comparison is not possible.

Volumetric validation

Fig. 4 shows an example brain from the test set, with the right and
left hippocampi overlaid in yellow and green. There is good
differentiation of the hippocampus from the surrounding amygdala,
overlying CSF, and adjacent white matter, and the traces are spatially
smooth, simply connected, and visually resemble manual segmenta-
tions by experts. This image was chosen at random from the test set,

Table 5
Precision, recall, relative overlap (R.0.), similarity index (S.I.), Hausdorff distance, and
mean distance are reported between the two human raters (N=21)

Precision Recall R.O. S.L Hausdorff Mean
Left 0.891 0.827 0.749 0.856 2.89 mm 0.0000417 mm
Right 0.862 0.844 0.743 0.852 3.09 mm 0.0000605 mm

We note that in all metrics except the mean error, the two human raters agree with each
other about as well as they agree with the algorithm. The agreement between human
raters could be considered as an upper limit on the achievable agreement between the
same raters and any algorithm, even if it were possible for an algorithm to make no
€errors.
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Table 6
This table reports hippocampal segmentation metrics for other semi- and fully
automated approaches

Recall R.O. S.L
Powell et al. (2008) (Left: N=5) 0.82 0.72 0.84
Powell et al. (2008) (Right: N=5) 0.83 0.74 0.85
Fischl et al. (2002) (Left: N=134) N.A. ~0.78 N.A.
Fischl et al. (2002) (Right: N=134) N.A. ~0.80 N.A.
Hogan et al. (2000) (Left: N=5) N.A. 0.7378 N.A.
Hogan et al. (2000) (Right: N=5) N.A. 0.7578 N.A.

Our results compare favorably to those reported here. A complete comparison is not
possible without testing performance on the same set of brains.

and is representative of the segmentation accuracy obtainable on the
test images.

Table 7 shows that the inter-rater r (intraclass correlation)
between the two raters' hippocampal volumes and the volumes
obtained from our algorithm's segmentations are comparable.
Although the inter-rater r is lower when comparing our approach
to either rater versus the difference between the two raters, the
intraclass correlation is high, and, as expected, statistically sig-
nificant on both sides. For all of the tests in Table 7, we trained the
algorithm only on segmentations from rater 1, and this is one reason
why there is a slightly higher correlation observed with rater 1 than
with rater 2.

Next, we present a disease-based validation technique, based
on the premise that a necessary but not sufficient condition for a
valid classifier is that it differentiates group mean hippocampal
volumes between AD, MCI and controls. Since it is well-known
that reductions in hippocampal volume are associated with
declining cognitive function (Jack et al., 1999), we showed that
our method is accurately capturing known mean volumetric
differences between subgroups of interest with different stages of
dementia (controls, MCI, and AD). Due to the limited sample size

Axial

Coronal

Left Sagittal

Fig. 4. Automated segmentation results for an individual from the testing set. Here the
right hippocampus is encircled in yellow, and the left hippocampus in green. Axial,
coronal, and two sagittal slices through the hippocampus show that the hippocampal
boundary is captured accurately.

Table 7
Inter-rater r when comparing the three sets of volumes

Left Right Mean
Rater 1-Us 0.740** 0.717** 0.724**
Rater 2-Us 0.694"* 0.709** 0.699**
Rater 1-Rater 2 0.844** 0.857** 0.854**

These volumes were obtained from the leave-one-out analysis so a realistic testing
environment can be observed.
*p<0.01.

(N=21), we pooled left and right hippocampal volumes together
for some of these results. Volumetric summaries were computed
using the segmentations obtained in the leave-one-out testing
analysis.

Fig. 5 and Table 8 show that there is a sequential reduction in
volume between controls, MCI, and AD subjects, consistent with many
prior studies (Convit et al., 1997). This shows that the brain MRIs we
are working with show the expected profile of volumetric effects with
disease progression, and that the segmentation approach is measuring
hippocampal volumes with low enough methodological error to
differentiate the 3 diagnostic groups, at least at the group level, in a
very small sample.

Table 9 shows strong and significant positive correlations between
hippocampal volume and MMSE scores (r=0.587 for the average of the
left and right hippocampal volumes; p<0.01), and with sum-of-boxes
CDR scores, for both the left and right, and mean hippocampal
volumes (r=-0.642 for the mean volume, p<0.01). Correlations are
high (around 0.6) when the average of the left and right hippocampal
volumes is measured, suggesting that the hippocampal volumes
explain a significant proportion of the variation in clinical decline.
Although these associations are known, it provides evidence that the
classifier error is low enough to allow their detection in small samples.
Each of these values is significant despite the very small sample size,
further confirming that our method is capable of capturing disease-
associated hippocampal degeneration.

In a previous cross-sectional study on the ADNI dataset, we used
tensor-based morphometry (TBM) to analyze brain differences
associated with different stages of disease progression (Hua et al.,
2008). TBM is a method based on high-dimensional image registra-
tion, which derives information on regional volumetric differences
from a deformation field that aligns the images. TBM and voxel-based
morphometry (VBM (Ashburner and Friston, 2000)) are closely linked
and each measures voxel-wise expansion (or contraction) of the brain
as compared to a minimal deformation template, which represents
the mean anatomy of the subjects (Lepore et al., 2007).

Mean Volume
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Normal MCI AD
Diagnosis

Fig. 5. Volumetric analysis for the three different diagnostic groups. The error bars
represent standard errors of the mean. Percent differences are tabulated in Table 8.
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Table 8
Mean differences in hippocampal volume (as a percentage) are shown for the groups
listed in the left column for all subjects

All
Normal-AD 20.32%"
Normal-MCI 4.13%
MCI-AD 16.89%*

Table 10

This table reports the correlations between hippocampal volumes estimated using
tensor-based morphometry (as reported (Hua et al., 2008)) and clinical covariates on
the hippocampus when using TBM

Left HP expansion

MMSE 0.099 0.143 0.126
Sum-of-boxes CDR  -0.151 -0.272 -0.153

Right HP expansion Mean HP expansion

Even though this is a very small sample (N=21; 7 of each diagnosis), there is a
hippocampal volume reduction associated with declining function, and the group
differences are significant even in a sample this small. These results are shown for
validation purposes; a large sample in the future would allow more accurate estimation
of deficits and factors that influence them.

*p<0.05.

**p<0.01.

Voxel-based morphometry (Davatzikos et al., 2001; Good et al.,
2001) is a related approach that modulates the voxel intensity of a set
of spatially normalized gray matter maps by the local expansion factor
of a 3D deformation field that aligns each brain to a standard brain
template.

Although TBM has proven useful in quantifying brain atrophy over
time in 3D (Leow et al., 2005a; Studholme et al., 2004; Teipel et al.,
2007), in cross-sectional studies TBM can be less effective for
quantifying volumetric differences in small brain regions (such as
the hippocampus) when the ROI is defined on the minimal deforma-
tion template.

This is to be expected, as TBM may be considered a rudimentary
hippocampal segmentation approach that works by fluidly deforming
a mean anatomical template onto the target image — the criteria to
guide accurate segmentations are typically limited to measures of
agreement in image intensities, such as the mutual information (Leow
et al., 2005b; Viola and Wells, 1995). Table 10 shows the correlation
between hippocampal volume (as measured with TBM) and MMSE and
sum-of-boxes CDR scores. Note that none of the correlations is even
significant in this small sample, and the measures compare poorly with
those shown in Table 9. This suggests that our direct segmentation of
hippocampal anatomy via voxel-level classification is better correlated
with cognition than measures we previously obtained using a
deformation-based morphometry method.

Longitudinal validation by repeat scanning

As a final validation approach, we segmented a set of six-month
follow-up scans, acquired using an identical imaging protocol, for
the individuals whose baseline scans were analyzed in this paper. At
the time of writing, six-month follow-up scans were available for 18
of the 21 subjects analyzed in this paper, including 6 AD patients, 5
MCI patients, and 7 control subjects. Due to the very small sample
size (especially in the AD and MCI groups) and short interval, we
present this analysis to show that our algorithm is reproducible,
giving relatively consistent hippocampal volumes over a short

Table 9
This table reports the correlations between hippocampal volumes and clinical
covariates

Left HP volume Right HP volume Mean HP volume

0.579**
-0.705**

0.423
-0.369*

MMSE
Sum-of-boxes CDR

0.587**
-0.642"*

A desirable but not sufficient condition for a hippocampal segmentation approach is
that the methodological error is small enough for correlations to be detected between
cognition and hippocampal volume. As expected, correlations are positive between
MMSE scores and hippocampal volume, as higher MMSE scores denote better cognitive
performance. Also as expected, correlations are negative between hippocampal volume
and sum-of-boxes CDR, as higher CDR scores denote more severe impairment.
*p<0.05.
**p<0.01.

None of these correlations has a significant p-value, by contrast with the hippocampal
volume measures obtained by our algorithm, which correlate strongly with cognitive
and clinical decline (Table 9).

interval, when minimal hippocampal volume loss is expected.
Table 11 shows that there is minimal loss over 6 months, which is
to be expected. We note that this change represents a combination
of biological changes and the methodological errors in segmenta-
tion, which derive partly from the algorithm and partly from the
fact that the image acquisition is not perfectly reproducible. As
these sources of methodological error are expected to be small and
additive, the fact that the mean change is near 1.5% for the left and
0% for the right hippocampus is in line with expectation. Given that
some small biological change is also occurring, this suggests good
longitudinal stability for the volume measurements obtained by our
algorithm.

Discussion

In this study, we have demonstrated that ACM is an effective
method for segmenting the hippocampus. There were three major
findings. First, the agreement between our algorithm and two
different human raters was comparable with their agreement with
each other, which is a reasonable target for segmentation accuracy
given that even trained human raters do not entirely agree on the
labeling of all hippocampal voxels. Second, we found that the
agreement with a rater not involved with training the algorithm was
almost as good as the agreement with the rater who trained it,
suggesting acceptable inter-rater reliability versus expert human
raters. Third, we found that the hippocampal volumes segmented by
our algorithm correlated well with cognitive and clinical ratings of
dementia severity, which is an important characteristic for an
automated volume measurement algorithm. For an algorithm to be
useable in a drug trial context for the quantification of brain atrophy,
it is necessary for the automatically measured volumes to replicate
known differences in mean hippocampal volume between AD, MCI,
and controls, and it is also desirable for the measures to be accurate
enough to correlate with clinical measures of disease burden as they
did here in a small sample (21 subjects; 7 of each diagnosis). In a
further demonstration of longitudinal stability, we found that the
change detected in 6-month repeat scans was around 0-1.5% for a
group of 18 subjects. As this group was heterogeneous with regard to
diagnosis and the time interval small, the intent of the experiment
was merely to show that the mean changes were small, and within
the range of expected biological variation.

Table 11
This table reports the % volume loss in the hippocampus for all 18 subjects that had
follow-up scans over a 6-month interval

Left HP Right HP Mean HP

-1.47% 0.08%

% Loss -0.01%

For both hippocampi (and the mean volume), the mean percent loss is very small. This
indicates good longitudinal reproducibility of our segmentation algorithm. For all of
these tests, the p-value is greater than 0.3, indicating that there is no significant
difference between baseline and 6 month follow-up hippocampal volumes. For this test
we segmented the follow-up scans using the leave-one-out analysis so that a separation
between training and testing brains at each time point is maintained.
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This study is representative of several current research efforts that
use automated methods to measure hippocampal atrophy in AD,
including large diffeomorphic metric mapping (Csernansky et al.,
2004; Wang et al., 2007), volumetric analysis (Geuze et al., 2005), and
fluid registration (van de Pol et al., 2007). For purposes of comparison
with our technique, we computed hippocampal volume measures from
arelated technique, known as tensor-based morphometry (TBM), which
estimates anatomical structure volumes from a deformation transform
that re-shapes a mean anatomical template onto each individual scan.
Our TBM measures correlated poorly with cognitive assessments,
although clearly in such a small sample the power to detect such asso-
ciations is severely limited. Some reasons why TBM may not be optimal
for hippocampal volumetric study are detailed in Hua et al. (2008) and
Apostolova et al. (2006a); Becker et al. (2006); Frisoni et al. (2006). TBM
is typically best for assessing differences at a scale greater than 3-4 mm
(the typical resolution of the spectral representation used to compute
the deformation field) (Hua et al., 2008; Leow et al., 2005a). For smaller-
scale effects, direct modeling of the structure, e.g. using surface-based
geometrical methods, may offer additional statistical power to detect
sub-regional differences. Even then, it may not be possible to achieve
accurate regional measurements of atrophy, especially in small regions
such as the hippocampus, since that would assume a local highly
accurate registration. Direct assessments of hippocampal volume by our
ACM algorithm correlated better than TBM did with clinical dementia
ratings and MMSE scores, and explained a substantial proportion of their
variance even in this relatively small sample (r~0.6; p<0.01; N=21).
Conversely, a relative advantage of TBM, and other voxel-based mapping
approaches, such as voxel-based morphometry, is that they map the
profile of atrophy throughout the brain without the need for explicit
segmentation of anatomical structures. VBM has been widely used in
Alzheimer's disease studies, and does not rely on an explicit segmenta-
tion of hippocampal anatomy in each scan, other than that which is
implied in a voxel-based analysis by aligning scans to a common
template. Chetelat et al. (2005), for example, tracked gray matter loss
with VBM in a longitudinal study of 18 MCI patients. Whitwell et al.
(2007) demonstrated the profile of gray matter loss over three years in
63 MCI subjects, and Good et al. (2002) compared VBM to region-of-
interest analysis and showed that they compared favorably in detecting
structural differences in Alzheimer's disease.

The machine learning approach presented here selects features
based on a training set of expert segmentations, so it may generalize
well for segmenting other subcortical structures, such as the thalamus
and basal ganglia. The next step will be to further examine ACM with
AdaBoost by evaluating it on a large sample, and examining its
performance on other subcortical structures.
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