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This review considers experimental research that has used probability theory
and statistics as a framework within which to study human statistical in-
ference. The experiments have investigated estimates of proportions, means,
variances, and correlations, both of samples and of populations. In some
experiments, parameters of populations were stationary; in others, the pa-
rameters changed over time. The experiments also investigated the determina-
tion of sample size and trial-by-trial predictions of events to be sampled from
a population. In general, the results indicate that probability theory and
statistics can be used as the basis for psychological models that integrate and
account for human performance in a wide range of inferential tasks.

"Given . . . an intelligence which could
comprehend all the forces of which nature is
animated and the respective situation of the
beings who compose it—an intelligence suffi-
ciently vast to submit these data to analysis
. . . nothing would be uncertain and the fu-
ture, as the past, would be present to its eyes
[Laplace, 1814]." In lieu of such omnisci-
ence, man must cope with an environment
about which he has only fallible information,
"while God may not gamble, animals and hu-
mans do, ... they cannot help but to gam-
ble in an ecology that is of essence only partly
accessible to their foresight [Brunswik,
1955]." And man gambles well. He survives
and prospers while using the fallible informa-
tion to infer the states of his uncertain en-
vironment and to predict future events.

Man's problems with his uncertain environ-
ment are similar 'to those faced by social en-
terprises such as science, industry, and agri-
culture. Satisfactory decisions require sound
inferences about prevailing and future states
of the environments in which these enter-
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and MH-12,012 from the National Institute of Men-
tal Health and was also supported by the Air Force
Office of Scientific Research under Contract AF
49(638)-1731. Many of the ideas expressed here
have their origins in discussions and arguments with
Ward Edwards, to whom we are deeply indebted.
We also would like to thank Kenneth R. Ham-
mond who introduced us to the probabilistic func-
tionalism of the late Egon Brunswik, an approach
that has influenced much of the research in this
review.

prises operate. Consequently, a great deal of
effort has been invested in the development
of coherent, formal procedures for dealing
with fallible information in making inferences.
These procedures, complex and sophisticated
enough to have become a discipline, are called
probability theory and statistics.

Because of the parallels between many of
the inference tasks faced by man and by
social enterprises, a number of investigators
have used formal statistical theory as a point
of reference for the study of human inference.
For many uncertain situations, statistical
theory provides models for making optimal
inferences. The psychological research con-
sists of examining the relation between in-
ferences made by man and corresponding
optimal inferences as would be made by "sta-
tistical man."2

The procedure is to use a normative model
in order to identify variables relevant to the
inference process. In this sense, probability
theory and statistics fulfill a role similar to
that of optics and acoustics in the study of
vision and hearing. Just as optics and acous-
tics are theories of the environments in which
eyes and ears operate, statistics is a theory of
the uncertain environment in which man must
make inferences. Sense organs do not merely
mirror their physical environments, so their
behavior cannot be described solely by a
description of the environment. Instead, op-

2 Our use of "statistical man" as a model is ana-
logous to the normative use of the "ideal observer"
in signal detectability theory and "economic man"
in economics. We mean the statistical logic and
procedures appropriate to the task subjects must
perform.
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tical and acoustical theories have provided a
basis for building descriptive theories that
link vision and hearing to the physical di-
mensions of their environments. In the same
manner, the theory of statistical inference can
provide a basis for a descriptive theory of im-
perfect human inference.

A primary reason for selecting the strategy
of evolving a theory of human inference from
statistics is that the descriptive theory re-
mains couched in the language of, and is
structurally related to, the broad framework
of the theory of statistical inference. This
means that experimental findings from other-
wise diverse areas may be logically integrated
through reference to that theoretical frame-
work.

The ultimate goal of this research is to
develop a theory about human behavior in
an uncertain environment, but the scope of
this paper is necessarily more limited. First,
it includes only behavior interpretable within
the framework of statistical decision theory.
Within this realm, the complete normative
theory includes both statistical inference, as a
model about how to gain knowledge of the
environment, and decision theory, as a model
for selecting courses of action in that environ-
ment. The psychological counterparts of these
two components are intuitive statistics and
psychological decision theory. This review
explores only the predecisional process of
intuitive statistics; reviews of the psycho-
logical decision literature are available else-
where (Becker & McClintock, 1967; Ed-
wards, 1954, 1961a).

This literature is organized in the familiar
outline of an introductory statistics book.
First, we examine intuitive descriptive sta-
tistics, the process of describing samples of
data. We then consider research on intuitive
inferential statistics, the process of using
samples of data as a basis for making infer-
ences about parent populations. Finally, we
review studies of intuitive prediction, the
process of using inferences about populations
as the basis for predicting future samples to
be drawn from those populations.

INTUITIVE DESCRIPTIVE STATISTICS

By and large, psychologists have devoted
less attention to studying intuitive descrip-

tive statistics than they have to studying
inferences. Perhaps this is because inference
is inherently more interesting. Still, infer-
ences about populations require prior sum-
marization of sample data, and it can be
argued that intuitive descriptive statistics
underlie subsequent inferences.

Typically, experiments on descriptive sta-
tistics display a sample of data and ask the
subjects for estimates of the proportion, mean,
variance, correlation, or some other descrip-
tive statistic. The correspondence between the
estimates and the calculated statistics serves
as the measure of accuracy.

Judgments of Proportion

Subjects have estimated proportions of both
sequential and simultaneous displays of
binary events (lights, horizontal and vertical
lines, letters, numbers, etc.). The most strik-
ing aspect of the results is that the relation
between mean estimates and sample propor-
tions is described well by an identity func-
tion. The deviations from this function are
small; the maximum deviation of the mean
estimate from the sample proportion is usu-
ally only .03-.OS, and the average deviations
are very close to zero. Within the constraint
of these small discrepancies, experiments have
reported two different shapes for the slightly
biased function, overestimation of low and
underestimation of high proportions (Erlick,
1964; Stevens & Galanter, 19S7), and under-
estimation of low and overestimation of high
proportions (Nash, 1964; Pitz, 1965, 1966;
Shuford, 1961; Simpson & Voss, 1961). The
conflict in these results is particularly difficult
to understand because similar procedures
were used by Stevens and Galanter (1957)
and Shuford (1961) on the one hand, and by
Erlick (1964) and Pitz (1965, 1966) on the
other.

We view the task of judging a proportion
as one of statistical description. The subject
never actually counts the elements in a dis-
play, however, so the task may also be viewed
as one of inference. The displayed stimuli
make up the population, and whatever infor-
mation the subject can glean from observing
the display is the sample. Results support this
view. Accuracy of estimating proportions in-
creases both with longer presentation times
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(Erlick, 1961; Robinson, 1964; Shuford &
Wiesen, 1959) and with the length of a se-
quence of elements (Erlick, 1964). Assuming
that subjects gather larger samples during
longer times or longer sequences, inferences
based on those larger samples should have a
smaller standard error of estimation and thus
greater expected accuracy. Furthermore, with
the exception of the .5 position (Nash, 1964),
errors are smaller (Robinson, 1964) and fewer
(Stevens & Galanter, 1957) and response
variance is less (Shuford, 1961) for extreme
proportions than for estimates in the middle
of the scale. The variance of a sample and
therefore the standard error of estimation is
theoretically smaller for samples with more
extreme proportions, so accuracy should be
greater.

Judgments of Means and Variances

The central tendency and variability of
samples of binary data are tied to a single
statistic, the proportion. By contrast, sepa-
rate statistics must be used to describe these
properties in samples of interval or ratio
scaled data. A number of statistics describe
central tendency and naive subjects reflect
this variety by giving responses that some-
times correspond to the mean, sometimes to
the median, and sometimes to the midrange
(Spencer, 1963). When instructions specify
the mean as the average to be estimated, the
resulting estimates are nearly accurate (Beach
& Swensson, 1966). Though there are no
apparent biases, the variance among esti-
mates increases with the variance of the sam-
ple, the sample size, and the speed of presen-
tation (Beach & Swensson, 1966; Spencer,
1961). Since these variables would influence
the standard error of estimate, which would
in turn control the variability among esti-
mates from different samples, these results
provide further support for the hypothesis
that subjects in a descriptive task are ac-
tually making inferences.

Just as judgments of means are influenced
by the variance of the sample, judgments of
variability are influenced by the mean, but
in a different way. Hofstatter (1939) ob-
tained judgments of the variability in the
lengths of sticks tied in bundles. The judg-
ments increased appropriately as the sample

variance increased. However, as the means
increased, the judgments decreased, much as
though the subjects were estimating the co-
efficient of variation (standard deviation/
mean) rather than the variance. Put another
way, it is as though they were judging dis-
crepancies from the mean in relation to the
magnitude of the mean, an interpretation re-
lated to the Weber fraction, A///, in psycho-
physics.

Lathrop (1967) has replicated this aspect
of Hofstatter's results. It is as if subjects
regard variance as relative to the general
magnitude of the stimuli. This is intuitively
compelling. Think of the top of a forest. The
tree tops seem to form a fairly smooth sur-
face, considering that the tree may be 60 or
70 feet tall. Now, look at your desk top. In
all probability it is littered with many objects
and if a cloth were thrown over it the surface
would seem very bumpy and variable. The
forest top is far more variable than the sur-
face of your desk, but not relative to the
sizes of the objects being considered. Per-
haps this is a place where intuition and typi-
cal statistical usage are divergent; statisti-
cians are seldom interested in variances rele-
vant to means, but people may be.

Even when means are taken into consid-
eration, there are still systematic discrepancies
between intuitive judgments and objective
values of sample variance. These discrepan-
cies can be accounted for in part by the way
in which subjects weight deviations of indi-
vidual data from the sample mean. The
mathematical variance is the average of the
squared deviations. The power to which they
are raised dictates the relative weighting of
large and small deviations. An increase in the
power increases the relative weight of large
deviations; a decrease in the power increases
the relative weight of small ones. In order to
investigate the relative weights assigned by
subjects, experimenters have calculated that
power that permits the best prediction of
intuitive estimates of variability. Hofstatter
(1939) found large values, ranging up to 6,
when experimental conditions emphasized
large deviations. He found small values, rang-
ing down to 0.5, with an emphasis on small
deviations. Beach and Scopp (1967) used
normally distributed samples and found that
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a small power, .39, best simulated the judg-
ments of their subjects. In normally distrib-
uted samples, most of the data lie relatively
near the mean; the resulting prevalence of
small deviations may emphasize them. It
seems likely that distributions that empha-
size extreme scores, such as saddle-shaped
distributions, would result in large powers. At
any rate, this modification of the normative
exponent, and the accompanying psychologi-
cal interpretation, illustrates a way of modi-
fying a normative statistical model in order
to arrive at a model more descriptive of in-
tuitive statistics.

INTUITIVE INFERENTIAL STATISTICS

Although many psychological studies of
descriptive statistics may have investigated
inference inadvertently, it is the explicit topic
of the research discussed next. Experiments
on intuitive inference explore how man uses
samples of data to reach conclusions about
characteristics of his environment. The data
provide the basis for his judgments about the
covert, underlying statistical structure of
events. The theory of statistical inference
specifies what kind of inferences should be
made from the samples, and the experiments
compare inferences made by men with optimal
inferences.

Inferences about Population Parameters

Experiments on inference have used the
optimal inferences specified by statistics as a
basis for evaluating the optimality of human
inferences. Note the difference in orientation
between this approach and that of studies of
intuitive descriptive statistics. The latter use
accuracy as the criterion for good perform-
ance, that is, they ask "To what degree do
estimates agree with the experimenter's mea-
surements of the stimulus being estimated?"
Optimality, on the other hand, is the degree
to which intuitive inferences agree with op-
timal inferences given by the statistical model.
The distinction is between using God or
using statistical man as a criterion for per-
formance. Even in an uncertain and proba-
bilistic environment, an omniscient being
would know the actual population parameters.
But statistical man must be content to work
with only the data in a sample and to make

the best possible inference. When a sample is
the only information provided to the subject,
it is reasonable to use optimality rather than
accuracy as the primary criterion for intui-
tive inference.

Inferences about proportions. In most in-
vestigations of inferences about proportions,
subjects observe samples of binary data, and,
after each datum in a sequence, they revise
their probability estimates of each propor-
tion being the population parameter. These
revisions are compared with optimal revisions
as calculated by using Bayes' theorem (see
Edwards, Lindman, and Savage, 1963, for an
extensive discussion of Bayesian statistical
inference).

Imagine yourself in the following experi-
ment. Two urns are filled with a large number
of poker chips. The first urn contains 70%
red chips and 30% blue. The second con-
tains 70% blue chips and 30% red. The ex-
perimenter flips a fair coin to select one of
the two urns, so the prior probability for
each urn is .SO. He then draws a succession
of chips from the selected urn. Suppose that
the sample contains eight red and four blue
chips. What is your revised probability that
the selected urn is the predominantly red one?
If your answer is greater than .50, you favor
the same urn that is favored by most subjects
and by statistical man. If your probability
for the red urn is about .75, your revision
agrees with that given by most subjects. How-
ever, that revised estimate is very conserva-
tive when compared to the statistical man's
revised probability of .97. That is, when sta-
tistical man and subjects start with the same
prior probabilities for two population propor-
tions, subjects revise their probabilities in the
same direction but not as much as statistical
man does (Edwards, Lindman, & Phillips,
1965).

Conservatism is suboptimal, but it is sys-
tematic, so research has looked for reasons
for it. A number of studies have attempted to
find out if conservatism is due merely to pro-
cedural variables. Earlier investigations had
used probability estimates as the response, and
it seemed possible that subjects avoided ap-
proaching the bounds of the scale. To check
this, probability estimates were compared to
unbounded odds estimates (Phillips & Ed-
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wards, 1966); odds estimates were only
slightly less conservative than the probabil-
ity estimates. Another hypothesis was that
subjects had no incentive to perform well.
However, while payoffs decreased response
variance, they decreased conservatism only
slightly (Phillips & Edwards, 1966). Other
variables, such as sample size (Peterson,
Schneider, & Miller, 1965) and sequential
order of the data (Peterson & DuCharme,
1967; Phillips, Hays, & Edwards, 1966)
affect conservatism, but instructions have
virtually no influence. In short, while pro-
cedural variables influence the degree of
conservatism, they do not eliminate it.

The persistence of conservatism in spite of
variations in procedure suggests that it has
roots in the fundamental aspects of subjects'
understanding and use of information. One
possibility is that peoples' intuitions about
the relation between population and sample
differ from the relations specified by statisti-
cal theory; or, in more formal terms, subjects
have an inaccurate understanding of sampling
distributions. In agreement with this hy-
pothesis, when subjects make estimates about
sampling distributions, the distributions are
too flat (Peterson, DuCharme, & Edwards,
in press). Moreover, probability revisions of
individual subjects were predicted more accu-
rately by substituting their flat distributions
in the appropriate Bayesian equations than
by using the theoretical sampling distribu-
tions.

In addition to a failure to understand the
relation of samples to populations, there is
also evidence that subjects have difficulty in
aggregating evidence over trials (Edwards,
1966; Phillips, 1966). When they make da-
tum-by-datum revisions throughout a se-
quence of data, the final subjective probabil-
ity is far more conservative than when the
experimenter optimally combines a series of
single estimates made by subjects for each
datum in the sequence. The former task re-
quires retention of the previous inference and
augmenting it in light of the succeeding da-
tum, while the single estimates require only
that subjects assess the meaning of each
datum separately. At present, then, conserva-
tism appears to be due in some small part to
procedural variables, and in large part both

to subjects' misunderstanding of sampling
distributions and to their nonoptimal sequen-
tial revision of their subjective probabilities.

Inferences about means and variances. The
experimental paradigm used to study infer-
ences about means and variances is analogous
to that used in studies of inferences about
proportions. Data that vary along a dimen-
sion are sampled from one of two popula-
tions, and subjects decide from which of the
two populations the data have been drawn.
Some experiments using numerical samples
had the subject infer which of two hypotheses
about the parameter value was correct and
state his confidence in the accuracy of that
inference.8 Irwin, Smith, and Mayfield (1956)
used populations consisting of decks of cards
upon which numbers were written. On the
basis of each sample, subjects inferred
whether the mean of the population was
greater or less than zero. In a second experi-
ment, the cards were sampled from two decks
and the task was to infer which of the decks
had the larger mean. In both experiments,
confidence increased with the size of the sam-
ple, with either the difference between the
population mean and zero or the difference
between the two population means, and as the
population variance decreased. Little and
Lintz (1965) performed a similar experiment
and found that on a trial-by-trial basis, con-
fidence increased with sample size.

These experimenters used the t test as a
method of summarizing their independent
variables, but they used no normative model
in the sense that the term has been used here.
That is, they did not use a statistical model
to prescribe the optimal confidence statement.
The t test would not be the normative model
because it yields the probability of the sam-
ple of data if the null hypothesis were true.
This was not the question the subjects were
asked (and it is claimed in some quarters

3 We treat the confidence estimates and proba-
bility estimates as interchangeable measures of sub-
jective probability when both have been measured
on a 0-1.0 scale. For confidence estimates, the sub-
ject usually states which event he thinks is most
likely to occur and then states his confidence that
the choice is correct. For probability estimates, the
subject merely states how certain he is that a given
event will occur. These estimates are formally
equivalent, but it is yet to be demonstrated that
they are psychologically so.
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that this is not a question that anybody
should be asked; Edwards, Lindman, & Sav-
age, 1963). Rather, they were asked for the
probabilities of the alternative hypotheses on
the basis of the data, a question answered by
Bayesian statistics. Probabilities based on the
normative model would be influenced by the
three independent variables in the directions
found in these experiments, but it is not clear
whether subjects were conservative in arriving
at their confidence statements.

A Bayesian model has, however, been ap-
plied to another experiment that used the
paradigm just discussed (Beach & Scopp,
1967). The subjects inferred which of two
decks of cards had the larger variance and
stated their confidence. Confidence increased
as the ratio of the judged sample variances
increased, but not as much as prescribed by
the model. These results are similar to the
conservatism found with population propor-
tions.

When subjects directly infer the central
tendency of a population by specifying a
value on a continuum of possible values, the
inference must in some way represent all the
values in the population. Various measures of
central tendency represent the population
values in different ways; the mode is equal to
the most frequently occurring value, the me-
dian minimizes the sum of the absolute devi-
ations between itself and the individual val-
ues, and the mean minimizes the sum of the
squared deviations. For a skewed population
distribution, the values of these measures are
all different. When subjects base inferences
on a sample that is displayed as a j shaped
frequency distribution, intuitive inferences of
the mode and median are accurate, but in-
ferences of the mean are biased toward the
median (Peterson & Miller, 1964). It would
be possible to simulate this bias with the ap-
proach used to simulate judgments of sample
variances (Beach & Scopp, 1967), that is, by
modifying the power to which deviations are
raised, away from 2 in the direction of 1.
This means that subjects were unwilling to
weight large deviations heavily. The deviant
events were also rare events, so subjects may
have regarded them as unrepresentative and
thus not more important than the most fre-
quently occurring events.

Much of the research using nonnumerical
samples has been conducted within the frame-
work of the theory of signal detectability
(Swets, 1964). While we have no intention
of reviewing this entire literature, the model
of signal detection is a statistical model and
several experiments are particularly relevant
to intuitive statistics. As in the research dis-
cussed above, the formal problem for the sub-
ject is one of making an inference about the
population from which the observation has
been sampled. One population is that of nor-
mally distributed random noise. The second
population is one of signal plus noise, with
the same variance but a different mean than
that of the noise population. From the sub-
jects' point of view, the task is one of decid-
ing whether or not a signal was present in
the observation.

The majority of signal detection experi-
ments have used auditory, visual, or other
sensory stimuli, but the model has also been
applied outside the realm of sensory psycho-
physics. For example, in perceptual defense
experiments, the task is to decide whether
the observation is a clean word or a taboo
word (Dorfman, Grossberg, & Kroeker,
196S); in recognition memory experiments,
the task is to decide whether the observation
is an old word or a new word (Parks, 1966);
in the perception of tilt, the task is to decide
whether a line is tipped to the left or the right
(Ulehla, 1966); and in one series of experi-
ments, the task was to decide whether a dot
was sampled from one spatial distribution or
another (Lee, 1963; Lee & Janke, 1964,
1965). The model has even been extended
to the judgment of the source of short
phrases from a man's magazine or a woman's
magazine (Ulehla, Ganges, & Dowda, in press)
and to reaction time experiments where the
subjects' task is to react to a left or a right
stimulus light (Edwards, 1965; Stone, 1960).
These experiments show that it is possible to
interpret a wide range of psychological
phenomena within the framework of statis-
tical decision theory. The results are in gen-
eral accord with the predictions; many devia-
tions from optimal performance are similar
to those found in other areas of intuitive
statistics. For example, it is possible to
manipulate the subjective decision criterion
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by changing the probability of sampling from
a signal distribution or by varying payoffs,
but the amount of change in the subjective
criterion is less than optimal (Green, 1960;
Ulehla, 1966). The subjects also have diffi-
culty in aggregating information across a
sequence of trials (Swets & Green, 1961;
Swets, Shipley, McKey, & Green, 1959), a
result that bears a strong resemblance to the
finding of conservatism in the probability-
revision experiments discussed above.

Inferences about correlations. Thus far the
tasks discussed have involved populations of
events that vary along a single dimension.
Nonlaboratory tasks, however, often involve a
number of dimensions. Frequently these di-
mensions are not independent, and therefore
it is important to examine intuitive inferences
about correlations in multivariate populations.

Experiments using populations that con-
tain two binary dimensions show that subjects
do not attend to all cells of the 2 X 2 con-
tingency table when inferring correlation. In
some cases, judgments about the relatedness
of the two dimensions depend solely upon one
cell of the table, the cell in which the two
favorable outcomes occur together (Jenkins
& Ward, 1965; Smedslund, 1963; Ward &
Jenkins, 1965); in other cases, judgments
depend upon both cells of the positive
diagonal (Inhelder & Piaget, 1958; Ward &
Jenkins, 1965). The reason for the conflict
is unclear, but even when subjects use the
diagonal it appears that they do not fully ap-
preciate the negative evidence represented in
the remaining two cells of the 2 X 2 table.

It may be that failure to use all cells of
the matrix is restricted to the special case of
the 2 X 2 contingency table. Erlick (1966)
presented samples from two 5-valued dimen-
sions and had the subjects estimate the degree
of positive or negative relatedness. The mean
estimates were nearly linear with the ob-
jective correlations, except for a tendency to
underestimate the magnitude of negative cor-
relations. Beach and Scopp (1966) displayed
samples from two 10-valued dimensions; the
subjects inferred the sign of the population
correlations and stated their confidence in the
inferences. For both positive and negative
correlations the proportion of optimal h>
ferences and average confidence increased

with the magnitude of the sample correlations,
although confidence was conservative by com-
parison with the optimal values. In a more
complex multiple regression experiment (Pe-
terson, Hammond, & Summers, 1965b),
subjects' estimates of cue weights ranked in
the same order as optimal weights, further
evidence that subjects do not restrict their
attention to only a few cells of a data matrix.
"Statistical man" appears to provide a better
match to behavior when the stimulus situation
becomes more complex, that is, when one
moves beyond the special case of a 2 x 2
matrix.

Consistency among Inferences

We have discussed two criteria, accuracy
and optimality, for evaluating performance in
a statistical task. A third criterion is consist-
ency, the degree to which relations among
subjects' inferences correspond to the con-
straints required of statistical theory.

Optimality implies consistency, and thus
optimality is the more stringent of the
two criteria. Yet, consistency is an important
criterion from a psychological point of view.
If one's inferences are suboptimal but they
fit together in a consistent manner, then the
research problem is to learn why the con-
sistent inferences are suboptimal and to mod-
ify the statistical model in order to develop a
descriptive psychological theory. If, on the
other hand, inferences are also inconsistent,
then behavior is far less congruent with sta-
tistical theory and the outlook is dim for
providing an orderly account of human in-
ference within the framework of statistical
theory.

The criterion of consistency requires that
relations among sets of inferences be similar
to those prescribed by statistical theory, even
though the inferences themselves may be in-
accurate. Experimenters have obtained infer-
ences about two or more aspects of a popula-
tion, often two probabilities, and then evalu-
ated how well these inferences fit together
when substituted into equations from the ap-
propriate statistical model. Since accurate in-
ferences about probabilities are consistent by
definition, investigators usually take steps to
insure inaccuracy.



36 CAMERON R. PETERSON AND LEE ROY BEACH

One of the simplest relations to be exam-
ined is that the probabilities of an exhaustive
set of mutually exclusive events should sum
to 1.0. Because most experiments use response
devices that automatically normalize, insuring
that probability estimates sum to 1.0, few
data are available. What data there are come
from subsidiary parts of larger studies in
which sums were not constrained. The results
are conflicting. Phillips et al. (1966) mea-
sured the revision of probability estimates for
four hypotheses in the light of sequentially
presented data. One subject constrained his
estimates to equal 1.0, but four other subjects
revised their estimates for the most likely
hypothesis upward without making corres-
ponding decreases in the probabilities of the
less likely hypotheses. In the latter case, of
course, the sum of the estimates increased
above 1.0 as evidence accumulated over
trials. Alberoni (1962) had subjects estimate
various binomial sampling distributions for
samples of Size 4. The sums of the estimated
probabilities for the different outcomes con-
sistently totalled about .85, considerably less
than the 1.0 required by probability theory.

When experimenters infer subjective proba-
bilities from choices among bets, the subjec-
tive probabilities sometimes sum to approxi-
mately 1.0 (Lindman, 1965) and sometimes
do not (Leibermann, 1958), and in one case
they summed to 1.0 only with certain assump-
tions about utility for gambling (Tversky,
1964). The unresolved problem of whether or
not subjective probabilities inferred from
decisions sum to 1.0 has important implica-
tions for psychological decision theory, but is
too complex to be discussed here. The inter-
ested reader is referred to Edwards (1962),
Lindman (1965), and Tversky (1964).

Related to the question of whether ex-
haustive sets of probability estimates sum to
1.0 is the question of whether estimates for
unions of events are equal to the sums of
estimates for the component events. Beach
and Peterson (1966) found that this cor-
respondence held with high reliability when
probability distributions were estimated for
three different classes of events: a binomial
sampling distribution, seven different events
of a probability learning task, and the proba-
bilities of each of seven well-known Republi-

cans obtaining the Presidential nomination
for the next election.

Experiments have also tested the consist-
ency of probability estimates for the joint
occurrence of two independent events. The
estimates of the joint event should equal the
product of the estimates of the component
events. For adult subjects, estimates were
roughly similar to the product when they
were made for various combinations of skill
and chance; but the relation did not hold for
children (Cohen, Dearnaley, & Hansel, 1958).
Shuford (1959) inferred subjective probabili-
ties from the amount subjects were willing to
pay in order to play various bets. Such in-
ferred subjective probabilities for joint events
were very nearly equal to the product of the
inferred subjective probabilities of the com-
ponent events.

When events are dependent, it is necessary
to deal with conditional probabilities. Subjects
perform as consistently as they do in the
simpler case of independent events (Peter-
son, Ulehla, Miller, Bourne, & Stilson, 1965).

So far, we have been discussing structural
consistency, the degree to which relations
among probability estimates for a specific set
of events correspond to the relations demanded
by statistical theory. The introduction of
change into a static system of probabilities
necessitates the evaluation of a second kind
of consistency, process consistency. This is
the degree to which changes in the system
corresponded to the changes demanded by
probability theory.

Three experiments investigated consistency
among changing probability estimates. In
one, subjects observed a sequence of data
sampled from one of two populations. After
the presentation of each datum in the se-
quence, they revised probability estimates
about which population was being sampled
and about which datum would occur on the
next trial. The relation between the two revi-
sions was almost identical to that specified
by probability theory (Peterson, Ulehla, Mil-
ler, Bourne, & Stilson, 1965).

In a more complex situation, subjects were
faced with two different tasks. In the first,
they revised probability estimates on the
basis of a single datum. In the second, they
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revised probability estimates on the basis of
combinations of those data. Consistency de-
mands that revisions based upon the combi-
nations be equal to products of revisions based
upon the single datum. The revisions were
highly correlated with this demand in all but
extremely complicated situations (Beach,
1966).

The third experiment on process consistency
was discussed earlier in conjunction with con-
servatism. Recall that conservative probabil-
ity revisions were predicted more accurately
by using each subject's own conservative es-
timates of the sampling distribution in the
appropriate equations than by using theoreti-
cal sampling distributions. Although the sub-
jects had conservative opinions about the
sampling distributions, they apparently used
revision rules that were nearly the same as
those prescribed by probability theory (Peter-
son, DuCharme, & Edwards, in press).

Consistency need not be restricted to the
relation among probability estimates. In the
previously discussed investigation of infer-
ences about population variances (Beach &
Scopp, 1967), subjects also judged the rela-
tive magnitudes of the sample variances. The
inferences and the judgments were both in-
accurate. Inferences were not systematically
related to the ratios of the objective sample
variances, as demanded by the normative
model, but both the accuracy of the infer-
ences and the subjects' confidence in them
increased monotonically with the ratios of the
judged variances. That is, the subjects' in-
ferences were constrained to be consistent
with their inaccurate judgments of the sample
variances. If a statistician observed sample
variances equal to subjects' judgments, his
inferences also would have been monotonically
related to the ratios of those variances.

These last experiments, showing consist-
ency between structure and process, illustrate
that suboptimal performance may result from
appropriate use of erroneous assumptions
about the statistical structure of the task. In
all of these studies of consistency, incorpora-
tion of subjective assumptions into the sta-
tistical models leads to improved predictions
of performance, a modification that transforms
the normative models into descriptive models.

Determining the Size oj the Sample

In the experiments discussed so far, the
subject has been a passive recipient of the
samples of data upon which he based his
inferences. In nonlaboratory situations, how-
ever, one seldom has such a passive role; an
important ingredient of many inference tasks
is active control of the amount of data in the
sample. Larger samples tend to permit more
accurate inferences, but they also cost more
in terms of time, effort, and money. The es-
sence of the sampling task, then, is to balance
the value of making more accurate inferences
against the cost of larger samples.

Formally, there are two ways that the sub-
ject can designate the size of the sample. The
first is to specify size in advance, observe the
data, and then make an inference. The sec-
ond, called optional stopping, consists of
sampling sequentially; after each datum the
subject has the option of continuing to sam-
ple or of stopping and making his inference,
Most research has focused on the latter case.
Formal models for optional stopping (Ed-
wards, 1965; Raiffa & Schlaifer, 1961;
Schlaifer, 1959, 1961; Wald, 1947) can be
summarized by a simple, intuitively appeal-
ing rule: Sample another datum if its cost is
less than the expected increase in payoff from
the information it will provide. In other
words, purchase another datum only if it is
worth more than it costs. In addition to costs
and payoffs, probability variables play roles
in determining when sampling should cease.
Examples include the probability of each
hypothesis prior to a sample, and the ex-
pected diagnostic value of the next datum.
The models themselves are complex in that all
of these variables seem to interact with each
other (see, e.g., Edwards, 1965). Our goal
here, however, is not to explore these formal
models, but to consider the ways in which in-
tuitive sampling processes relate to them.

Experiments have manipulated cost of data,
payoff for accurate inferences, or both, and
measured the consequent effect upon the num-
ber of data purchased. The task in these ex-
periments was to decide from which popula-
tion data were being sampled. The dependent
variable was the number of data purchased
prior to making that decision. The manipu-
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lations influenced the selected sample sizes,
but the magnitude of influence was less than
that prescribed by the models (Edwards &
Kramer, 1963; Irwin & Smith, 1957; Lan-
zetta & Kanareff, 1962; Swets & Green,
1961). An exception to this generalization is
an experiment in which subjects predeter-
mined the size of the sample they wanted.
The size of the payoff had no systematic in-
fluence on the number of data purchased
(Green, Halbert, & Minas, 1964). Perhaps
this is because the optimal stopping pro-
cedure more closely resembles nonlaboratory
information purchasing tasks than does pre-
determining the sample size.

Manipulation of the prior probabilities of
the alternative hypotheses also influences sam-
ple size. When the prior probabilities are re-
duced by increasing the number of alterna-
tive hypotheses, subjects select larger samples
before making a decision (Becker, 1958; Mes-
sick, 1964). With just two hypotheses, the
average amount of data purchased decreases
as the prior probabilities become more ex-
treme, that is, depart from .50-.50, but the
rate of decrease is somewhat less than that
called for by the optimal model (Green et al.,
1964). Here, too, there is one exception in
which the amount of data purchased was in-
sensitive to the independent variable. Mes-
sick (1964) found no effect when he con-
trasted rectangular with peaked prior distri-
butions.

The story is the same for the expected di-
agnostic value of data. When diagnostic value
is increased by separating proportions for
two alternative populations, subjects purchase
less data (Becker, 1958; Edwards & Kramer,
1963), but the amount of change is not quite
as much as that prescribed by the optimal
strategy (Edwards & Kramer, 1963). Once
again, there is an exception: Green et al.
(1964) found no systematic effect. With nor-
mal rather than binomial populations, the
diagnostic value is increased by separation of
the population means or by decreasing the
population variance; fewer data are purchased
when they are more diagnostic (Irwin &
Smith, 1956, 1957).

The results of these experiments on con-
trolling the size of samples are similar to
those obtained in experiments on other in-

ference tasks. Variables that would influence
the behavior of statistical man also influ-
ence subjects' behavior, but to a smaller de-
gree. This effect may be summarized by the
statement that subjects are only partially
sensitive to the relevant variables. Recall that
the same kind of effect characterizes con-
servatism (e.g., Peterson, DuCharme, & Ed-
wards, in press; Peterson & Miller, 1965).
These two sets of results may be consistent:
If subjects are only partially sensitive to vari-
ables in probability revision tasks, the hy-
pothesis of consistency requires that they also
be only partially sensitive to the same varia-
bles in information purchasing tasks.

INTUITIVE PREDICTIONS or SAMPLES

The first section of this paper considered
the intuitive description of statistical char-
acteristics of samples of data; the second sec-
tion discussed the use of samples as a basis
for intuitive inferences about populations.
This section examines intuitive predictions
about events that are to be sampled from
populations.

Samples from Unidimensional Populations

The conceptually simplest prediction task
requires trial-by-trial predictions of events
that are randomly drawn from a unidimen-
sional population with a stationary probabil-
ity. When feedback is provided, this is the
familiar paradigm of the probability learning
experiment. Faced with this task, statistical
man would always predict the most frequent
event, but subjects do not; over trials the
distribution of responses tends to match the
distribution of stimuli.

Probability learning experiments constitute
the majority of investigations of behavior in
the face of uncertainty. Therefore, it is im-
portant to interpret this apparently nonra-
tional behavior within the framework of in-
tuitive statistics. One possibility, if we were
merely attempting to describe the data, would
be to follow the lead of the very successful
stochastic learning models and postulate a
dice thrower in the subject's head. That is, we'
would not only assume that the stimuli occur
with a degree of randomness, but also that
behavior is typified by randomness. This al-
ternative is antagonistic to our point of view
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that man is an intuitive statistician who seeks
to behave optimally. Behavior should be
random only when attempting to befuddle a
hostile environment and perhaps not even
then; otherwise, it should be deterministic.
Even in a probabilistic environment one re-
sponse is usually more profitable than others.
That is the response statistical man would
choose and that is the response the subject
should select.

The behavior to account for in a probabil-
ity learning task is not matching; demonstra-
tion of matching requires that data be sum-
marized across subjects and across blocks of
trials. Closer analysis shows that neither the
group nor the individual responds randomly
with a probability equal to the stimulus prob-
ability. Group response proportions change
drastically from trial to trial within a block
(Overall & Brown, 1959; Toda, 1963), and
different subjects yield grossly different re-
sponse proportions over a block of trials (Pe-
terson & Beach, 1967). Rather than matching,
what must be explained is the fact that indi-
vidual subjects systematically vary their re-
sponses from trial to trial instead of always
predicting the most frequent event.

The reason that statistical man would al-
ways predict the most frequent event is that
he understands the implications of drawing
events at random from a population with a
stationary probability. There is evidence that
intuitive theories of randomness do not co-
incide with the mathematical theory (Brown,
1964; Tune, 1964). When subjects produce
"random" sequences of events, they produce
too few long runs and too many alternations.
Subjective theories about random sequences
apparently do not contain the property of
independence through trials. The subjective
probability of an event on a trial depends
upon which events precede it.

Trial-by-trial variations in probability
learning experiments also show sequential de-
pendencies; there are too few long runs and
too many alternations (Anderson, 1960;
Beach & Swensson, 1967; Edwards, 1961b;
Jarvik, 1951; Lindman & Edwards, 1961;
Tune, 1964). The similarity between the se-
quential dependencies in these two situations
suggests that the subjects' responses in a
probability learning task may be determined

by their assumptions about random sequences.
That is, perhaps each subject has his own
theory of randomness, a theory that differs
from the mathematical theory in that it ad-
mits sequential dependencies. Statistical man
using the subjects' theory of randomness in a
probability learning experiment might well
produce similar response sequences.

Samples from Multidimensional Populations

Though unidimensional sampling is theo-
retically the simplest case, nonlaboratory tasks
are seldom so informationally impoverished.
If, for example, you wish to predict the in-
telligence of a potential employee, you do not
rely only on the proportion of previous inter-
viewees who have been intelligent. You rely on
the additional information provided by tect
scores, recommendations, appearance, man-
nerisms, and so on.

Simulation of such information-rich en-
vironments has used multidimensional popu-
lations. In relevant experiments, each trial is
a random sample from a population with cor-
related dimensions. The use of cue informa-
tion is investigated by permitting subjects to
observe the outcome of all but one of the di-
mensions in the sample. These observations,
the cues, are used to predict the value of the
observation on the remaining dimension, the
criterion. Then the sampled value of the cri-
terion is revealed to provide feedback and to
permit learning of the relations between the
various cue-dimensions and the criterion di-
mensions.

In the unidimensional experiment, the op-
timal strategy is to learn which event has the
highest probability of occurrence and to pre-
dict that event on all trials. The multidimen-
sional case is more complex. Here it is neces-
sary to learn the validities of the different
cues, to rely on each cue dimension according
to its validity, and to predict the criterion
value that has the highest probability on the
basis of the evidence provided by all of the
cues.

Weighting of cues. Most empirical research
on the problem of cue weighting has used
multiple regression as the statistical model.
Statistical man, faced with the task of using
continuous cue and criterion dimensions,
would calculate regression weights for each cue
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dimension and then use the weights to predict
the criterion. The research question is, to
what degree are responses the result of ap-
propriate weighting of the cues? (See Hursch,
Hammond, and Hursch, 1964, or Peterson,
Hammond, and Summers, 1965b.)

Subjective cue-weighting is inferred from a
variety of measures: by the correlation be-
tween each cue dimension and the responses,
by the regression weights of the responses
upon the cue dimensions, or by the subjects'
direct estimates of the relative importance of
each cue dimension in predicting the criterion.
Early experimenters were interested in con-
cept formation and the subjects' ability to
differentiate relevant cues from complex stim-
uli (Smedslund, 1955, 1961b; Summers,
1962). They generally obtained poor perform-
ance, a result that was probably due to the
difficulty in discriminating the cues and cri-
terion rather than to an inability to use the
cues correctly after they were discriminated.

More recent studies have used simpler stim-
uli. The magnitudes of the subjective cue-
weights achieve the same rank order as the
objective cue-weights and do so in relatively
few trials, but the amount of separation
among the subjective weights is sometimes
less than the separation in statistical man's
multiple regression equation. As in the experi-
ments on conservatism and on information
purchase, subjects are only partially sensitive
to differences in relevant variables; they treat
the cues as more equal in predictive value
than they actually are (Azuma & Cronbach,
1966; Dudycha & Naylor, 1966; Hammond,
Hursch, & Todd, 1964; Peterson, Hammond,
& Summers, 1965b, Schenck & Naylor, 1966;
Uhl, 1963).

Maximizing versus distributing responses.
Some experiments report that response dis-
tributions approximately match the condi-
tional probability distributions of the criteria
(Binder & Feldman, 1960; Estes, 19S9).
Others find that the response distribution is
more peaked than the conditional probability
distribution, indicating a deviation from
matching in the direction of optimality
(Azuma, 1960; Beach, 1964; Goodnow, 1954;
Peterson & Ulehla, 1964). Although these re-
sults are in conflict about the degree of opti-
mality, they agree that subjects distribute

responses rather than maximize. In this re-
spect these results are similar to those ob-
tained in the unidimensional experiments.
The explanation in the unidimensional case,
misunderstanding of random sequences, is less
tenable in the multidimensional case. Until
more is known about the microstructure of
behavior in this situation, these results remain
unexplained within the framework of intuitive
statistics.

When the assumptions of regression mod-
els are met, the criterion with the highest
conditional probability is the value that lies
on the regression plane. As in a conditional
probability learning experiment, this value of
the criterion changes from trial to trial be-
cause the sampled cues change. The degree to
which responses lie on any linear regression
plane is measured by calculating the multiple
correlation between cue dimensions and re-
sponses. Cue weights reflect the slope of the
regression plane; the experiments discussed
two paragraphs above show that response re-
gression planes are close to the experimental
regression planes, as they should be. The re-
sults are conflicting, however, with respect
to the degree to which all responses lie on or
near that regression plane. When only a single
cue dimension is available, all responses do
not lie on the plane (line)—they are distrib-
uted around it. The variance of the response
distributions around the regression line in-
creases as cues become less predictive of the
criterion (Gray, Barnes, & Wilkinson, 1965;
Schenck & Naylor, 1965).

The nonoptimal behavior found in single-
cue experiments does not extend to multiple-
cue studies. In the latter, responses are almost
completely dependent upon the cues. The very
high multiple correlations between responses
and cues indicate that almost all responses
fall directly on the response regression plane.
This result holds not only where criteria are
perfectly predictable from cues (Azuma &
Cronbach, 1966; McHale & Stolurow, 1962,
1964; Uhl, 1963), but also when they are not
(Grebstein, 1963; Peterson, Hammond, &
Summers, 1965b; Todd, 1954).

In summary, subjects in conditional proba-
bility learning experiments scatter their re-
sponses. They do the same thing in single-
cue regression experiments. In the seemingly
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more complex multiple-cue regression experi-
ments, however, almost all responses fall on
the response regression plane. It is not clear
why the results conflict, but the evidence is
abundant. Once again, greater task complex-
ity appears to lead to more nearly optimal
performance.

In addition to results on cue weighting and
maximizing, there is other evidence that sub-
jects are able to deal with functions relating
criteria to cues. They can learn and use func-
tions with both positive and negative slopes
(Bjorkman, 1965); they can handle nonlinear
as well as linear functions (Summers & Ham-
mond, 1966); and perhaps most impressive
of all, when confronted with a cue that they
have never seen before, predictions fall on
the regression line derived from previous ob-
servations (Bjorkman, 1965; Gray, Barnes,
& Wilkinson, 1965).

NONSTAXIONARY PARAMETER VALUES

We have examined the ability of the intui-
tive statistician to perform in uncertain but
stationary situations. Although the relation
between population and sample was a noisy
one, the population remained the same over
time. The subjects were aware that changes
in the sequential sample of data from one
time to another were due to random fluctua-
tions.

The nonlaboratory environment, however, is
characterized by nonstationary situations as
well, situations in which values of parameters
change over time. This complicates matters
considerably, because temporal fluctuations in
the sequential sample can be due either to
random perturbations or to real changes in
the population. It is therefore necessary to
penetrate through random variations, not
only to detect population parameters, but
also to detect changes in those parameters.

Statistical Models

The statistical procedures used in nonsta-
tionary situations are themselves models that
assume stationarity. Adapting such a model
to a changing situation "consists of finding
ways of looking at a changing world so that
it seems to be unchanging [Edwards et al.,
1965, p. 310]."

Attempts to describe nonstationary situa-
tions with stationary statistical models fall
into two general classes, which we will call
deletion models and detection models. The
essence of the deletion model is the analysis
of data in small blocks, small enough so that
the assumption of stationarity during the
block is not too unreasonable, and the dele-
tion of all other data. Another version is to
take running averages, a process that slides
the blocks through trials by deleting the old-
est trial as it adds each new trial. A varia-
tion of the running average attributes more
weight to recent data than to older data
(Dodson, 1961). The deletion models suffer
from an arbitrariness in the choice of the
number of data included in a given block.
The choice requires a compromise between
the need for a sample large enough to yield
a stable estimate of the population parameter
and one small enough to make the assumption
of stationarity during the block a reasonable
one.

The detection model is less arbitrary. The
idea is to compare incoming data with cur-
rent estimates of the population parameter,
until the new data become so divergent that
the no-change hypothesis must be rejected in
favor of the hypothesis that there has been a
change. While these are hypotheses about
change, they themselves do not change, there-
by permitting the use of conventional sta-
tistical models that assume a stationary situ-
ation. Thus, detection models yield a hier-
archy of inferences; inferences about the
population are controlled by inferences about
whether or not a change has occurred.

Since conventional statistical models gen-
erally assume stationary population param-
eters, their application to nonstationary situ-
ations depends to a considerable degree upon
the ingenuity of the user. Few of the experi-
ments have compared the performance of sub-
jects with theoretically optimal performance
in nonstationary statistical tasks. The typical
procedure is to indicate the trials on which
the parameter changed and to display the
effect of the change on estimates made by
subjects.

Experiments. Experimenters have used non-
stationary situations to study the three classes
of tasks discussed so far: description, infer-
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ence, and prediction. In a description task,
Robinson (1964) presented sequences of two
rapidly flashing lights; the proportion of
trials on which each light flashed changed
with discrete steps at various points in the
sequence. The task was to track the sample
proportion by continuously adjusting a
pointer on a proportion scale. The behavior
could be described better by a detection than
by a deletion model. Estimates changed
abruptly following changes in the stimulus
proportion; deletion models call for more
gradual changes in response. Robinson pointed
out, however, that the step changes in the
proportions being estimated were especially
compatible with detection models. It may be
that the class of model that will describe be-
havior more accurately depends upon the
characteristic of change in the experimental
situation. Whatever the eventual status of
these kinds of models, Robinson's results
demonstrate that subjects can accurately es-
timate a time-varying binary probability.

A similar conclusion can be drawn when
subjects infer nonstationary values of a pop-
ulation parameter. Rapoport (1964a, 1964b)
selected values of the population proportion
by a process that changed over time. The sub-
jects used samples of data drawn from these
populations to infer the value of the param-
eter. They made direct estimates and also
estimated the interval within which they
expected the parameter to fall. Intuitive
inferences about the parameter changed in
the direction of the shifts in the nonstation-
ary process.

Responses are also sensitive to changes in
parameter values when the task is to make
sequential predictions about samples to be
drawn from nonstationary populations. In
probability learning experiments, when the
stimulus probability changes over trials, the
group response proportion tracks that change
(e.g., Estes, 1959; Friedman, Burke, Cole,
Keller, Millward, & Estes, 1964). The same
thing happens when stimulus probabilities
change, not simply as a function of trials, but
as a function of the stimulus event of the
preceding trial (e.g., Anderson, 1960). Fi-
nally, subjective cue-weights track changes in
corresponding objective cue-weights when the
task is to predict events to be sampled from

multidimensional populations (Peterson, Ham-
mond, & Summers, 196Sa).

Additional support for the principle that
subjects are sensitive to change comes from
decision research, particularly research on
multistage decisions. Rapoport (1965a, 1965b)
developed tasks in which the state of the ex-
periment changed over trials; the change de-
pended on the state of the previous trial, on
the decision made by the subject, and on
some random process. Costs and payoffs
were related both to decisions and to states,
and the subject's goal was to make decisions
that would maximize his net payoff. Rapoport
found that intuitive decisions were remark-
ably near optimal decisions as prescribed by
dynamic programming models (see Rapoport,
196Sa, for references on dynamic program-
ming). Although the task was primarily one
of decision making and no model of statisti-
cal inference was tested, the nearly optimal
decisions required sensitive inferences about
a complex nonstationary process.

Application of conventional statistical mod-
els to changing situations is a complicated
process, but the results of these experiments
suggest that subjects are very sensitive to
change; they are adaptable to nonstationary
aspects of probabilistic situations.

SUMMARY AND CONCLUSIONS
The point of view underlying the research

reviewed in this paper is that man must come
to terms with his uncertain environment; he
is not aware of all present conditions and he
does not always know what will occur in the
future. The formal theory of probability with
its statistical applications describes the struc-
ture of that uncertain environment and the
processes governing the occurrence of events
within it. In addition, probability theory is
normative; it provides optimal models for
making inferences under conditions of uncer-
tainty. This normative characteristic is the
basis of the concept of "statistical man," a
set of procedures for making optimal statis-
tical inferences.

Experiments that have compared human
inferences with those of statistical man show
that the normative model provides a good
first approximation for a psychological theory
of inference. Inferences made by subjects are
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influenced by appropriate variables and in
appropriate directions. But there are sys-
tematic discrepancies between normative and
intuitive inferences. For example, the latter
are usually too conservative; subjects ap-
parently fail to extract all the information
latent in samples of data. In addition, while
intuitive inferences are sensitive to variables
relevant to the normative model, the degree
of sensitivity is often less than optimal.

A recurrent theme of the research reviewed
is that some discrepancies are due to the fact
that subjects in an inference task make as-
sumptions different from those of statistical
man. If statistical man were to incorporate
subjects' assumptions, his inferences would
be more descriptive of those made by sub-
jects. Current research integrating subjective
assumptions with the concept of statistical
man may be a major step toward a psycho-
logical theory of intuitive statistical infer-
ence.

Such a theory would encompass only a re-
stricted subset of human behavior, but there
are some obvious possibilities for expansion.
The subset increases considerably when the
related normative models of probability theory
and decision theory are joined as a basis for
a broader psychological model including choice
behavior as well as inference processes in an
uncertain environment. Research by Piaget
and his collaborators suggests another direc-
tion for expanding this normative approach
to developing psychological models. For ex-
ample, they have studied children's acquisi-
tion of principles such as the conservatism of
substance and weight (e.g., see Smedslund,
1961a). Once the principle of conservation
has been acquired, the child knows that the
amount of substance and the weight of the
object must remain unchanged if nothing is
added or taken away, even though the form
of the object may change. Principles such as
the law of conservation are normative in that
they lead to correct predictions of future
events where alternative notions would lead
to error. Thus, research on man as an intui-
tive statistician and as an intuitive decision
maker could be extended to other disciplines
offering normative models. The research could
consider man as an intuitive scientist, logician,
mathematician, and so on, and the resulting

psychological theory would indeed apply to a
large segment of human behavior.
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