Toward a Causal Model of Cardiovascular Responses to Stress and the Development of Cardiovascular Disease

AMY R. SCHWARTZ, MD, WILLIAM GERIN, PhD, KARINA W. DAVIDSON, PhD, THOMAS G. PICKERING, MD, DPHIL, JOSEPH F. BROSSCHOT, PhD, JULIAN F. THAYER, PhD, NICHOLAS CHRISTENFELD, PhD, AND WOLFGANG LINDEN, PhD

Objective: Cardiovascular reactivity is hypothesized to mediate the relationship between stress and cardiovascular disease. We describe three considerations that are crucial for a causal model of cardiovascular responses to stress: the need for laboratory-life generalizability, the role of interactions between environmental exposures and individual response predispositions, and the importance of the duration of both stressor exposure and cardiovascular responding. Methods: We illustrate current understanding of stress—cardiovascular disease relationships with examples from the human and animal psychophysiology, epidemiology, and genetics literature. Results: In a causal model of reactivity, the usefulness of laboratory assessment rests on the assumption that laboratory-based cardiovascular reactivity predicts responses in the natural environment. We find only limited generalizability and suggest that cardiovascular responses to stress can be better understood when examined in the natural environment. The interaction of individual response predispositions and stressor exposures contributes to the development and progression of cardiovascular disease; stress-disease relationships could therefore be better understood if predispositions and exposures were assessed simultaneously in interactive models. Cardiovascular responses to stress are likely to be most deleterious when responses are prolonged. Responses may vary in their magnitude, frequency, and duration; however, reactivity captures only response magnitude. The assessment of anticipatory and recovery measures, with response magnitude, may therefore lead to a more useful model of the stress-disease relationship. Conclusions: A causal model of cardiovascular responses to stress should generalize to the real world, assess interactions between individual predispositions and environmental exposures, and focus on sustained pathogenic exposures and responses. Key words: cardiovascular reactivity, blood pressure, stress, hypertension, coronary artery disease.

INTRODUCTION

Large stress-induced blood pressure (BP) and heart rate (HR) elevations are hypothesized to lead, over time, to elevation of the tonic BP level and the development of coronary artery disease (CAD). Investigation of cardiovascular responses to stress most often occurs in the laboratory through assessment of cardiovascular reactivity (CVR): BP and HR elevations occurring during the presentation of a discrete stressor. Early reactivity models did not postulate a causal role for reactivity in the genesis of hypertension (HTN) or CAD; rather, CVR was conceived of as a marker of risk for future HTN (1).

Over the past few decades, CVR has come to be viewed as a causal factor in the development of both HTN and CAD (1). This view has stimulated a great deal of research assessing properties of the reactivity construct, leading to a burgeoning literature investigating CVR moderators, including gender; race; socioeconomic status (SES); personality measures, such as Type A and hostility; psychological disorders, including depression, anxiety, and panic; menstrual cycle phase; and social support (1).

This review focuses on implications that arise in considering CVR to be a cause, rather than simply a marker, of CVD. We suggest that the evidence does not support such a role and that the emphasis placed on CVR during the past several decades is not justified by the published literature. This is not intended as a comprehensive review of the CVR literature; instead we focus on three properties that we think are necessary for a causal model of the stress-CVD relationship and are neglected by the current CVR paradigm:

1. Generalizability. A key assumption underlying CVR as a causal factor in CVD is that cardiovascular responses observed in the laboratory predict BP and HR responses occurring in the real world. We find little evidence for the generalizability of CVR. If laboratory CVR does not gener-
alize to real-world cardiovascular responses, then CVR studied in the laboratory cannot provide information about the role of stress or other psychosocial factors in CVD.

2. The need to focus on interactions. HTN and CAD are slowly progressive diseases that result from multiple environmental and individual difference factors, acting additively and interactively. However, the traditional CVR model emphasizes main effects. Thus, our second focus is the role of interactions between physiological or psychological predispositions and environmental exposures in predicting disease risk.

3. Duration of stressor exposure and cardiovascular response. BP and HR elevations in response to stress are hypothesized to lead to disease. Thus, pathogenicity should increase as the cumulative duration of cardiovascular response increases. Prolonged cardiovascular responses may occur with exposure to chronic or repeated stressors or as a result of cognitive or emotional processes that sustain cardiovascular arousal. However, laboratory CVR does not discriminate between isolated transient responses and frequent prolonged responses. Thus, our third focus is on the importance of duration of exposure and cardiovascular response to a causal model of stressor effects on CVD.

We attempt to illustrate the current understanding of CVD pathogenesis with examples from the human and animal literature in a variety of disciplines, including psychophysiology, epidemiology, and genetics. However, the relevant literature is far too great to be cited in a single review. For reviews of other facets of the CVR-disease relationship and alternate perspectives, we refer the reader to Treiber et al. (2), Kamarck and Lovallo (3), Lovallo and Gerin (4), and Pickering and Gerin (5).

GENERALIZABILITY OF LABORATORY REACTIVITY TO THE NATURAL ENVIRONMENT

In a causal model of CVR, the usefulness of laboratory assessment rests on the assumption that CVR measured in the laboratory will serve as a proxy for stress-induced cardiovascular responses occurring in the natural environment. Several reviews have examined the degree to which CVR to laboratory stressors predicts the response to stressors in the natural environment and the mean level or variability of BP or HR during daily life. Two reviews published in 1990 (5, 6) noted quantitative and methodological limitations of existing studies. Pickering and Gerin (5) examined a dozen studies, finding little evidence of generalizability and concluding that “the data are insufficient to give a definitive answer, but are so far unimpressive.” Manuck et al. (6) noted that the generalizability of laboratory CVR was limited by the variability among stressors encountered by subjects during ambulatory monitoring (and daily life) and by the limited reliability of reactivity testing. They suggested that error variance could be reduced by performing multiple reactivity assessments and multi-day ambulatory assessments. Four years later, Turner et al. (7) identified 32 relevant studies that they thought presented moderate evidence for laboratory-life generalizability. They noted strong relationships between laboratory and field BP levels but less consistent evidence for associations between laboratory and field CVR and between laboratory CVR and field BP levels. Linden et al. (8), in 1998, assessed five studies that both compared CVR to several tasks in the laboratory with ambulatory BP (ABP) levels and tested whether the addition of CVR measures improved the prediction of ABP over that found using laboratory resting levels. They suggested that aggregation of scores across all laboratory periods (ie, baseline, adaptation, reactivity, and recovery) tended to improve predictor models, whereas reactivity tended to add little to baseline measures. They also noted that interpersonal tasks tended to show greater predictive ability than other tasks. Kamarck and Lovallo (3), in this issue, review the current generalizability literature, finding modest results and that results, when present, “are inconsistent across tasks and parameters.” Like previous authors, they suggest that the failure to find generalizability may be due to limitations of the traditional laboratory CVR methodology.

Person-by-Situation Effects Limit Generalizability

CVR is highly vulnerable to situation and person-by-situation effects, both inside and outside the laboratory (9). For example, Gerin et al. (10) examined the effect of minor variations in setting on generalizability. Female college students performed a mental arithmetic (MA) task on four occasions; all procedures except for the setting (task, equipment, experimenter, etc.) were identical during each performance of the task. The task was performed twice in the laboratory, once in a classroom, and once in the living rooms of the students’ dormitories. The test-retest correlations for reactivity change scores between the two sessions conducted in the laboratory were moderately reliable for BP, with r values of 0.68, 0.62, and 0.09 for systolic BP (SBP), diastolic BP (DBP), and HR, respectively. The correlations across settings, however, were sub-
stantially smaller, with average correlations of 0.45, 0.35, and 0.12 for SBP, DBP, and HR, respectively. This suggests that even when identical tasks are used, CVR observed in the laboratory is at best only moderately generalizable to nonlaboratory situations.

Aggregation as a Strategy for Improving Generalizability

Kamarck et al. (3, 11) hypothesized that the lack of evidence for the generalizability of laboratory CVR may be due to the failure to sample an adequate number of laboratory tasks and sessions. Aggregation across multiple tasks and sessions might allow greater generalizability for two reasons. First, each measurement contains random error not due to systematic influences (ie, person or situation effects); the use of multiple measurements will increase reliability and reduce the contribution of random error variance. Second, aggregation is likely to increase the diversity of sampled situations so that they may better represent those encountered in the real world.

Studies using aggregation as a technique to improve generalizability have shown mixed results (11–13). The most successful study was done by Kamarck et al. (11), who measured anticipatory responses and CVR to giving two classroom speeches. Laboratory tasks were each performed at two sessions and consisted of four computer-based active coping tasks and two other tasks, silently preparing a speech and delivering the speech. Correlations between the response to the individual laboratory tasks and the classroom stressor were quite modest (mean r values = 0.13, 0.17, and 0.16 for SBP, DBP, and HR, respectively) and were not significantly different from zero.

The authors performed generalizability analyses aggregating across the laboratory tasks, aggregating across the two testing sessions, and aggregating across both tasks and sessions. Average correlations between CVR aggregated across sessions in the laboratory and in the classroom were small and nonsignificant. For average task-aggregated CVR, the relationship to classroom reactivity was significant for DBP ($r = 0.31$) only. When aggregating across both task and session, correlations with the classroom measures were significant, with r values of 0.26, 0.40, and 0.30 for SBP, DBP, and HR, respectively. We note, however, that even under this “best-case scenario,” laboratory CVR accounted for only 7% to 16% of the variance in response to a discrete real-world stressor, a classroom speech. However, if the utility of aggregation stems from the ability to represent the average response to a diverse array of situations, that utility will be obscured when only one real-life stressor has been sampled as the outcome.

Use of Tasks With Low Ecological Validity May Limit Generalizability

The ecological validity of many commonly used laboratory tasks is questionable. Many laboratory studies use stressors that are relatively easy to administer yet have no compelling rationale for their use. Stressors associated with the development of CVD or overall mortality include job strain (14, 15), marital stress (16), caregiving strain (17), and low SES (18). The commonality between the emotional, cognitive, and physiological responses to these real-world stressors and the response to laboratory tasks such as star mirror tracing, the cold pressor test (CPT), and MA has not been demonstrated. Animal studies of the stress-CVD relationship, in contrast, generally involve potent and chronic stressors, such as unstable social living situations or daily threat of bodily harm, lasting months to years (eg, Refs. 19 and 20).

As noted by Linden et al. (8), several studies (21–24) have shown greater generalizability for tasks such as social competence or Type A interviews, discussing an anger-provoking event, and listening to a competitor’s speech than for traditional laboratory stressors. This suggests that social tasks may be more representative of daily life stressors than are the cognitive and physical tasks historically used in assessing CVR.

Addition of Anticipatory and Recovery Responses May Allow Greater Generalizability to Daily Life

The focus, in the laboratory, on cardiovascular responses that occur during exposure to a stressor may neglect clinically important aspects of the psychological and physiological response to stress; cardiovascular responses to stress vary not only in their magnitude but also in the extent to which they anticipate the stressor and continue after the stressor has passed as well as the degree to which they recur. These dimensions may not be tapped by laboratory reactivity, potentially limiting generalizability to daily life BP.

The lack of evidence that CVR generalizes to the real world undermines the putative role of CVR, as it is currently conceptualized and assessed, as a causal pathway in the development of CVD. However, it is important to note that lack of support for the laboratory CVR model does not imply that BP and HR elevations occurring in response to stress in the real world cannot lead to the development of CVD.

There are several modifications to laboratory CVR protocols that may improve generalizability. The use of social stressors (or other more ecologically valid tasks), aggregation across tasks to account for person-by-situation effects, and the addition of anticipatory
CAUSAL MODEL OF CARDIOVASCULAR RESPONSES

and recovery responses may allow better prediction of variability in real-life responding. However, in light of the limited generalizability of the laboratory CVR model, the understanding of the cardiovascular response to stress is likely to benefit from greater emphasis on assessing responses occurring in the natural environment.

A noteworthy parallel occurs with regard to the diagnosis of HTN, which has traditionally been based on readings obtained in the physician’s office. The rationale for office measurement is similar to that underlying the study of laboratory CVR; measurement in the physician’s office is considered useful because it is thought to reflect the “true” BP. However, the relationship between the office BP and BP in daily life is quite weak for many persons who have white coat HTN (25), or masked HTN (26). Indeed, ABP levels are more useful predictors of cardiovascular morbidity than is office BP (27, 28), likely because ambulatory measurements sample BP during the self-selected, broad array of situations persons encounter in their lives. Thus, to know a person’s BP as it occurs in the real world, measurements must be taken in the real world. We suggest that the same is true for CVR.

INTERACTIONS AMONG ENVIRONMENTAL, INDIVIDUAL DIFFERENCE, AND GENETIC FACTORS

Development of CVD and its risk factors, including HTN and atherosclerosis, is multifactorial, determined by a broad array of genetic, environmental, and behavioral factors (29). It is important to note that genetic and nongenetic factors do not act merely in parallel but in an interactive fashion. Thus, the effect of many genes will depend on the environment in which they are expressed. Likewise, there is great interindividual variability in response to environmental factors, with the impact of a given factor often dependent on the individual’s genetic predisposition (30). We review several individual predispositions and environmental exposures that have been found to interact in predicting CVD development.

When Macaque monkeys consume diets that induce moderate hypercholesterolemia, they develop atherosclerotic lesions that are similar to those seen in human beings. Macaque monkeys exhibit complex social interactions: social groups are characterized by status hierarchies in which dominant animals reliably defeat subordinates. The presence of unfamiliar monkeys increases confrontation among the group members as individuals attempt to reestablish affiliate and hierarchical relationships (31).

Kaplan et al. (19) performed an experiment in which male cynomolgus macaques were fed an atherogenic diet similar to that consumed by typical North Americans. The monkeys were housed in five-member groups and assigned to one of two social conditions. In the unstable condition, group memberships were altered periodically, and a female was placed into the groups on a regular basis to provide an additional stimulus for competition. In the stable condition, initial group memberships were maintained without disruption for the 22 months of the experiment. Behavioral observation allowed classification of monkeys as either dominant or subordinate. At the conclusion of the experiment, necropsy examination of coronary arteries showed an interaction between social environment and social status on the development of atherosclerosis. Dominant monkeys in the unstable social condition showed significantly more coronary artery atherosclerosis (CAA) than dominant monkeys in stable social groups or subordinate animals in either condition. Thus, social dominance was associated with severity of CAA in male macaques, but only when they were exposed to social conditions that provided recurrent behavioral challenges.

Female monkeys showed a different pattern of responses. In a similar experiment (32), premenopausal female cynomolgus macaques consumed an atherogenic diet while housed in five-member stable or unstable social groups. Males eating the same diet were housed in five-member stable social groups. Dominant females showed less atherosclerosis than the males. However, this protection did not extend to subordinate females, who showed atherosclerosis of similar severity to that seen in males. In females, no effect of social stability was seen, with animals showing comparable CAA whether housed in stable or unstable social groups.

The macaque model offers an example of a behavioral predisposition (dominance or subordinance) interacting with exposure to a social stressor (instability) and gender in predicting CAA development. Rat models of BP regulation exhibit similar relationships, with genetic predisposition interacting with stressor or salt exposure to predict HTN. Lawler et al. (33) developed the borderline hypertensive rat (BHR) model of environmentally induced HTN. BHRs are the product of mating the spontaneously hypertensive rat (SHR) and the Wistar-Kyoto (WKY) rat. The SHR has a progressive rise in BP with age and inevitably develops HTN; the WKY rat is a normotensive control (20). BHRs inherit a genetic predisposition from their hypertensive parent. But unlike the SHR, they ordinarily have a “borderline” resting SBP of 140 to 160 mm Hg at 4 months of age and do not display increasing BP with age. However, when BHRs are exposed to chronic...
stress or a high-salt diet, they quickly develop frank HTN, a response that is not seen in the genetically nonsusceptible WKY rat, which remains normotensive (20).

Similarly, persons differ in their predisposition to develop disease as a result of stress and other environmental exposures. In addition, the effect of a given predisposition will vary on the basis of the environment in which it is expressed. Thus, if the environment tends to be characterized by little social conflict and other sources of stress, or stress is buffered by, for example, social support or constructive coping behaviors, stress-induced CVD is unlikely to develop even in those who may have a physiological susceptibility.

Thus, although BP tends to rise with age in many populations, in some environments this tendency is not expressed. An example is provided by a group of Italian nuns living in secluded orders (34). At baseline, the age, BP, body mass index (BMI), and family history of HTN did not differ between the nuns and a group of lay women living in the same area. Although 19% of the nuns had a family history of HTN, over a 30-year follow-up period, none developed a DBP greater than 90 mm Hg. In contrast, SBP and DBP increased with age in the lay women. These differences were not explained by differences in physical activity, diet, childbearing, or changes in BMI.

Several epidemiological studies have compared the BPs of rural villagers with their counterparts who have migrated to urban areas. In populations as diverse as the Kenyan Luo, the Oromos of Ethiopia, northwest Iranians, and the Pacific island population of Tokelau, migration from a rural to urban environment is associated with the development of higher BP and increased incidence of HTN (35–38). This change has been variously attributed to exposure to the psychosocial stress of urban life or to an “industrial” diet, including high sodium intake.

Migration does not result in a universal rise in BP in the affected population; rather it is likely that those who possess a genetic or behavioral susceptibility show elevated BP, leading to an overall increase in the population BP level and HTN prevalence. Similarly, as has been suggested previously (39), the tendency toward large cardiovascular responses to stress is likely to lead to disease only when hyperreactive persons are exposed frequently to stress or possess other predispositions.

Indeed, recent studies have demonstrated that stress exposure and cardiovascular responses to stress may interact to predict the development of HTN and atherosclerosis (40–42). Light et al. (40) exposed male college students to CPT and shock threat reactivity testing; BP was reassessed 10 years later. Men who exhibited high reactivity and who had a positive family history of HTN showed higher clinic BP at follow-up. In those with a negative family history of HTN, however, no evidence of differences in follow-up BP based on reactivity group were found. In addition, high reactors with high self-reported daily stress had higher BP levels at follow-up compared with high reactors with low daily stress exposure. Thus, an effect of individual differences in CVR on the development of elevated BP was seen only in those who reported high levels of stress exposure or were likely to possess a genetic predisposition to develop HTN.

Everson et al. (41) and Lynch et al. (42) investigated predictors of the 4-year progression of carotid artery atherosclerosis in a population-based sample of Finnish men. They assessed workplace demands and SES, and BP response in anticipation of an exercise stress test. Significant interactions between workplace demands and anticipatory cardiovascular responses were seen: men who showed a ≥20 mm Hg SBP increase before the exercise stress test and who reported high job demands showed the greatest atherosclerotic progression at follow-up. There was also some evidence of an interaction between SES and anticipatory SBP response: men who showed an SBP increase of ≥30 mm Hg and were of low SES also showed greater atherosclerotic progression, although many of the SES interaction terms were marginally significant.

Demanding work environments and socioeconomic hardship could both be circumstances that might provide physiologically or temperamentally susceptible individuals with frequent occasions for exaggerated cardiovascular responses. In the foregoing studies, the predisposition to hyperreactivity was associated with pathology when highly reactive persons were exposed to chronically stressful conditions or were likely to possess a genetic predisposition to develop disease. Thus, cardiovascular responses to stress should be studied in interaction with stress exposure and genetic susceptibility. We suggest that investigations in individuals’ usual environments are likely to be most fruitful.

Perhaps the most well-developed literature addressing specific gene-environment interactions on CVD in humans assesses pharmacogenetic effects, genetically determined variations in the response to medication. Thus, two recent studies (43, 44) suggest that variation in the genes for estrogen receptor α (ER-α) and prothrombin (a coagulation protein) may affect the cardiovascular response to the use of hormone replacement therapy (HRT). Behaviors that have been found to interact with genetic predispositions include exercise and tobacco and alcohol use. Hines et al. (45) investigated the relationship between alcohol use and alcohol...
greater BP reactivity to the (aggregated) stressors. Those with at least one copy of the \(\gamma_2 \) allele had the greatest reduction in risk of MI, suggesting that slower clearance maximizes the beneficial effect of alcohol on cardiovascular risk. Montgomery et al. (47) investigated the relationship between exercise and angiotensin-converting enzyme (ACE) genotype on left ventricular (LV) mass. The \(D/D \) genotype of the ACE gene is associated with higher ACE levels than the \(I/I \) allele. ACE is responsible for the degradation of growth-inhibitory kinins and the formation of angiotensin II, which has several effects, including the promotion of cardiac hypertrophy. LV mass was compared at the start and end of 10 weeks of intensive physical training. Pretraining LV mass was similar across genotypes, but those with the \(D/D \) genotype experienced an increase in LV mass with training, whereas those with the \(I/I \) genotype did not. The \(D/D \) ACE genotype may be associated with a small elevation in risk of MI (48). The different responses of those with the \(D/D \) and \(I/I \) genotypes to an “exercise stressor” suggest that it is possible that the ACE gene interacts with other hypertrophic stimuli, such as the presence of HTN or chronic stress, to promote CVD. Two other genes that might interact with stressor exposure in the development of CVD are the serotonin transporter gene, \(5\text{HTTLPR} \), and the \(\beta_2 \)-adrenergic receptor gene. A common polymorphism affects transcription of the \(5\text{HTTLPR} \) gene, with activity of the \(l \) allele greater than that of the \(s \) allele (49). Williams et al. (50) exposed subjects to several laboratory stressors, including anger and sadness recall tasks and neutral reading. They found no differences in baseline BP among the three genotypes \((U/l, l/s, \text{and } s/s) \); however, those with at least one copy of the \(l \) allele showed greater BP reactivity to the (aggregated) stressors.

Stimulation of the \(\beta_2 \)-adrenergic receptor by epinephrine leads to vasodilation, which may blunt the pressor effects of sympathetic nervous system (SNS) stimulation. \(\beta_2 \)-adrenergic receptor polymorphisms include Arg16/Gly16 and Gln27/Glu27. Dishy et al. (51) found that subjects homozygous for the Glu27 allele showed the greatest maximal response to a \(\beta_2 \)-adrenergic agonist. Those homozygous for the Arg16 allele (particularly if they were also homozygous for Gln27) showed desensitization of the response to the \(\beta_2 \) agonist so that venodilation was not maintained over a 2-hour treatment period. It is possible that long-term exposure to SNS activity (eg, due to chronic stress) might lead to tonically elevated BP in those with a predisposition to \(\beta_2 \)-adrenergic desensitization. Li et al. (52) investigated the relationship between these polymorphisms and BP measured at baseline and during a 3-minute MA task and 2-minute CPT. They found that Arg16 was associated with baseline and task SBP and DBP levels and with DBP reactivity. BP during prolonged tasks or an extended recovery period (to allow for differential desensitization to occur) was not assessed. Conflicting studies (ie, Refs. 53 and 54) have assessed the relationship between \(\beta_2 \)-adrenergic receptor polymorphisms and BP level or HTN status. Ambulatory BP regulation in those with the \(\beta_2 \)-adrenergic receptor (or \(5\text{HTTLPR} \) polymorphisms is not yet well characterized, and interactions with real-world stressor exposure have not yet been assessed.

The traditional model of cardiovascular responses to stress has emphasized main effects. However, CVD results both from the additive effects of genetic and environmental factors and from their interaction. We have illustrated interactions among environmental factors (ie, social stress, workplace demands, SES), genetic variation (ie, salt sensitivity, alcohol metabolism), behaviors (ie, alcohol use, exercise, diet), and personality traits (ie, dominance). Those mentioned are only a few of the many factors that may act interactively as predispositions or exposures. Others include psychosocial factors such as depression and personality traits such as hostility, defensiveness, and neuroticism. Furthermore, many of the categorizations we have used are somewhat simplistic. Behaviors and personality traits have complex genetic and environmental origins and may act both as exposures and predispositions.

CVD cannot be fully understood by examining single factors in isolation. Environmental, behavioral, and genetic risk factors must be assessed simultaneously. Doing so has the potential to elucidate disease pathways, lead to identification of persons at risk for disease, and allow interventions to be tailored to individuals’ predispositions and exposures.

IMPORTANCE OF THE DURATION OF EXPOSURE AND RESPONSE TO STRESS

If cardiovascular responses to stress are pathogenic, the most deleterious effects would be expected when such responses occur over a prolonged period of time. This can occur when people are exposed to chronic or repeated stressors. Indeed, most stressors associated with the development of CVD or overall mortality are chronic. For example, job strain is associated with the
prolonged cardiovascular responding actually spent sor is physically present. For most people, little time is of course, not limited to those occasions when a stressor is physically present. For most people, little time is actually spent “in the heat of the moment.” However, the greater portion of a lifetime can be spent in anticipation of future stressors and recovery from past stressors, including their repeated cognitive representation. Posttraumatic stress disorder may be considered an extreme example of such prolonged cognitive activation.

Indeed, the relationship between the duration of the physiological stress response and the development of disease has been a critical element of both early and recent conceptions of stress pathology. In 1936 Selye (55) described the stress response as a process involving three phases: activation, resistance, and exhaustion. He suggested that the body responds initially to challenge with physiological activation of defense systems; a resistance phase follows, during which stress is to be resolved, and if unsuccessful, the body may experience exhaustion. Activation that endures beyond the resistance stage is hypothesized to cause disease. Selye’s model of the stress response presaged more modern conceptions of allostatic systems (those that respond to stressors through the dynamic regulation of physiological states). Allostatic load often involves frequent or prolonged responding. Such sustained arousal may be due to recurring stress, poor adaptation to repeated stressors, or the inability to inactivate allostatic responses after a stressor ends (56).

CVR captures only the magnitude of the stress response and assesses only the response that occurs at the time the stressor is present; thus it is poorly suited to assessing prolonged cardiovascular arousal. This approach neglects assessment of the frequency of the response as well as its duration: the speed and degree of recovery in the period following the stressor and the extent to which the cardiovascular response occurs in anticipation of stressors that may yet occur. Thus, laboratory reactivity may be inherently limited in its ability to model the multidimensional nature of real-life responding. It is possible that the cumulative load from moderate but prolonged anticipatory and recovery BP elevations may far exceed that caused by reactivity spikes. Sustained BP elevations predict the development of end-organ damage, whereas the role that brief BP peaks may play remains uncertain (57).

Hines and Brown, who published the first report comparing cardiovascular responses to the CPT in HTs and NTs (58), considered measurement of recovery to be a standard element of the test and noted that hypertensive patients show both delayed recovery and greater CVR than normotensive subjects. Poorer recovery in hypertensive subjects than in normotensive subjects has been found in many studies using a wide array of stressors (59). Haynes et al. (60) assessed 65 studies in which CVR and recovery data were collected. Among 81 analyses indicating nonsignificant effects of a variable (ie, condition or group) during the reactivity period, significant effects on recovery were found in 74% of cases. Conversely, of 74 analyses that indicated significant effects on reactivity, 42% showed nonsignificant effects on recovery. This suggests that reactivity and recovery capture substantively different information and points to the potential utility of measuring recovery. However, it is as yet unclear whether current laboratory methods of assessing the duration of BP and HR elevation in response to stress (ie, the use of anticipatory or recovery measures assessed immediately before or after stressor presentation) will prove useful for modeling cardiovascular responding as it occurs in the real world.

There is presently no universally accepted method for measuring recovery; change scores (from baseline or reactivity) and “time to recovery” indices are commonly used. Christenfeld et al. (61) compared the 1-week test-retest reliability of four measures of recovery: time to achieve complete recovery, recovery change score at a fixed time after the end of the stressor, recovery change score across a 20-minute recovery period, and a curve-fitting method using a three-parameter (amount, speed, and level of recovery) logistic function. Recovery was measured in students after walking in place, MA, and a speech task. They found only modest reliability for the three traditional measures of recovery. However, each of the three parameters of the curve-fitting measure showed acceptable reliability, with average r values of 0.56 to 0.65. Thus, curve-fitting methods may prove to be superior predictors of outcomes than other measures of recovery; however, they are as yet infrequently utilized.

Few studies have investigated the generalizability of recovery measures to the natural environment. Rutledge et al. (62) examined BP at baseline, reactivity, and recovery for MA, handgrip, and speech tasks, among normotensive adults in whom workday ABP...
CAUSAL MODEL OF CARDIOVASCULAR RESPONSES

was assessed. They found that both reactivity and recovery scores contributed to the prediction of ABP levels, above that predicted by baseline BP. Recovery residualized change scores added 3% to the prediction of ambulatory SBP and DBP, above that predicted by regression models including both baseline and reactivity values. When baseline, reactivity, and recovery scores were each entered into the equations, only baseline and recovery scores remained reliable predictors, with reactivity not explaining any additional variance.

To date three studies have prospectively investigated the relationship between delayed BP recovery from psychological stressors in the laboratory and the development of HTN. Borghi et al. (63) assessed 44 borderline HT adults 5 years after the performance of a MA task. They noted that poor DBP recovery from the task (defined as a recovery period BP level 6% greater than at baseline) was a sensitive and specific predictor of the development of frank HTN and had greater predictive power than BP reactivity. Stewart and France (64) measured CVR and recovery in response to MA, CPT, tourniquet ischemia, cycle exercise, and step exercise in 73 young adults. They found that after accounting for initial BP and other traditional predictors, SBP recovery from CPT, tourniquet ischemia, and step exercise accounted for 4%, 4%, and 8%, respectively, of the additional variance in resting SBP at 3-year follow-up. HR reactivity to MA also accounted for 4% of the variance in follow-up SBP beyond that explained by the control variables. Neither reactivity nor recovery measures added significantly to the prediction of follow-up DBP. Treiber et al. (65) evaluated 385 normotensive adolescents with a family history of CVD. Subjects performed four laboratory tasks: postural change, video game, social competence interview, and parent-child conflict discussion. Resting BP was measured during each of the following 4 years. SBP recovery averaged across tasks predicted resting SBP in year 4; DBP recovery predicted resting DBP in year 1. BP reactivity, but not recovery, was included in the most generalizable models predicting resting BP; however, the measure of recovery used (the lowest BP measured during the 5-minute period following the stressor) likely has poor reliability (61). These studies provide only weak evidence for the predictive power of cardiovascular recovery. However, all used very short follow-up times, over which there was often little change in BP level; none used a “curve-fitting” measure of recovery. There are as yet no data regarding prediction of CAD development. Laboratory recovery has intuitive appeal as a means of assessing duration of cardiovascular activation; however, it has obviously not yet fulfilled the criteria of reliability, generalizability, and predictive ability, which are necessary to be considered a useful model of cardiovascular responses to stress.

Many of the thoughts and emotions associated with a stressor may occur in anticipation of occurrence (66). Anticipation has been associated with BP elevations before events such as a thesis defense (67), school examinations (68), and dental procedures (69). In the laboratory, BP elevations have been observed while subjects anticipated performing tasks such as difficult math problems (70) and the CPT (71). However, BP elevations are not always seen during anticipation of laboratory tasks (72, 73). It is as yet unclear how best to model anticipation in the laboratory. There has been little study of the reliability and generalizability of laboratory measures of anticipation. In two studies in which anticipation of laboratory tasks was compared with anticipation of a musical performance jury (74) and a thesis defense (12), results were mixed or negative. One prospective study (75) has found that the BP change from resting levels during anticipation of physical exercise predicts the development of HTN at 4-year follow-up. As noted earlier, in this population anticipation of physical exercise has also been shown to interact with job demands and SES to predict 4-year progression of carotid atherosclerosis (41, 42).
Rumination

Rumination may be an example of a psychological process that tends to sustain cardiovascular activation. After a stressful event, people may ruminate about the causes and consequences of their distress (79, 80). Such responses have been shown to perpetuate and worsen negative mood. In the laboratory, when depressed individuals are asked to ruminate, they show stable or increased depressed mood; similarly, rumination maintains anger after an anger-provoking stressor (79). Prospectively, depressed persons who engage in self-focused rumination show longer and more severe periods of depression than those who do not ruminate (80).

Glynn et al. (76) and others (81) have found that recovery after emotional stressors takes much longer than recovery from nonemotional stressors, even when the magnitude of CVR to the stressors is identical. This suggests that cognitions or emotions induced after the stressor perpetuate cardiovascular activation. Schwartz et al. (82) examined the effect of rumination after recall of an anger-provoking event. They found that when participants were distracted after the task, they showed more complete recovery and reported less thought-related negative affect. When distractions were not provided, participants scoring high on trait measures of rumination or reporting ruminating after the task showed poorer recovery than those who reported little rumination. Rumination may thus predict persistent BP elevations after anger.

AN EXPANSION OF THE CVR MODEL

It is beyond the scope of this article to provide an in-depth review of the pathways that may link stress with CAD or HTN. Instead we focus on one proposed mediator of this relationship, CVR. We propose an expansion of the CVR model to incorporate other processes by which stressors produce physiological responses that lead to disease. The next sections provide an overview of candidate pathways.

Models of the Stress-HTN Relationship

The reactivity literature provides compelling evidence that BP may be elevated during the experience of a stressor. Such effects are seen in the laboratory as well as during daily life, for example in the workplace (83). There is also evidence that BP may be elevated when no tangible stressor is present but an individual continues to be under cognitive load (82). However, the mechanisms by which environmental stressors might lead to tonically elevated BP, or HTN, remain poorly specified.

The control of BP results from actions of the kidneys, central and autonomic nervous systems, hypothalamic-pituitary-adrenal axis, vascular endothelium, and other pathways (57). In the development of HTN, a distinction must be made between short-term factors that initiate BP elevation, and long-term self-perpetuating mechanisms that sustain the hypertensive state. The set of factors that initially raise BP may be quite distinct from the factors that perpetuate HTN, and by the time BP is tonically elevated, the initiating factors may no longer be present (84, 85).

Acute BP elevations in response to stress are usually attributed to SNS activity. Other processes may also contribute to acute BP elevation; these may include diminished endothelial nitric oxide (NO) production (86) and vagal withdrawal (87). Long-term regulatory changes that may perpetuate HTN include vascular remodeling and endothelial dysfunction (84). Vascular remodeling involves alterations in vessel architecture, including decreased lumen diameter and rarefaction (in which the number of microvessels is reduced), both of which lead to a chronic increase in vascular resistance. Remodeling results from hemodynamic changes in blood flow and pressure and from changes in the level of vasoconstrictive and vasodilatory substances such as norepinephrine, angiotensin II, and NO. Vascular remodeling may facilitate the transition from an initial high cardiac output stage of HTN to a high total peripheral resistance state (84).

The innermost layer of blood vessels, the endothelium, contributes to regulation of vascular tone through the production of vasoconstrictive and vasodilatory substances that act on vascular smooth muscle. NO is an important endothelium-derived vasodilatory substance; its catabolism may impair endothelial function (EF), resulting in sustained HTN (84). There is evidence that acute BP elevations may impair EF, perhaps suggesting a mechanism by which short-term BP elevations could lead to HTN (88).

Guyton (89) has suggested that the kidney’s regulation of sodium and water balance acts as the primary long-term determinant of the BP level; it has been proposed that both vascular remodeling and endothelial dysfunction could lead to sustained changes in the renal set-point for BP regulation (84).

Models of the Stress-CAD Relationship

Stress has effects on many pathways affecting CAD. To illustrate, we will briefly summarize the evidence regarding the relationship between stress and two hypothesized mediators of the stress-CAD relationship: endothelial dysfunction and heart rate variability (HRV).

A. R. SCHWARTZ et al.

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
The endothelium contributes to the regulation of vascular tone, platelet aggregation, and other processes relevant to atherosclerosis. "Endothelial dysfunction" indicates abnormalities in these regulatory actions, particularly the impairment of endothelium-dependent vasodilation (90). Hypertensive and hypercholesterolemic patients exhibit abnormalities in EF, and endothelial dysfunction is thought to be an initial step in atherosclerosis (90). EF, assessed as the amount of vasodilation in response to the endothelium-dependent vasodilator acetylcholine, increased blood flow, or the CPT, is an independent predictor of the development of cardiovascular events (91). Ghiadoni et al. (92) found that healthy persons exposed to a brief mental stressor (a 5-minute speech task) showed reduced endothelium-dependent vasodilation sustained over at least 90 minutes. BP and HR elevations, however, returned to prestress levels within 2 minutes. Similarly, cynomolgus monkeys exposed to a social stressor (being housed in unstable social groups) show endothelial cell injury (93) and impaired EF (94). Of note, EF has been linked to hemodynamic patterns of response to stress, with individuals showing poorer EF exhibiting a larger systemic vascular resistance response to laboratory stressors (95). This suggests that such stress-induced hemodynamic changes may be markers for underlying EF rather than independent predictors of the development of disease.

HRV reflects autonomic nervous system input to the heart. Low HRV reflects reduced parasympathetic nervous system (PNS) or increased SNS stimulation. This loss of normal HR modulation may increase vulnerability to arrhythmia and accelerate CAD progression (96). In population studies, low HRV predicts the development of cardiovascular events (97), cardiac mortality (98), and all-cause mortality (98). Numerous studies (eg, Ref. 99) have established that low HRV is an independent risk factor for mortality in patients who have had an MI. Hostility, anxiety, and depression have been linked with low HRV, and several studies indicate that these psychological factors interact with stressor exposure to lower HRV. Sloan et al. (100) exposed healthy individuals to MA and Stroop color-word tasks as well as passive tilt. They found that participants who scored high on a trait measure of hostility showed greater reductions in HRV in response to the mental, but not physical, stressors. There is evidence that persons high in depressive symptoms also show greater HRV decreases in response to mental stress than nondepressed persons (101); however, not all studies have found this (102). Of note, HRV is significantly lower in depressed than nondepressed CAD patients (103) and is decreased in individuals with high levels of anxiety (104).

Other pathways that might link stress and CAD include adoption of unhealthy behaviors, development of HTN, increases in platelet activity mediated by alterations in serotonergic pathways, hypercortisolism and other hypothalamic-pituitary-adrenal axis abnormalities, alterations in immune function, induction of myocardial ischemia, and changes in adrenergic receptor regulation (105).

In Figure 1, we depict proposed models of the causal pathways between stress and CAD (Fig. 1, a) and HTN (Fig. 1, b). In both models the relationship between stress exposure and cardiovascular response is moderated by stressor characteristics (severity, frequency, and duration) as well as the individual's inherited or acquired response predispositions. The response may be behavioral or physiologic and will vary in its magnitude, duration, and frequency of recurrence. In the model of CAD development (Fig. 1, a), the individual's responses may ultimately affect at least one of several pathophysiological pathways that can lead to CAD. These include atherosclerotic progression, decreased HRV or EF, elevated BP or HR, increased platelet activation, and myocardial ischemia. In the model of HTN development (Fig. 1, b), initiation of BP elevation, perhaps through the activity of the
SNS, PNS, or local vasoconstrictors, may eventually lead to a state in which BP elevation is maintained. Maintenance of BP elevation might occur through vascular remodeling, decreased EF, or alterations in renal regulation of fluid balance.

SUMMARY AND FUTURE DIRECTIONS

Generalizability

Traditionally CVR has been examined in the laboratory; few studies attempt to assess CVR in the natural environment. There is little evidence, however, that CVR assessed in the laboratory generalizes to the real world. There may be modest improvements in generalizability with methodological changes such as aggregation across multiple tasks and sessions. However, the lack of lab-to-life generalizability indicates that a laboratory model of CVR provides a poor methodology for studying cardiovascular responses to stress occurring in the real world. We therefore suggest that investigations of BP and HR responses to stress would benefit from greater focus on observations made in the natural environment.

Interactive Effects on Cardiovascular Disease

Human and animal studies demonstrate that the interaction of individual predispositions and environmental exposures contributes to the development and progression of CVD. The traditional CVR model has focused on main effects; however, CVD cannot be fully understood by examining single factors in isolation. We suggest that models of cardiovascular responses to stress would benefit from placing greater emphasis on the interaction of individual predispositions and stressor exposures in the development of CVD.

Duration of Exposure and Response to Stressors

If cardiovascular responses to stress are pathogenic, the most deleterious effects would be expected when such responses occur over a prolonged time period. This can occur when individuals are exposed to chronic or repeated stressors or when stress-related responding occurs in the absence of a tangible stressor. However, there is little evidence that acute laboratory stressors are appropriate models of pathogenic chronic stressors. Furthermore, stress-related cognitive activation and concomitant cardiovascular responses may occur in anticipation of future stressors, in the period following past stressors, or may recur long after stressor presentation. CVR captures only the magnitude of response to an acute stressor during its presentation. We suggest that future models should assess all dimensions of the cardiovascular response to stress, focusing on the cumulative duration of responding.

Preparation of this review was supported by the American Heart Association, Grant 9750544N, and the National Heart, Lung, and Blood Institute, National Institutes of Health, Grants HL47540 and HL67677.

We thank Thomas Kamarck and Devon Neale for helpful comments on an earlier version of this manuscript.

REFERENCES

15. Karasek RA, Theorell T, Schwartz JE, Schnall PL, Pieper CF.
CAUSAL MODEL OF CARDIOVASCULAR RESPONSES

43. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S.

86. Markovitz JH, Tucker D, Lewis CE, Sanders PW, Warnock DG. Inverse relationship of urinary cyclic GMP to blood pressure
reactivity in the CARDIA study: vasodilatory regulation of sympa-
87. Brosschot JF, Thayer JF. Anger inhibition, cardiovascular re-
covery, and vagal function: a model of the link between hos-
326–32.
88. Millgård J, Lind L. Acute hypertension impairs endothelium-
89. Guyton AC. Blood pressure control—special role of the kidneys
90. John S, Schmieder RE. Impaired endothelial function in arte-
rial hypertension and hypercholesterolemia: potential mech-
91. Al Suwaidi J, Hamasaki S, Higano ST, Nishimura RA, Holmes
DR Jr, Lerman A. Long-term follow-up of patients with mild
coronary artery disease and endothelial dysfunction. Circula-
92. Ghiadoni L, Donald AE, Copley M, Mullen MJ, Oakley G,
Taylor M, O’Connor G, Betteridge J, Klein N, Steptoe A, Dean-
field JE. Mental stress induces transient endothelial dysfunc-
93. Skantze HB, Kaplan J, Pettersson K, Manuck S, Blomqvist N,
Kyes R, Williams K, Bondjers G. Psychosocial stress causes
doendothelial injury in cynomolgus monkeys via β1-adrenoceptor
94. Williams JK, Vita JA, Manuck SB, Selwyn AP, Kaplan JR.
Psychosocial factors impair vascular responses of coronary ar-
95. Sherwood A, Johnson K, Blumenthal JA, Hinderliter AL. En-
dotheilial function and hemodynamic responses during mental
96. Huikuri HV, Mäkikallio T, Aiarkinen KEJ, Mitrani R, Castel-
lanos A, Myerburg RJ. Measurement of heart rate variability: a
clinical tool or a research toy? J Am Coll Cardiol 1999;34:
1878–83.
97. Tsuji H, Larson MG, Venditti FJ Jr, Manders ES, Evans JC,
Feldman CL, Levy D. Impact of reduced heart rate variability
on risk for cardiac events. The Framingham Heart Study. Cir-
98. Dekker JM, Crow RS, Folsom AR, Hannan PJ, Liao D, Swenne
CA, Schouten EG. Low heart rate variability in a 2-minute
rhythm strip predicts risk of coronary heart disease and mor-
tality from several causes. The ARIC Study. Circulation 2000;
102:1239–44.
Rottman JN. Frequency domain measures of heart period vari-
ability and mortality after myocardial infarction. Circulation
100. Sloan RP, Bagiella E, Shapiro PA, Kuhl JP, Chernikhova D, Berg
J, Myers MM. Hostility, gender, and cardiac autonomic control.
101. Hughes JW, Stoney CM. Depressed mood is related to high-
frequency heart rate variability during stressors. Psychosom
102. Light KC, Kothandapani RV, Allen MT. Enhanced cardiovas-
cular and plasma catecholamines responses in women with de-
103. Carney RM, Saunders RD, Freedland KE, Stein P, Rich MW,
Jaffe AS. Association of depression with reduced heart rate
variability in coronary artery disease. Am J Cardiol 1995;76:
562–4.
104. Kawachi I, Sparrow D, Vokonas PS, Weiss ST. Decreased heart
rate variability in men with phobic anxiety (data from the
105. Rozanski A, Blumenthal JA, Kaplan J. Impact of psychological
factors on the pathogenesis of cardiovascular disease and im-