is not to be disseminated broadly.

n or one of its allied publishers.

ghted by the American Psychological Associa

This document is copyri
This article is intended solely for the personal use of the individual user

MERICAN
SYCHOLOGICAL
ASSOCIATION

_a—
S\
P

Journal of Experimental Psychology: General

© 2018 American Psychological Association
0096-3445/18/$12.00

2018, Vol. 147, No. 5, 662—-670
http://dx.doi.org/10.1037/xge0000415

When Payoffs Look Like Probabilities: Separating Form and Content in
Risky Choice

Johannes Miiller-Trede
University of California, San Diego

Shlomi Sher

Pomona College

Craig R. M. McKenzie

University of California, San Diego

Paralleling research in perception, behavioral models of risky choice posit “psychophysical” transfor-
mations of material outcomes and probabilities. Prospect theory assumes a value function that is concave
for gains and convex for losses, and an inverse S-shaped probability weighting function. But in typical
experiments, form and content are confounded: Probabilities are represented on a bounded numerical
scale, whereas representations of monetary gains (losses) are unbounded above (below). To unconfound
form and content, we conducted experiments using a probability-like representation of outcomes and an
outcome-like representation of probability. We show that interchanging numerical representations can
interchange the resulting psychophysical functions: A proportional (rather than absolute) representation
of outcomes leads to an inverse S-shaped value function for gains. This alternative value function
generates novel framing effects, a common ratio effect for bounded gains, and a “framing interaction,”
where gain-loss framing matters less for proportional outcomes. In addition, we show that an absolute
(rather than proportional) representation of probability reduces sensitivity to large probabilities. These
findings highlight the deeply constructive nature of the psychophysics of risky choice, and suggest that
traditional models may reflect subjective reactions to numerical form rather than substantive content.
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Attempts to map out the transformations that convert objective
stimulus dimensions to internal subjective representations have
occupied a central place in experimental psychology since its
inception (Fechner, 1860). Careful study of psychophysical func-
tions has been especially prominent in perceptual research—for
example, in determining the functional form that best captures
diminishing sensitivity to objective dimensions such as light in-
tensity (e.g., Stevens, 1957). Inspired by work in perception,
researchers in decision making have posited analogous “psycho-
physical” transformations of abstract quantities like probability
and monetary amounts: Prospect theory, the leading behavioral
model of risky choice (Kahneman & Tversky, 1979; Tversky &
Kahneman, 1992), assumes a concave value function for gains
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relative to a reference point, a convex value function for losses,
and an inverse-S shaped weighting function for probability (see
Figure 1). The value function captures diminishing sensitivity to
monetary magnitudes, while the weighting function captures
strong reactions to changes in probability at the extremes (near
impossibility and certainty), and a relative insensitivity to incre-
ments in intermediate probabilities. Prospect theory’s value and
weighting functions generate several behavioral “anomalies” that
challenge standard economic models of rational choice, such as
framing effects and the certainty effect (Kahneman & Tversky,
1979; Tversky & Kahneman, 1981).

It is natural to suppose, and often implicitly assumed, that these
functions capture general attitudes toward outcomes (i.e., gains or
losses) and probabilities. From this perspective, the difference in
shape between the value and weighting functions reflects the fact
that outcomes and probabilities are different kinds of entities, and
people have accordingly different reactions to them. But in typical
decision making experiments, outcomes and probabilities are also
provided to participants in different numerical representations that
have different formal properties. Outcomes are typically conveyed
in an absolute representation that is unbounded in one direction
(above for gains, below for losses). Probability, by contrast, is
usually cast in a proportional representation, bounded by conspic-
uous lower (0%) and upper (100%) endpoints. The form of the
numerical representations (bounded vs. unbounded) is thus con-
founded with the substantive content that the numbers represent
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Figure 1.

(probabilities vs. outcomes). This common confounding of form
and content introduces an ambiguity in the interpretation of pros-
pect theory’s value and weighting functions: Do the shapes of the
functions reflect different reactions to different objective content,
to different formal representations, or to both? A resolution of this
ambiguity would have important implications for the psychologi-
cal underpinnings of prospect theory, and for the scope of the
anomalies it predicts. Here, we report studies that unconfound
form and content, using a probability-like numerical representation
of outcomes and an outcome-like numerical representation of
probability.

There are reasons to suspect that numerical form, over and above
substantive content, may be important in determining the shape of the
value and weighting functions. First, while prospect theory is usually
applied to monetary gains and losses, it has also been effectively
applied in domains where substantive considerations are very differ-
ent (such as lives saved or lost; Tversky & Kahneman, 1981) but
formal properties are similar (a scale unbounded in one direction).
Further, we suspect that, in responding to an absolute numerical
representation of an unfamiliar or even meaningless objective dimen-
sion, such as “the number of grimbles in a splot,” people would
exhibit diminishing sensitivity, with the transition from 1 to 6
grimbles having greater subjective impact than the transition from
1821 to 1826. For abstract quantities like probability or grimbles—in
contrast to hardwired perceptual inputs like light intensity—people
may effectively construct their psychophysical functions on the fly, in
which case numerical representations may well be critical. In partic-
ular, if discriminability is enhanced in the vicinity of salient land-
marks or reference points on arbitrary quantitative scales, one would
predict concave (convex) psychophysical functions for numerical
representations with a single lower (upper) endpoint, and an inverse
S-shape for representations with two endpoints. This principle can
account for the shape of prospect theory’s value and weighting func-
tions, as noted by Tversky and Kahneman (1992) and Gonzalez and
Wu (1999)—provided that outcomes and probabilities are represented
in the usual way. But the same principle also implies that different
numerical representations of the same objective quantities will lead to
very different psychophysical functions. Specifically, it suggests a
“reversal hypothesis”: For large outcomes or probabilities, decision

Weighting function

Decision weight
L

Probability

Prospect theory: Representative value and probability weighting functions.

makers should exhibit diminishing sensitivity in a representation
without an upper bound and accelerating sensitivity in a bounded
representation. The reversal hypothesis, in turn, predicts a class of
novel framing effects in risky choice.

To test these predictions, we investigated proportional represen-
tations of outcome and absolute representations of uncertainty.’
Across five experiments, we found strong support for the reversal
hypothesis. When the same probabilities and outcomes are con-
veyed with different numbers, people behave as if they have very
different attitudes to risk. The findings suggest that the standard
psychophysical functions for value and uncertainty primarily cap-
ture reactions to superficial numerical form rather than substantive
content.

Overview of Experiments

Figure 2 illustrates the paradigm used in Experiments 1-3. Partic-
ipants choose between two gambles offering different probabilities of
winning different prizes, drawn from a pot containing a fixed total
amount ($3100). The numerical representation of potential prizes is
either formally unbounded ($; left panel) or bounded above (%; right
panel), and we compare risk attitudes and the shape of the implied
value function across the two representations. In Experiment 1, we
show that framing large gains in proportional terms leads to a pro-
nounced reduction in risk aversion. Experiment 2 uses psychometric
methods to estimate value functions in both representations. The value
function for gains that best describes choice behavior appears to be
concave in the unbounded representation, but exhibits an inverse
S-shape in the bounded representation. In Experiment 3, we demon-
strate a novel common ratio effect for bounded gains, which provides
further support for the reversal hypothesis. Experiment 4 extends the
paradigm to losses as well as gains in a nonmonetary outcome domain

" We use the term “uncertainty” in the broad sense, to refer to any
situation in which knowledge about future outcomes is incomplete. We
note, however, that the term is sometimes used more narrowly, to contrast
situations in which probabilities cannot be precisely quantified (“uncer-
tainty”’) with ones in which probabilities are precisely known (“risk”). In
our usage, as in Wakker (2010), “uncertainty” encompasses both types of
situations, and “risk” is simply a special case of uncertainty.



is not to be disseminated broadly.

n or one of its allied publishers.

ghted by the American Psychological Associa

This document is copyri
This article is intended solely for the personal use of the individual user anc

664

Now we would like you to choose between the following two gambles.
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Probability

Prize

Gamble A

.20

$2976

Gamble B

.25

$2170

Now we would like you to choose between the following two gambles.

Probability

Prize

Gamble A

.20

96% of the pot

Gamble B

25

70% of the pot

Which gamble would you choose?

O Gamble A
O Gamble B

Which gamble would you choose?

O Gamble A
O Gamble B

Figure 2. Experimental paradigm in Experiments 1-3. The representation format of the monetary amounts,
manipulated between participants, was either unbounded (left) or bounded (right) above. See the online article

for the color version of this figure.

(lives saved or lost). As predicted by the reversal hypothesis, a
well-known effect of gain-loss framing (Tversky & Kahneman, 1981)
is markedly attenuated in the bounded representation. Turning to
probability, Experiment 5 contrasts the subjective impact of chance in
a bounded numerical representation (% of winning balls in an urn of
fixed size) and in an unbounded representation (# of winning balls in
the urn). When expressed on an unbounded scale, large probabilities
appear to have a smaller subjective impact. Taken together, these
findings indicate that subjective transformations of probability and
outcome strongly depend on the formal properties of their numerical
representations.

All experimental tasks consisted of web forms programmed in
Qualtrics (Qualtrics, 2016). They generally included several
screens with instructions and an example, one or more response
screens, and a postexperimental demographic survey. All experi-
ments involved forced choices between hypothetical gambles, with
the exception of Experiment 5, in which participants rated the
attractiveness of a single gamble. Complete sets of screenshots
from two representative experimental tasks (Experiments 1 and 5)
are included in the online supplemental materials. None of the
experiments included any measures or conditions that are not
reported.

Experiment 1

A strictly concave value function (Figure 1, left panel) predicts
risk aversion for gains: When expected value is held fixed, a lower
probability of a larger gain should be less appealing, because of
diminishing sensitivity to increasing gains. Risk aversion for gains
(when probabilities are not extreme) has been demonstrated in a
wide range of studies using the standard unbounded representation
of monetary amounts (e.g., Stott, 2006; Wakker, 2010). How, if at
all, will risk attitudes change when gains are represented on a
bounded scale? According to the reversal hypothesis, the usual
concave value function for gains should become inverse S-shaped
when outcomes are represented on a bounded scale. For small to
moderate gains, concave and inverse-S shaped value functions are
qualitatively similar, as sensitivity diminishes with increasing dis-
tance from the lower bound. While this pattern continues for the
concave function, it eventually reverses for the inverse-S function,

with accelerating sensitivity to increasing gains near the upper
bound of the scale. This predicts less risk aversion for large gains
in the bounded than in the unbounded representation. We tested the
predicted reduction in risk aversion in Experiment 1.

Method

A total of 145 undergraduate students at UCSD’s Rady School
of Management (33.8% female; M,,,, = 21.6 years) participated in
Experiment 1 for partial course credit. The stimuli are shown in
Figure 2. Participants made a single choice between two hypothet-
ical gambles, and were told that “each gamble offers a chance at
winning some money from a pot of prize money” holding $3100.
Each participant chose between a relatively risky gamble offering
$2976, or 96% of the pot, with probability .2, and a safer gamble
offering $2170, or 70% of the pot, with probability .25. (The
riskier gamble was designed with an expected value advantage, to
balance the attractiveness of the two gambles in the unbounded
condition.) Participants in the unbounded condition (n = 72) saw
all monetary amounts expressed in dollar terms (Figure 2, left
panel) while those in the bounded condition (n = 73) saw all
monetary amounts in percentage terms (right panel). The total pot
size was prominently displayed in both conditions. The conditions
thus differ only in the formal properties of the payoffs’ numerical
representation (# vs. %).

Results

In the unbounded condition, 51.4% of participants selected the
relatively safe gamble, whereas only 24.7% selected the safer
gamble in the bounded condition, x*(1, N = 145) = 11.00, p <
.001. This novel framing effect supports the reversal hypothesis.
Risk aversion is markedly reduced when large gains are framed in
proportional terms.

Experiment 2

To obtain a more detailed picture of value sensitivity, we esti-
mated value functions for both unbounded and bounded gains in a
psychometric study featuring a wide range of gambles. Insofar as
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the value and weighting functions reflect reactions to numerical
form rather than substantive content, the standard concave value
function for unbounded gains should turn into an inverse S-shape
when gains are framed proportionally. The design also permits an
extended conceptual replication of Experiment 1: For gamble pairs
involving relatively large gains, risk aversion should be reduced in
the bounded representation.

Method

A total of 472 undergraduate students in the UCSD Psychology
Department (67.6% female; M,,, = 20.0 years) participated in
Experiment 2 for partial course credit. Each participant was as-
signed to either the unbounded (n = 234) or bounded (n = 238)
condition, and made 10 choices between gambles in the same
representation, with a fixed pot size of $3100. The gambles were
randomly drawn from a master set that ranged widely in proba-
bilities and monetary amounts. To infer value functions from the
choice data, we utilized a semiparametric procedure introduced in
Stewart, Reimers, and Harris (2015). The method lends itself to
modeling repeated-measures data, which it can accommodate via
nonlinear mixed-effects modeling. This approach does not make
any a priori assumptions about the value function (i.e., it does not
assume a parametric form) and thus allows the function to take
any—standard or nonstandard—shape, though (as explained be-
low) it requires auxiliary assumptions about probability weighting.

Stimuli. The stimuli were pairs of hypothetical gambles. Each
gamble involved some probability of winning a specified amount
from a $3100 pot, and otherwise winning nothing. We constructed
individual gambles by crossing the winning probabilities {.1, .3, .5, .7,
.9} with the payoffs corresponding to {5%, 15%, 25%, 35%, 45%,
55%, 65%, 15%, 85%, 95%} of the $3100 pot, resulting in 50 distinct
gambles.

From the 1225 possible (unordered) pairings of these gambles,
we selected 100 gamble pairs to be included in the study (for a
complete list, see the online supplemental materials). We excluded
pairs in which one gamble dominated the other. We also sought to
avoid pairs in which one gamble is clearly superior to (i.e., has a
much larger expected value than) the other, while maintaining an
equal distribution of probabilities and outcomes. To do so, we used
the COIN-OR branch-and-cut routine for integer programming
implemented in the open source software OpenSolver (Lougee-
Heimer, 2003; Mason, 2012; OpenSolver, 2017) to minimize the
total sum of the absolute within-pair expected value (EV) differ-
ences, subject to two sets of constraints. First, the five probabilities
were required to appear equally often (i.e., in exactly 40 gambles).
Second, the payoffs were also required to appear equally often
(i.e., in exactly 20 gambles). Because of a programming error,
there was a small distortion in computing within-pair EV differ-
ences. The error inflated the probabilities for the safe gamble in all
pairs by .1 for selection purposes, leading the algorithm to match
safe gambles with risky counterparts that tended to have slightly
higher EVs. As a result, the final list generated by the algorithm,
while satisfying all of the above constraints (equal occurrences of
probabilities and outcomes, with dominance excluded), is a non-
optimal solution to the selection problem. The list, however,
mostly overlaps with an optimal solution, and robustness checks
reported in the online supplemental materials indicate that the
discrepancy does not affect the findings reported below.

Each participant encountered 10 gamble pairs that were sampled
without replacement from the list of 100 pairs. Across all partic-
ipants, each gamble pair was presented at least 12 times in each
condition, and the distribution of gamble pairs in the two condi-
tions did not differ significantly, x*(99, N = 472) = 100.91, p =
A43.

Estimation method. To estimate the value functions, we used a
semiparametric procedure developed by Stewart et al. (2015). This
approach treats the subjective valuations of each of the 10 payoffs in
each of the two conditions as independent parameters and thus allows
the functions to take any shape. Formally, it amounts to maximum-
likelihood estimation of the value parameters u,. in

b [w(p)u.(x)]¥
b wPu(x) e + [wilg)u (y) e (1)

where b, captures an overall bias toward risk-seeking (or risk-
aversion) in condition ¢; w(p) and w(g) are the decision weights
associated with the winning probabilities of the riskier and the
safer gambles, respectively; x and y are the respective payoffs for
the riskier gamble (i.e., the gamble with a lower probability of a
larger gain) and the safer gamble (i.e., the gamble with a higher
probability of a smaller gain); and <y, controls how differences in
value translate to differences in choice probabilities in condition c.

This approach requires two noteworthy assumptions. First, be-
cause the procedure does not allow joint estimation of values and
probability weights, auxiliary assumptions about probability
weighting are needed. The analyses reported below assume a
standard cumulative prospect theory (CPT) weighting function,
shown in Figure 1, using the parametrization and median param-
eter estimate from Tversky and Kahneman (1992). Additional
analyses using other weighting functions (a linear function, or a
CPT weighting parameter derived from our data in an alternative
two-step estimation procedure) are reported in the online supple-
mental materials. These analyses yield value functions generally
similar to those reported below, though the assumption of linear
probability weighting results in reduced curvature in both the
unbounded and bounded value functions. Second, the procedure
accommodates response noise via Luce’s choice rule (Luce, 1959).
A standard method for incorporating a stochastic component in a
deterministic choice model, this assumption implies that the odds
with which one option is chosen over another are proportional to
the ratio of the options’ valuations (for details, see the online
supplemental materials).>

Pr(R) =

Results

Figure 3 plots estimated subjective valuations for different pay-
offs for participants in the unbounded (left panel) and bounded
(right panel) conditions, along with best-fitting third-degree poly-
nomials. In the standard unbounded condition, the value function
appears to be concave, consistent with previous psychometric
studies (Abdellaoui, 2000; Camerer & Ho, 1994; Gonzalez & Wu,

2 Stewart, Canic, and Mullett (2017) identify a methodological problem
that arises in comparing value functions inferred from different choice sets,
and that complicates the interpretation of Stewart et al. (2015). The
problem does not apply to the present experiment, however, because the
choice sets in the two representation conditions are not systematically
different.
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Figure 3. Experiment 2: Value functions inferred from choice behavior for the standard (unbounded above; left
panel) and bounded (right panel) representations of monetary gains. Error bars show bootstrap SEs. (Note that
inferred values and their SEs are normalized relative to the highest value within each condition; see the online
supplemental materials for details.) See the online article for the color version of this figure.

1999; Stott, 2006; Tversky & Kahneman, 1992; but see Stewart et
al., 2015). Subjective valuations in the bounded condition exhibit
a different pattern. While the function decelerates for small-to-
moderate amounts, it appears to accelerate for amounts near the
upper bound—a property usually seen in probability weighting
functions but not value functions. This acceleration predicts that,
as in Experiment 1, risk aversion in the bounded condition should
be reduced for gamble pairs involving at least one gain near the
upper bound.

To test this prediction, we examined the 40 gamble pairs fea-
turing either of the two large gains—85% and 95% of the $3100
pot—for which acceleration is apparent in the right panel of Figure
3. Directionally, participants in the unbounded condition selected
the safer option more often than their counterparts in the bounded
condition in 29 choice pairs, and selected the riskier option more
often in only 10 pairs (p < .01, sign test; Figure 4). Collapsing
across all 40 pairs involving large gains, the risk-averse option was
chosen 67.4% of the time in the unbounded condition and only
59.1% of the time in the bounded condition, x°(1, N = 1881) =
13.92, p < .001. By contrast, for gamble pairs not featuring either
of these large gains, the safer option was selected 64.4% of the
time in the unbounded condition and 62.7% in the bounded con-
dition, XZ(I, N = 2839) = 0.88, p = .35. Risk attitudes system-
atically differ across representations only in the vicinity of the
upper bound. The reduced risk aversion for bounded gains dem-
onstrated in Experiment 1 is thus not limited to the specific stimuli
used there, but generalizes to a broad range of probabilities and
outcomes.® These findings, together with the value functions in
Figure 3, provide strong evidence that value sensitivity is not
invariant across representations. When the numerical representa-
tion makes an upper bound salient, relatively large amounts are
more impactful. Framing gains in proportional terms thus yields a
value function that resembles a standard probability weighting
function.

Experiment 3

The results of the psychometric study suggest that the value
function for bounded gains (Figure 3, right panel) is nonlinear—
and, more generally, that it cannot be represented by a power
function. More direct evidence for this conclusion comes from a
common ratio design. This design, traditionally used to demon-
strate nonlinear weighting of probabilities (Allais, 1953; Kahne-
man & Tversky, 1979), here reveals that the bounded-value func-
tion is not a power function.

Method

A total of 200 online workers from the general U.S. population
at Amazon Mechanical Turk (33.0% female; M,,, = 35.5 years)
participated in Experiment 3 in exchange for $0.10. Each partici-
pant made a single choice between two gambles in the bounded
representation, with a pot size of $3100. The gamble pairs differed
across conditions in the prize money at stake (high vs. low), as
shown in Table 1. Note that the high-stakes gambles were con-
structed by multiplying each possible gain in the low-stakes gam-
bles by a common factor of 7. If value sensitivity is captured by a
power function—v(x) = cx“, where a = 1 in the linear case—then
(assuming any fixed probability weighting function) the product of
value and (weighted) probability will be higher for the safer option
in the low-stakes condition if and only if it is also higher in the
high-stakes condition. A linear or other power function for value

3 In particular, the reduction in risk seeking does not depend on whether
the risky gamble has higher expected value (EV), as in Experiment 1, or
lower expected value. For gamble pairs involving large gains (85% or
95%) in which the risky gamble has the higher EV, the safe option was
chosen 62.6% of the time in the unbounded condition and 54.8% of the
time in the bounded condition, x*(1, N = 1337) = 8.442, p < .01. For
gamble pairs involving large gains in which the safe gamble has the higher
EV, the safe option was chosen 80.0% of the time in the unbounded
condition and 69.0% of the time in the bounded condition, Xz(l, N =
544) = 8.441, p < .01.
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Figure 4. Risk aversion across the two representations for gamble pairs
involving a large monetary gain (85% or 95% of the pot) in Experiment 2.
Purple (light green) points indicate gamble pairs for which there was less
risk aversion in the bounded (unbounded) representation. See the online
article for the color version of this figure.

sensitivity would thus imply similar choice behavior in the low-
and high-stakes conditions.

Results

Whereas 58.4% of participants chose the safer gamble in the
low-stakes condition, only 30.3% chose the safer gamble in the
high-stakes condition, x*(1, N = 200) = 16.00, p < .001. This
common ratio effect cannot be captured by a power function. It is,
however, compatible with an inverse S-shaped value function,
shifting from diminishing to increasing sensitivity across the range
of possible bounded gains. For proportional outcomes as for prob-
abilities, scaling up all values by a common factor triggers pre-
dictable shifts in risk preference.

Experiment 4

The previous studies have all examined monetary gains, and
corroborate prospect theory’s concave value function for un-
bounded, but not for bounded, monetary gains. Prospect theory has
also been applied to nonmonetary outcomes, and it posits dimin-
ishing sensitivity for losses as well as gains. This pattern generates
framing effects when the same outcomes are alternately framed as
gains or losses relative to a manipulated reference point, as in the
well-known Asian disease problem (Tversky & Kahneman, 1981)
and numerous related paradigms (reviewed in Druckman, 2001;
Levin, Schneider, & Gaeth, 1998). In Experiment 4, we examined
sensitivity to nonmonetary gains and losses, adapting the Asian
disease problem to a setting in which outcomes are readily repre-
sented on both bounded and unbounded scales.

Method

A total of 1000 workers from Amazon Mechanical Turk (45.5%
female; M,,, = 34.0 years) participated in Experiment 4 in ex-
change for $0.10. We excluded 26 participants who reported being
familiar with the Asian disease problem from all further analyses.
All findings reported below and their statistical significance re-
mained qualitatively unchanged when these participants are in-
cluded.

Participants in four framing conditions were asked to:

Imagine that a remote mountain village is facing a major natural
disaster. The disaster is expected to kill the village’s 600 inhabitants.
Two alternative programs have been proposed in response to the
danger. Assume that the exact scientific estimates of the consequences
of the programs are as follows.

Participants who received the unbounded-gain frame (n = 248)
chose between the following two programs [with the unbounded-
loss frame (n = 242) in brackets].

If Program A is adopted, 200 inhabitants will be saved [400 inhabit-
ants will die].

If Program B is adopted, there is 1/3 probability that 600 inhabitants
will be saved [0 inhabitants will die], and 2/3 probability that O
inhabitants will be saved [600 inhabitants will die].

Though the programs have numerically equivalent outcomes in
the unbounded-gain and -loss frames, diminishing sensitivity pre-
dicts different choices in the two conditions. Participants should be
risk-averse (selecting Program A) in the gain (“saved”) frame,
because gaining three times as much (600 vs. 200) is not three
times as good. But participants should be risk-seeking (selecting
B) in the loss (“die”) frame, because losing 1.5 times as much (600
vs. 400) is not 1.5 times as bad.

In the remaining conditions of Experiment 4, gain or loss
outcomes were represented on a bounded scale. Participants in the
bounded-gain condition (n = 239) saw the following two pro-
grams [bounded-loss condition (n = 245) in brackets].

If Program A is adopted, 33% of the inhabitants will be saved [67%
of the inhabitants will die].

It Program B is adopted, there is 1/3 probability that 100% of the
inhabitants will be saved [0% of the inhabitants will die], and 2/3
probability that 0% of the inhabitants will be saved [100% of the
inhabitants will die].

If value functions for bounded gains and losses are inverse
S-shaped, then the framing effect should be reduced in the
bounded representation. This is because diminishing sensitivity for
small-to-moderate amounts is counteracted by accelerating sensi-

Table 1
Experiment 3: Common Ratio Effect for Monetary Amounts in a
Bounded Representation (Pot Size = $3100)

Choices:

Condition Safe gamble Risky gamble n (%) safe

Low stakes p = .39 to win 11% p = .35 to win 14% 59/101 (58.4%)
High stakes p = .39 to win 77% p = .35 to win 98%  30/99 (30.3%)
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tivity near the upper bound. The reversal hypothesis thus predicts
reduced risk aversion in the gain fame and reduced risk seeking in
the loss frame.

Results

Consistent with previous research, we found a strong framing
effect in the standard unbounded conditions, with clear risk aver-
sion in the gain frame (69.4% selecting Program A) and clear risk
seeking in the loss frame (only 36.8% selecting A). In the bounded
conditions, the framing effect was markedly attenuated, with a
majority of participants selecting Program A in both the gain frame
(65.3%) and the loss frame (51.8%). A logistic regression confirms
a significant frame-by-representation interaction (b = —.80, SE =
27,z = —3.0, p < .01). While the framing effect was significant
in both the unbounded (p < .001) and bounded (p < .01) condi-
tions, note that risk seeking for losses was eliminated in the
bounded representation. Comparing the bounded and unbounded
representations, the predicted reduction in risk seeking was signif-
icant for the loss frame, xz(l, N = 487) = 11.19, p < .001, while
the predicted reduction in risk aversion fell short of significance
for the gain frame (p = .34). Numerical representation thus matters
for nonmonetary as well as monetary outcomes, and for losses as
well as gains. Going beyond the standard framing effect, these
findings demonstrate a “framing interaction.” The effect of gain-
loss framing depends on whether the gains and losses are them-
selves framed in absolute or proportional terms.

Experiment 5

Experiments 1-4 indicate that when a bounded representation is
imposed on gains and losses, the value function changes, with
increased sensitivity to large amounts. In Experiment 5, we ask
whether diminishing sensitivity to probability will emerge when an
unbounded representation makes the natural upper bound for prob-
ability less salient. We used ball-and-urn gambles, in which prob-
ability may be expressed by the percentage (bounded representa-
tion) or number (unbounded representation) of winning balls in an
urn of fixed size.

Method

A total of 303 undergraduate students in the UCSD Psychology
Department (65.0% female; M,,, = 20.3 years) participated in
Experiment 5 for partial course credit. Each participant rated the
attractiveness of a single gamble on a 1 to 9 scale. The gamble
could be either relatively risky or relatively safe, with the winning
probability represented on either a bounded or an unbounded scale,
as shown in Table 2. We opted for a between-subjects rating task
to avoid the complexity of a choice problem involving two differ-
ent urns with different numbers of winning marbles and different
prizes.* For both gambles in both representations, a visual depic-
tion of the urn, indicating the total number of “marbles” in the urn
(1373), was prominently displayed (for screenshots, see the online
supplemental materials). In the standard bounded representation,
the difference in probabilities (82% vs. 94%) near the upper bound
should be heavily weighted, enhancing the relative attractiveness
of the safe gamble. If the unbounded representation leads to
diminishing sensitivity for probability, the difference in the num-

Table 2
Experiment 5: Attractiveness Ratings of Relatively Safe and
Risky Gambles Across Numerical Representations

Rating:

Representation Gamble Description n  Mean (SD)
Bounded Safe  94% winning marbles, $15 prize 78 8.2 (1.2)
Risky 82% winning marbles, $21 prize 73 7.3 (1.7)
Unbounded  Safe 1291 winning marbles, $15 prize 81 7.6 (1.6)
Risky 1126 winning marbles, $21 prize 71 7.5 (1.5)

ber of winning marbles (1126 vs. 1291) should be less heavily
weighted, reducing the relative attractiveness of the safe gamble.

Results

Mean attractiveness ratings are shown in Table 2. We conducted
a 2 X 2 analysis of variance (ANOVA) with gamble (safe vs.
risky) and representation (bounded vs. unbounded) as independent
variables. There was a main effect of gamble, with higher ratings
overall for the safe gamble, F(1, 299) = 8.24, p < .01, and no
main effect of representation, F(1, 299) = 1.68, p = .20. Impor-
tantly, the ANOVA confirmed the predicted interaction, F(1,
299) = 4.42, p = .04. The safe gamble received significantly
higher attractiveness ratings than the risky gamble in the bounded
representation (p < .001) but not in the unbounded representation
(p = .59). This finding suggests that sensitivity to probabilities,
like sensitivity to outcomes, depends on numerical framing. When
the numerical representation is unbounded, large values have less
subjective impact—an effect observed regardless of whether the
numbers represent outcomes (Experiment 1) or probabilities (Ex-
periment 5).

General Discussion

Prospect theory posits diminishing sensitivity for gains and
losses, and an inverse S-shaped weighting function for probability.
These “psychophysical” principles have received considerable em-
pirical support across a range of studies, using standard numerical
representations of outcomes (unbounded) and uncertainty
(bounded). Here, we explored bounded representations of outcome
and unbounded representations of uncertainty, and found evidence
for very different psychophysical relationships. For gambles in-
volving gains near the upper bound of a bounded numerical
representation, risk aversion is markedly reduced, consistent with
accelerating sensitivity at the upper end of the scale. This novel
framing effect was found in Experiment 1 and across a range of
gambles in an aggregate analysis in Experiment 2, where psycho-
metric modeling suggested an inverse S-shaped value function in
the bounded representation. An inverse S-shape predicts a com-

* A potential problem in interpreting the ordering of between-subjects
evaluations is that different stimuli may evoke different reference sets for
comparison (Birnbaum, 1999; but see Leong, McKenzie, Sher, & Miiller-
Trede, 2017). In the present study, this would be a problem only if different
numbers were to evoke different reference sets within a given representa-
tion. There is no reason to believe that this would be the case for the
numbers used here (82% vs. 94% in the bounded condition; 1126 vs. 1291
in the unbounded condition).
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mon ratio effect, which has previously been confirmed for prob-
ability (in its usual bounded representation). In Experiment 3, we
demonstrated a new common ratio effect for outcomes, when these
are represented on a bounded scale. This finding is incompatible
with a linear or power value function. Experiment 4 adapted
Tversky and Kahneman’s (1981) Asian disease problem to exam-
ine nonmonetary gains and losses. We found a pronounced atten-
uation of the classic framing effect in the bounded representation,
consistent with accelerating sensitivity for the highest gains (re-
ducing risk aversion in the “saved” frame) and for the lowest
losses (reducing risk seeking in the “die” frame). A final study
looked at an unbounded representation of probability, in a concep-
tual mirror image of the first experiment: In Experiment 1, moving
from an unbounded to a bounded representation led to increased
sensitivity to large gains. In Experiment 5, moving from a bounded
to an unbounded representation led to reduced sensitivity to large
probabilities.

These findings suggest that swapping the form of their numer-
ical representations can make payoffs look psychometrically like
probabilities and probabilities look like payoffs. In other words,
numerical form matters. But this does not imply that content is
irrelevant. For example, people are likely to exhibit robust risk
aversion when extreme outcomes are at stake, because a fixed
change in income matters less for the very wealthy. As Bernoulli
(1738/1954, p. 24) noted, “There is no doubt that a gain of one
thousand ducats is more significant to a pauper than to a rich man
though both gain the same amount.” This insight into the psychol-
ogy of value is unlikely to be an artifact of a particular numerical
representation. Nonetheless, for the gambles and stakes studied
here (and in most experiments on risky choice), the shapes of the
psychophysical functions may be as much about numbers as about
material outcomes.

In light of these effects of representation on risk attitudes, it is
natural to ask whether specific default representations are system-
atically preferred for specific content domains. The foregoing
studies used pot ($3100) and urn (1373) sizes that presumably
made conversion between representations difficult. If there are
strongly preferred default representations (e.g., absolute amounts
for money), one might expect effects on risk attitudes to disappear
when conversion between representations is trivial. In the online
supplemental materials, we report several studies that provide
evidence to the contrary. These studies use the same paradigm as
Experiment 1, but with pot sizes ($1000 and $100) that make
conversion straightforward (e.g., 96% becomes $960 or $96).
Representation effects, while somewhat less robust, persist even in
these transparent cases. That is, people do not appear to revert to
a strongly preferred default representation for gains. Furthermore,
effects on risk attitudes are observed even when computational
complexity is strictly matched across representations.

In some respects, the present findings suggest limitations on
prospect theory’s scope. The validity of its value and weighting
functions appears to depend on how probabilities and outcomes are
described. This observation has important practical consequences,
because outside the laboratory, uncertainty is not always commu-
nicated in percentages (Beyth-Marom, 1982; Phillips & Edwards,
1966; Wallsten, Budescu, & Zwick, 1993), and outcomes are
sometimes represented proportionally (e.g., in budgets) or in terms
of progress toward a goal (which can serve as a salient reference
point; Bonezzi, Brendl, & De Angelis, 2011; Heath, Larrick, &

Wu, 1999). More fundamentally, in most everyday choice prob-
lems, probabilities and outcomes are not explicitly quantified at
all. Traditionally, behavioral decision research has relied on simple
gambles as an experimental “fruit fly” (Lopes, 1983), under the
assumption that systematic responses to numerical probabilities
and outcomes will generalize to their more nebulous real-world
counterparts. The finding that standard psychophysical functions
depend on a specific numerical representation reinforces questions
(e.g., Hertwig & Erev, 2009) about whether simple gambles are
viable “model organisms” for the study of everyday choice under
uncertainty.

Our findings also complement recent work indicating that the
shape of the value and weighting functions may depend on the
context of gambles under consideration (Stewart et al., 2015;
Walasek & Stewart, 2015). In addition, a substantial literature has
documented departures from prospect theory when probabilities
are learned experientially rather than descriptively, resulting in a
“description-experience gap” (Hertwig, Barron, Weber, & Erev,
2004; Hertwig & Erev, 2009; for psychometric modeling, see
Lejarraga & Miiller-Trede, 2016). The present findings show that
the psychophysical functions depend not only on which gambles
we consider (context) and how we encounter them (description vs.
experience), but also on the specific numerical representations
used to descriptively convey probabilities and outcomes. Nonethe-
less, we do not believe that the present work contradicts prospect
theory. Rather, it calls attention to an ambiguity implicit in the
theory, and provides experimental evidence contributing to its
resolution. In particular, our experimental findings suggest that
prospect theory’s value and weighting functions are best under-
stood as being defined over specific numerical representations of
uncertainty and outcome. This conclusion is likely to generalize to
other models of choice under uncertainty that posit subjective
transformations of outcomes and/or probabilities (e.g., Koszegi &
Rabin, 2006; Quiggin, 1982).

More generally, the findings reported here suggest that psycho-
physical functions for probability and value are in effect con-
structed, and depend on the numerical framing of probabilities and
outcomes. This work adds to a sizable literature on “constructed
preference,” which documents the many ways in which choices
and attitudes depend on the context, framing, and history of choice
problems (Payne, Bettman, & Schkade, 1999; Slovic, 1995). While
illustrating the fertility of psychophysical ideas in choice under
risk, the present studies also point to an important difference
between psychophysical transformations at the “perceptual” level
(e.g., light intensity) and the “conceptual” level (e.g., abstract
quantities like money or probability). Psychophysical transforma-
tions in perception are relatively permanent and inflexible, pre-
sumably because they have been wired in, down to the receptor
level, in evolution and development. Psychophysical functions for
abstract quantities, by contrast, likely depend on idiosyncratic
learning, and must emerge from conceptual systems that are sub-
ject to flexible control. We can freely modify our conceptual
representations and reference points, but we cannot voluntarily
rewire our sensory receptors or choose our perceptual adaptation
levels. Psychometric investigation thus reveals deep commonali-
ties as well as telling differences between perceptual and concep-
tual psychophysics.
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