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Reasoning the Fast and Frugal Way: Models of Bounded Rationality

Gerd Gigerenzer and Daniel G. Goldstein
Max Planck Institute for Psychological Research and University of Chicago

Humans and animals make inferences about the world under limited time and knowledge. In con-
trast, many models of rational inference treat the mind as a Laplacean Demon, equipped with un-
limited time, knowledge, and computational might. Following H. Simon's notion of satisncing, the

authors have proposed a family of algorithms based on a simple psychological mechanism: one-
reason decision making. These fast and frugal algorithms violate fundamental tenets of classical
rationality: They neither look up nor integrate all information. By computer simulation, the authors
held a competition between the satisncing "Take The Best" algorithm and various "rational" infer-
ence procedures (e.g., multiple regression). The Take The Best algorithm matched or outperformed
all competitors in inferential speed and accuracy. This result is an existence proof that cognitive

mechanisms capable of successful performance in the real world do not need to satisfy the classical
norms of rational inference.

Organisms make inductive inferences. Darwin (1872/1965)

observed that people use facial cues, such as eyes that waver and

lids that hang low, to infer a person's guilt. Male toads, roaming

through swamps at night, use the pitch of a rival's croak to infer

its size when deciding whether to fight (Krebs & Davies, 1987).

Stock brokers must make fast decisions about which of several

stocks to trade or invest when only limited information is avail-

able. The list goes on. Inductive inferences are typically based

on uncertain cues: The eyes can deceive, and so can a tiny toad

with a deep croak in the darkness.

How does an organism make inferences about unknown as-

pects of the environment? There are three directions in which

to look for an answer. From Pierre Laplace to George Boole to

Jean Piaget, many scholars have defended the now classical view

that the laws of human inference are the laws of probability and

statistics (and to a lesser degree logic, which does not deal as

easily with uncertainty). Indeed, the Enlightenment probabi-

lists derived the laws of probability from what they believed to

be the laws of human reasoning (Daston, 1988). Following this

time-honored tradition, much contemporary research in psy-

chology, behavioral ecology, and economics assumes standard
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statistical tools to be the normative and descriptive models of

inference and decision making. Multiple regression, for in-

stance, is both the economist's universal tool (McCloskey,

1985) and a model of inductive inference in multiple-cue learn-

ing (Hammond, 1990) and clinical judgment (B. Brehmer,

1994); Bayes's theorem is a model of how animals infer the

presence of predators or prey (Stephens & Krebs, 1986) as well

as of human reasoning and memory (Anderson, 1990). This

Enlightenment view that probability theory and human reason-

ing are two sides of the same coin crumbled in the early nine-

teenth century but has remained strong in psychology and

economics.

In the past 25 years, this stronghold came under attack by

proponents of the heuristics and biases program, who con-

cluded that human inference is systematically biased and error

prone, suggesting that the laws of inference are quick-and-dirty

heuristics and not the laws of probability (Kahneman, Slovic, &

Tversky, 1982). This second perspective appears diametrically

opposed to the classical rationality of the Enlightenment, but

this appearance is misleading. It has retained the normative

kernel of the classical view. For example, a discrepancy between

the dictates of classical rationality and actual reasoning is what

defines a reasoning error in this program. Both views accept the

laws of probability and statistics as normative, but they disagree

about whether humans can stand up to these norms.

Many experiments have been conducted to test the validity of

these two views, identifying a host of conditions under which

the human mind appears more rational or irrational. But most

of this work has dealt with simple situations, such as Bayesian

inference with binary hypotheses, one single piece of binary

data, and all the necessary information conveniently laid out

for the participant (Gigerenzer & Hoffrage, 1995). In many

real-world situations, however, there are multiple pieces of in-

formation, which are not independent, but redundant. Here,

Bayes's theorem and other "rational" algorithms quickly be-

come mathematically complex and computationally intracta-

ble, at least for ordinary human minds. These situations make

neither of the two views look promising. If one would apply the

classical view to such complex real-world environments, this
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would suggest that the mind is a supercalculator like a Lapla-
cean Demon (Wimsatt, 1976)—carrying around the collected
works of Kolmogoroff, Fisher, or Neyman—and simply needs a
memory jog, like the slave in Plato's Meno. On the other hand,
the heuristics-and-biases view of human irrationality would
lead us to believe that humans are hopelessly lost in the face of
real-world complexity, given their supposed inability to reason
according to the canon of classical rationality, even in simple
laboratory experiments.

There is a third way to look at inference, focusing on the psy-
chological and ecological rather than on logic and probability
theory. This view questions classical rationality as a universal
norm and thereby questions the very definition of "good" rea-
soning on which both the Enlightenment and the heuristics-
and-biases views were built. Herbert Simon, possibly the best-
known proponent of this third view, proposed looking for
models of bounded rationality instead of classical rationality.
Simon (1956, 1982) argued that information-processing sys-
tems typically need to satisfies rather than optimize. Satisficing,
a blend of sufficing and satisfying, is a word of Scottish origin,
which Simon uses to characterize algorithms that successfully
deal with conditions of limited time, knowledge, or computa-
tional capacities. His concept of satisficing postulates, for in-
stance, that an organism would choose the first object (a mate,
perhaps) that satisfies its aspiration level—instead of the intrac-
table sequence of taking the time to survey all possible alterna-
tives, estimating probabilities and utilities for the possible out-
comes associated with each alternative, calculating expected
utilities, and choosing the alternative that scores highest.

Let us stress that Simon's notion of bounded rationality has
two sides, one cognitive and one ecological. As early as in Ad-
ministrative Behavior (1945), he emphasized the cognitive lim-
itations of real minds as opposed to the omniscient Laplacean
Demons of classical rationality. As early as in his Psychological
Review article titled "Rational Choice and the Structure of the
Environment" (1956), Simon emphasized that minds are
adapted to real-world environments. The two go in tandem:
"Human rational behavior is shaped by a scissors whose two
blades are the structure of task environments and the computa-
tional capabilities of the actor" (Simon, 1990, p. 7). For the
most part, however, theories of human inference have focused
exclusively on the cognitive side, equating the notion of
bounded rationality with the statement that humans are limited
information processors, period. In a Procrustean-bed fashion,
bounded rationality became almost synonymous with heuris-
tics and biases, thus paradoxically reassuring classical rational-
ity as the normative standard for both biases and bounded ra-
tionality (for a discussion of this confusion see Lopes, 1992).
Simon's insight that the minds of living systems should be un-
derstood relative to the environment in which they evolved,
rather than to the tenets of classical rationality, has had little
impact so far in research on human inference. Simple psycho-
logical algorithms that were observed in human inference, rea-
soning, or decision making were often discredited without a fair
trial, because they looked so stupid by the norms of classical
rationality. For instance, when Keeney and Raifta (1993) dis-
cussed the lexicographic ordering procedure they had observed
in practice—a procedure related to the class of satisficing algo-
rithms we propose in this article—they concluded that this pro-
cedure "is naively simple" and "will rarely pass a test of

'reasonableness' " (p. 78). They did not report such a test. We
shall.

Initially, the concept of bounded rationality was only vaguely
defined, often as that which is not classical economics, and one
could "fit a lot of things into it by foresight and hindsight," as
Simon (1992, p. 18) himself put it. We wish to do more than
oppose the Laplacean Demon view. We strive to come up with
something positive that could replace this unrealistic view of
mind. What are these simple, intelligent algorithms capable of
making near-optimal inferences? How fast and how accurate are
they? In this article, we propose a class of models that exhibit
bounded rationality in both of Simon's senses. These satisficing
algorithms operate with simple psychological principles that
satisfy the constraints of limited time, knowledge, and compu-
tational might, rather than those of classical rationality. At the
same time, they are designed to be fast and frugal without a
significant loss of inferential accuracy, because the algorithms
can exploit the structure of environments.

The article is organized as follows. We begin by describing the
task the cognitive algorithms are designed to address, the basic
algorithm itself, and the real-world environment on which the
performance of the algorithm will be tested. Next, we report on
a competition in which a satisficing algorithm competes with
"rational" algorithms in making inferences about a real-world
environment. The "rational" algorithms start with an advan-
tage: They use more time, information, and computational
might to make inferences. Finally, we study variants of the sati-
sficing algorithm that make faster inferences and get by with
even less knowledge.

The Task

We deal with inferential tasks in which a choice must be made
between two alternatives on a quantitative dimension. Consider
the following example:

Which city has a larger population? (a) Hamburg (b) Cologne.

Two-alternative-choice tasks occur in various contexts in which
inferences need to be made with limited time and knowledge,
such as in decision making and risk assessment during driving
(e.g., exit the highway now or stay on); treatment-allocation de-
cisions (e.g., who to treat first in the emergency room: the 80-
year-old heart attack victim or the 16-year-old car accident
victim); and financial decisions (e.g., whether to buy or sell in
the trading pit). Inference concerning population demograph-
ics, such as city populations of the past, present, and future
(e.g., Brown & Siegler, 1993), is of importance to people work-
ing in urban planning, industrial development, and marketing.
Population demographics, which is better understood than, say,
the stock market, will serve us later as a "drosophila" environ-
ment that allows us to analyze the behavior of satisficing
algorithms.

We study two-alternative-choice tasks in situations where a
person has to make an inference based solely on knowledge re-
trieved from memory. We refer to this as inference from mem-
ory, as opposed to inference from givens. Inference from mem-
ory involves search in declarative knowledge and has been in-
vestigated in studies of, inter alia, confidence in general
knowledge (e.g., Juslin, 1994; Sniezek & Buckley, 1993); the
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effect of repetition on belief (e.g., Hertwig, Gigerenzer, &
Hoffrage, in press); hindsightbias(e.g., Fischhoff, 1977);quan-
titative estimates of area and population of nations (Brown &
Siegler, 1993); and autobiographic memory of time
(Huttenlocher, Hedges, & Prohaska, 1988). Studies of infer-
ence from givens, on the other hand, involve making inferences
from information presented by an experimenter (e.g., Ham-
mond, Hursch, & Todd, 1964). In the tradition of Ebbinghaus's
nonsense syllables, attempts are often made here to prevent in-
dividual knowledge from impacting on the results by using
problems about hypothetical referents instead of actual ones.
For instance, in celebrated judgment and decision-making
tasks, such as the "cab" problem and the "Linda" problem, all
the relevant information is provided by the experimenter, and
individual knowledge about cabs and hit-and-run accidents, or
feminist bank tellers, is considered of no relevance (Gigerenzer
& Murray, 1987). As a consequence, limited knowledge or in-
dividual differences in knowledge play a small role in inference
from givens. In contrast, the satisficing algorithms proposed in
this article perform inference from memory, they use limited
knowledge as input, and as we will show, they can actually profit
from a lack of knowledge.

Assume that a person does not know or cannot deduce the
answer to the Hamburg-Cologne question but needs to make
an inductive inference from related real-world knowledge. How
is this inference derived? How can we predict choice (Hamburg
or Cologne) from a person's state of knowledge?

Theory

The cognitive algorithms we propose are realizations of a
framework for modeling inferences from memory, the theory
of probabilistic mental models (PMM theory; see Gigerenzer,
1993; Gigerenzer, Hoffrage, & Kleinbolting, 1991). The theory
of probabilistic mental models assumes that inferences about
unknown states of the world are based on probability cues
(Brunswik, 1955). The theory relates three visions: (a) Induc-
tive inference needs to be studied with respect to natural envi-
ronments, as emphasized by Brunswik and Simon; (b) induc-
tive inference is carried out by satisficing algorithms, as empha-
sized by Simon; and (c) inductive inferences are based on
frequencies of events in a reference class, as proposed by Rei-
chenbach and other frequentist statisticians. The theory of
probabilistic mental models accounts for choice and confi-
dence, but only choice is addressed in this article.

The major thrust of the theory is that it replaces the canon of
classical rationality with simple, plausible psychological mech-
anisms of inference—mechanisms that a mind can actually
carry out under limited time and knowledge and that could have
possibly arisen through evolution. Most traditional models of
inference, from linear multiple regression models to Bayesian
models to neural networks, try to find some optimal integration
of all information available: Every bit of information is taken
into account, weighted, and combined in a computationally ex-
pensive way. The family of algorithms in PMM theory does not
implement this classical ideal. Search in memory for relevant
information is reduced to a minimum, and there is no integra-
tion (but rather a substitution) of pieces of information. These
satisficing algorithms dispense with the fiction of the omni-
scient Laplacean Demon, who has all the lime and knowledge
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Figure 1, Illustration of bounded search through limited knowledge.
Objects a, b, and c are recognized; object rfis not. Cue values are posi-
tive (+) or negative {-); missing knowledge is shown by question
marks. Cues are ordered according to their validities. To infer whether
a > b, the Take The Best algorithm looks up only the cue values in the
shaded space; to infer whether b > c, search is bounded to the dotted
space. The other cue values are not looked up.

to search for all relevant information, to compute the weights
and covariances, and then to integrate all this information into
an inference,

Limited Knowledge

A PMM is an inductive device that uses limited knowledge to
make fast inferences. Different from mental models of syllo-
gisms and deductive inference (Johnson-Laird, 1983), which
focus on the logical task of truth preservation and where knowl-
edge is irrelevant (except for the meaning of connectives and
other logical terms), PMMs perform intelligent guesses about
unknown features of the world, based on uncertain indicators.
To make an inference about which of two objects, a or b, has a
higher value, knowledge about a reference class R is searched,
with a, b e K. In our example, knowledge about the reference
class "cities in Germany" could be searched. The knowledge
consistsof probability cues C/ ( /= I , . . . , « ) , and the cue values
a/ and hi of the objects for the ith cue. For instance, when mak-
ing inferences about populations of German cities, the fact that
a city has a professional soccer team in the major league
(Bundesliga) may come to a person's mind as a potential cue.
That is, when considering pairs of German cities, if one city has
a soccer team in the major league and the other does not, then
the city with the team is likely, but not certain, to have the larger
population.

Limited knowledge means that the matrix of objects by cues
has missing entries (i.e., objects, cues, or cue values may be
unknown). Figure 1 models the limited knowledge of a person.
She has heard of three German cities, a, b, and c, but not of
d (represented by three positive and one negative recognition
values). She knows some facts (cue values) about these cities
with respect to five binary cues. For a binary cue, there are two
cue values, positive (e.g., the city has a soccer team) or negative
(it does not). Positive refers to a cue value that signals a higher
value on the target variable (e.g., having a soccer team is corre-
lated with high population). Unknown cue values are shown by
a question mark. Because she has never heard of d, all cue val-
ues for object f/are, by definition, unknown.

People rarely know all information on which an inference
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could be based, that is, knowledge is limited. We model limited
knowledge in two respects: A person can have (a) incomplete
knowledge of the objects in the reference class (e.g., she recog-
nizes only some of the cities), (b) limited knowledge of the cue
values (facts about cities), or (c) both. For instance, a person
who does not know all of the cities with soccer teams may know
some cities with positive cue values (e.g., Munich and Hamburg
certainly have teams), many with negative cue values (e.g., Hei-
delberg and Potsdam certainly do not have teams), and several
cities for which cue values will not be known.

The Take The Best Algorithm

The first satisficing algorithm presented is called the Take
The Best algorithm, because its policy is "take the best, ignore
the rest." It is the basic algorithm in the PMM framework. Vari-
ants that work faster or with less knowledge are described later.
We explain the steps of the Take The Best algorithm for binary
cues (the algorithm can be easily generalized to many valued
cues), using Figure 1 for illustration.

The Take The Best algorithm assumes a subjective rank order
of cues according to their validities (as in Figure 1). We call the
highest ranking cue (that discriminates between the two
alternatives) the best cue. The algorithm is shown in the form
of a flow diagram in Figure 2.

Step 1: Recognition Principle

The recognition principle is invoked when the mere recogni-
tion of an object is a predictor of the target variable (e.g.,
population). The recognition principle states the following: If
only one of the two objects is recognized, then choose the rec-
ognized object. If neither of the two objects is recognized, then
choose randomly between them. If both of the objects are rec-
ognized, then proceed to Step 2.

Example: If a person in the knowledge state shown in Figure

Stan

Object a
positive unknown negative

positive

Object b unknown

negative

Figure 2. Flow diagram of the Take The Best algorithm.

Figure 3. Discrimination rule. A cue discriminates between two al-
ternatives if one has a positive cue value and the other does not. The
four discriminating cases are shaded.

1 is asked to infer which of city a and city d has more inhabi-
tants, the inference will be city a, because the person has never
heard of city d before.

Step 2: Search for Cue Values

For the two objects, retrieve the cue values of the highest
ranking cue from memory.

Step 3: Discrimination Rule

Decide whether the cue discriminates. The cue is said to dis-
criminate between two objects if one has a positive cue value
and the other does not. The four shaded knowledge states in
Figure 3 are those in which a cue discriminates.

Step 4: Cue-Substitution Principle

If the cue discriminates, then stop searching for cue values. If
the cue does not discriminate, go back to Step 2 and continue
with the next cue until a cue that discriminates is found.

Step 5: Maximizing Rule for Choice

Choose the object with the positive cue value. If no cue dis-
criminates, then choose randomly.

Examples: Suppose the task is judging which of city a or b is
larger (Figure I) . Both cities are recognized (Step 1), and
search for the best cue results with a positive and a negative cue
value for Cue I (Step 2). The cue discriminates (Step 3), and
search is terminated (Step 4). The person makes the inference
that city a is larger (Step 5).

Suppose now the task is judging which of city b or c is larger.
Both cities are recognized (Step 1), and search for the cue val-
ues cue results in negative cue value on object b for Cue 1, but
the corresponding cue value for object c is unknown (Step 2).
The cue does not discriminate (Step 3), so search is continued
(Step 4). Search for the next cue results with positive and a
negative cue values for Cue 2 (Step 2). This cue discriminates
(Step 3), and search is terminated (Step 4) . The person makes
the inference that city b is larger (Step 5).

The features of this algorithm are (a) search extends through
only a portion of the total knowledge in memory (as shown by
the shaded and dotted parts of Figure 1) and is stopped imme-
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diately when the first discriminating cue is found, (b) the algo-

rithm does not attempt to integrate information but uses cue

substitution instead, and (c) the total amount of information

processed is contingent on each task (pair of objects) and varies

in a predictable way among individuals with different knowl-

edge. This fast and computationally simple algorithm is a model

of bounded rationality rather than of classical rationality. There

is a close parallel with Simon's concept of "satisficing": The

Take The Best algorithm stops search after the first discriminat-

ing cue is found, just as Simon's satisficing algorithm stops

search after the first option that meets an aspiration level,

The algorithm is hardly a standard statistical tool for induc-

tive inference: It does not use all available information, it is non-

compensatory and nonlinear, and variants of it can violate tran-

sitivity. Thus, it differs from standard linear tools for inference

such as multiple regression, as well as from nonlinear neural

networks that are compensatory in nature. The Take The Best

algorithm is noncompensatory because only the best discrimi-

nating cue determines the inference or decision; no combina-

tion of other cue values can override this decision. In this way,

the algorithm does not conform to the classical economic view

of human behavior {e.g., Becker, 1976), where, under the as-

sumption that all aspects can be reduced to one dimension (e.g.,

money), there exists always a trade-off between commodities or

pieces of information. That is, the algorithm violates the Arehi-

median axiom, which implies that for any multidimensional

object a (a,, a3,..., an) preferred to b (bt ,b2,.,., £„), where

a, dominates b\, this preference can be reversed by taking

multiples of any one or a combination of b2, b$,..., b,,. As we

discuss, variants of this algorithm also violate transitivity, one

of the cornerstones of classical rationality (McCIennen, 1990).

Empirical Evidence

Despite their flagrant violation of the traditional standards of

rationality, the Take The Best algorithm and other models from

the framework of PMM theory have been successful in integrat-

ing various striking phenomena in inference from memory and

predicting novel phenomena, such as the confidence-frequency

effect (Gigerenzer et al., 1991) and the less-is-more effect

(Goldstein, 1994; Goldstein & Gigerenzer, 1996). The theory

of probabilistic mental models seems to be the only existing

process theory of the overconfidence bias that successfully pre-

dicts conditions under which overestimation occurs, disappears,

and inverts to underestimation (Gigerenzer, 1993; Gigerenzer

et al., 1991; Juslin, 1993, 1994; Juslin, Winman, & Persson,

1995; but see Griffin & Tversky, 1992). Similarly, the theory

predicts when the hard-easy effect occurs, disappears, and in-

verts—predictions that have been experimentally confirmed by

Hoffrage (1994) and by Juslin (1993). The Take The Best algo-
rithm explains also why the popular confirmation-bias expla-

nation of the overconfidence bias (Koriat, Lichtenstein, &
Fischhoff, 1980) is not supported by experimental data

(Gigerenzer etal., 1991, pp. 521-522).

Unlike earlier accounts of these striking phenomena in con-

fidence arid choice, the algorithms in the PMM framework al-

low for predictions of choice based on each individual's knowl-

edge. Goldstein and Gigerenzer (1996) showed that the recog-

nition principle predicted individual participants" choices in

about 90% to 100% of all cases, even when participants were

taught information that suggested doing otherwise (negative

cue values for the recognized objects). Among the evidence for

the empirical validity of the Take-The-Best algorithm are the

tests of a bold prediction, the less-is-more effect, which postu-

lates conditions under which people with little knowledge make

better inferences than those who know more. This surprising

prediction has been experimentally confirmed. For instance,

U.S. students make slightly more correct inferences about Ger-

man city populations (about which they know little) than about

U.S. cities, and vice versa for German students (Gigerenzer,

1993; Goldstein 1994; Goldstein & Gigerenzer, 1995; Hoffrage,

1994). The theory of probabilistic mental models has been ap-

plied to other situations in which inferences have to be made

under limited time and knowledge, such as rumor-based stock

market trading (DiFonzo, 1994). A general review of the theory

and its evidence is presented in McClelland and Bolger (1994).

The reader familiar with the original algorithm presented in

Gigerenzer et al.(1991) will have noticed that we simplified the

discrimination rule.' In the present version, search is already

terminated if one object has a positive cue value and the other

does not, whereas in the earlier version, search was terminated

only when one object had a positive value and the other a nega-

tive one (cf. Figure 3 in Gigerenzer et al. with Figure 3 in this

article). This change follows empirical evidence that partici-

pants tend to use this faster, simpler discrimination rule

(Hoffrage, 1994).

This article does not attempt to provide further empirical ev-

idence. For the moment, we assume that the model is descrip-

tively valid and investigate how accurate this satisficing algo-

rithm is in drawing inferences about unknown aspects of a

real-world environment. Can an algorithm based on simple

psychological principles that violate the norms of classical ra-
tionality make a fair number of accurate inferences?

The Environment

We tested the performance of the Take The Best algorithm on

how accurately it made inferences about a real-world environ-

ment. The environment was the set of all cities in Germany

with more than 100,000 inhabitants (83 cities after German

reunification), with population as the target variable. The

model of the environment consisted of 9 binary ecological cues

and the actual 9 X 8 3 cue values. The full model of the environ-
ment is shown in the Appendix.

Each cue has an associated validity, which is indicative of its

predictive power. The ecological validity of a cue is the relative

frequency with which the cue correctly predicts the target, de-

fined with respect to the reference class (e.g., all German cities

with more than 100,000 inhabitants). For instance, if one
checks all pairs in which one city has a soccer team but the other

city does not, one finds that in 87% of these cases, the city with

the team also has the higher population. This value is the eco-

logical validity of the soccer team cue. The validity B,- of the ith
cue is

», = p[t(a)> t(b)\ai is positive and b, is negative],

1 Also, we now use the term discrimination rule instead of activation
rule.
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Table 1

Cues, Ecological Validities, and Discrimination Rates

Ecological Discrimination
Cue validity rate

National capital (Is the city the
national capital?)

Exposition site (Was the city once an
exposition site?)

Soccer team (Does the city have a team
in the major league?)

Intercity train (Is the city on the
Intercity line?)

State capital (Is the city a state capital?)
License plate (Is the abbreviation only

one letter long?)
University (Is the city home to a

university?)
Industrial belt (Is the city in the

industrial belt?)
East Germany (Was the city formerly

in East Germany?)

1.00

.91

.87

.78

.77

.75

.71

.56

.51

.02

.25

.30

.38

.30

.34

.51

.30

.27

where t(a) and t(b) are the values of objects a and b on the

target variable t and p is a probability measured as a relative

frequency mR.

The ecological validity of the nine cues ranged over the whole

spectrum: from .51 (only slightly better than chance) to 1.0

(certainty), as shown in Table 1. A cue with a high ecological

validity, however, is not often useful if its discrimination rate is

small.

Table 1 shows also the discrimination rates for each cue. The

discrimination rate of a cue is the relative frequency with which

the cue discriminates between any two objects from the refer-

ence class. The discrimination rate is a function of the distribu-

tion of the cue values and the number N of objects in the refer-

ence class. Let the relative frequencies of the positive and nega-

tive cue values be x and y, respectively. Then the discrimination

rate dt of the j'th cue is

d,=-

as an elementary calculation shows. Thus, if N is very large,

the discrimination rate is approximately 2x ly i .
2 The larger the

ecological validity of a cue, the belter the inference. The larger

the discrimination rate, the more often a cue can be used to

make an inference. In the present environment, ecological va-

lidities and discrimination rates are negatively correlated. The

redundancy of cues in the environment, as measured by pair-

wise correlations between cues, ranges between —.25 and .54,

with an average absolute value of. 19.3

The Competition

The question of how well a satisficing algorithm performs in

a real-world environment has rarely been posed in research on

inductive inference. The present simulations seem to be the first

to test how well simple satisficing algorithms do compared with

standard integration algorithms, which require more knowl-

edge, time, and computational power. This question is impor-

tant for Simon's postulated link between the cognitive and the

ecological: If the simple psychological principles in satisficing

algorithms are tuned to ecological structures, these algorithms

should not fail outright. We propose a competition between var-

ious inferential algorithms. The contest will go to the algorithm

that scores the highest proportion of correct inferences in the

shortest time.

Simulating Limited Knowledge

We simulated people with varying degrees of knowledge

about cities in Germany. Limited knowledge can take two

forms. One is limited recognition of objects in the reference

class. The other is limited knowledge about the cue values of

recognized objects. To model limited recognition knowledge,

we simulated people who recognized between 0 and 83 German

cities. To model limited knowledge of cue values, we simulated

6 basic classes of people, who knew 0%, 10%, 20%, 50%, 75%,

or 100% of the cue values associated with the objects they rec-

ognized. Combining the two sources of limited knowledge re-

sulted in 6 x 84 types of people, each having different degrees

and kinds of limited knowledge. Within each type of people, we

created 500 simulated individuals, who differed randomly from

one another in the particular objects and cue values they knew.

All objects and cue values known were determined randomly

within the appropriate constraints, that is, a certain number of

objects known, a certain total percentage of cue values known,

and the validity of the recognition principle (as explained in the

following paragraph).

The simulation needed to be realistic in the sense that the

simulated people could invoke the recognition principle. There-

fore, the sets of cities the simulated people knew had to be care-

fully chosen so that the recognized cities were larger than the

unrecognized ones a certain percentage of the time. We per-

formed a survey to get an empirical estimate of the actual co-

2 For instance, if N = 2 and one cue value is positive and the other

negative (x, = y, = .5), d, = 1.0. If A'increases, with x, and y, held
constant, then d, decreases and converges to 2x ty,.

3 There are various other measures of redundancy besides pairwise

correlation. The important point is that whatever measure of redun-
dancy one uses, the resultant value does not have the same meaning
for all algorithms. For instance, all that counts for the Take The Best
algorithm is what proportion of correct inferences the second cue adds
to the first in the cases where the first cue does not discriminate, how
much the third cue adds to the first two in the cases where they do not

discriminate, and so on. If a cue discriminates, search is terminated,
and the degree of redundancy in the cues that were not included in
the search is irrelevant. Integration algorithms, in contrast, integrate all
information and, thus, always work with the total redundancy in the
environment (or knowledge base). For instance, when deciding among
objects a,b,c, and din Figure 1, the cue values of Cues 3,4, and 5 do
not matter from the point of view of the Take The Best algorithm
(because search is terminated before reaching Cue 3). However, the
values of Cues 3,4, and 5 affect the redundancy of the ecological system,
froni the point of view of all integration algorithms. The lesson is that
the degree of redundancy in an environment depends on the kind of
algorithm that operates on the environment. One needs to be cautious
in interpreting measures of redundancy without reference to an
algorithm.
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variation between recognition of cities and city populations. Let
us define the validity a of the recognition principle to be the
probability, in a reference class, that one object has a greater
value on the target variable than another, in the cases where the
one object is recognized and the other is not:

a = p[t(a)> t(b)\ a, is positive and b, is negative],

where t(a) and t(b) are the values of objects a and b on the
target variable t, a, and b, are the recognition values of a and b,
and p is a probability measured as a relative frequency in J?.

In a pilot study of 26 undergraduates at the University of Chi-
cago, we found that the cities they recognized (within the 83
largest in Germany) were larger than the cities they did not rec-
ognize in about 80% of all possible comparisons. We incorpo-
rated this value into our simulations by choosing sets of cities
(for each knowledge state, i.e., for each number of cities
recognized) where the known cities were larger than the un-
known cities in about 80% of all cases. Thus, the cities known
by the simulated individuals had the same relationship between
recognition and population as did those of the human individu-
als. Let us first look at the performance of the Take The Best
algorithm.

Testing the Take The Best Algorithm -

We tested how well individuals using the Take The Best algo-
rithm did at answering real-world questions such as, Which city
has more inhabitants: (a) Heidelberg or (b) Bonn? Each of the
500 simulated individuals in each of the 6 X 84 types was tested
on the exhaustive set of 3,403 city pairs, resulting in a total of
500 X 6 X 84 X 3,403 tests, that is, about 858 million.

The curves in Figure 4 show the average proportion of correct
inferences for each proportion of objects and cue values known.
The x axis represents the number of cities recognized, and the y
axis shows the proportion of correct inferences that the Take
The Best algorithm drew. Each of the 6 x 84 points that make
up the six curves is an average proportion of correct inferences
taken from 500 simulated individuals, who each made 3,403
inferences.

When the proportion of cities recognized was zero, the pro-
portion of correct inferences was at chance level (.5). When up
to half of all cities were recognized, performance increased at
all levels of knowledge about cue values. The maximum per-
centage of correct inferences was around 77%. The striking re-
sult was that this maximum was not achieved when individuals
knew all cue values of all cities, but rather when they knew less.
This result shows the ability of the algorithm to exploit limited
knowledge, that is, to do best when not everything is known.
Thus, the Take The Best algorithm produces the less-is-mare
effect. At any level of limited knowledge of cue values, learning
more German cities will eventually cause a decrease in propor-
tion correct. Take, for instance, the curve where 75% of the cue
values were known and the point where the simulated partici-
pants recognized about 60 German cities. If these individuals
learned about the remaining German cities, their proportion
correct would decrease. The rationale behind the less-is-more
effect is the recognition principle, and it can be understood best
from the curve that reflects 0% of total cue values known. Here,
all decisions are made on the basis of the recognition principle,

Percentage of Cue
Values Known

0 10 20 30 40 50 60 70 80
Number of Objects Recognized

Figure 4. Correct inferences about the population of German cities

(two-alternative-choice tasks) by the Take The Best algorithm. Infer-

ences are based on actual information about the 83 largest cities and

nine cues for population (seethe Appendix). Limited knowledge of the

simulated individuals is varied across two dimensions: (a) the number

of cities recognized (x axis) and (b) the percentage of cue values known

(the six curves).

or by guessing. On this curve, the recognition principle comes
into play most when half of the cities are known, so it takes
on an inverted-U shape. When half the cities are known, the
recognition principle can be activated most often, that is, for
roughly 50% of the questions. Because we set the recognition
validity in advance, 80% of these inferences will be correct. Tn
the remaining half of the questions, when recognition cannot
be used (either both cities are recognized or both cities are
unrecognized), then the organism is forced to guess and only
50% of the guesses will be correct. Using the 80% effective rec-
ognition validity half of the lime and guessing the other half of
the time, the organism scores 65% correct, which is the peak of
the bottom curve. The mode of this curve moves to the right
with increasing knowledge about cue values. Note that even
when a person knows everything, all cue values of all cities,
there are states of limited knowledge in which the person would
make more accurate inferences. We are not going to discuss
the conditions of this counterintuitive effect and the supporting
experimental evidence here (see Goldstein & Gigerenzer,
1996). Our focus is on how much better integration algorithms
can do in making inferences.

Integration Algorithms

We asked several colleagues in the fields of statistics and eco-
nomics to devise decision algorithms that would do better than
the Take The Best algorithm. The five integration algorithms
we simulated and pitted against the Take The Best algorithm in
a competition were among those suggested by our colleagues.



REASONING THE FAST AND FRUGAL WAY 657

These competitors include "proper" and "improper" linear

models(Dawes, 1979;Lovie&Lovie, 1986). These algorithms,

in contrast to the Take The Best algorithm, embody two classi-

cal principles of rational inference: (a) complete search—they

use all available information (cue values)—and (b) complete

integration—they combine all these pieces of information into

a single value. In short, we refer in this article to algorithms

that satisfy these principles as "rational" (in quotation marks)

algorithms.

Contestant 1: Tallying

Let us start with a simple integration algorithm: tallying of

positive evidence (Goldstein, 1994). In this algorithm, the

number of positive cue values for each object is tallied across all

cues ( ; = ! , . . . , « ) , and the object with the largest number

of positive cue values is chosen. Integration algorithms are not

based (at least explicitly) on the recognition principle. For this

reason, and to make the integration algorithms as strong as pos-

sible, we allow all the integration algorithms to make use of rec-

ognition information (the positive and negative recognition val-

ues, see Figure 1). Integration algorithms treat recognition as

a cue, like the nine ecological cues in Table 1. That is, in the

competition, the number of cues («) is thus equal to 10

(because recognition is included). The decision criterion for

tallying is the following:

If 2 <Z; > 2 bi, then choose city a.

If 2 a* < Z 6<. then choose city b.
i=l j = I

If Z "i = Z hi, then guess.
i= ] /-1

The assignments of a, and b, are the following:

1 if the ;th cue value is positive

0 if the ;th cue value is negative

0 if the z'th cue value is unknown.

Let us compare cities a and b, from Figure 1. By tallying the

positive cue values, a would score 2 points and b would score 3.

Thus, tallying would choose b to be the larger, in opposition to

the Take The Best algorithm, which would infer that a is larger.

Variants of tallying, such as the frequency-of-good-features

heuristic, have been discussed in the decision literature (Alba &

Marmorstein, 1987; Payne, Bettman,& Johnson, 1993).

Contestant 2: Weighted Tallying

Tallying treats all cues alike, independent of cue validity.

Weighted tallying of positive evidence is identical with tallying,

except that it weights each cue according to its ecological valid-

ity, t>,. The ecological validities of the cues appear in Table 1.
We set the validity of the recognition cue to .8, which is the

empirical average determined by the pilot study. The decision

rule is as follows:

If 2 itVi > Z &№, then choose city a.
;-1 iH

n n

If Z a,Vi < Z btvt, then choose city b.
i-\ 1-1

If Z ofli = Z b,Vi, then guess,
i-i 1=1

Note that weighted tallying needs more information than either

tallying or the Take The Best algorithm, namely, quantitative

information about ecological validities. In the simulation, we

provided the real ecological validities to give this algorithm a

good chance.

Calling again on the comparison of objects a and b from Fig-

ure 1, let us assume that the validities would be .8 for recogni-

tion and .9, .8, .7, .6, .51 for Cues 1 through?. Weighted tallying

would thus assign 1.7 points to a and 2.3 points to b. Thus,

weighted tallying would also choose b to be the larger.

Both tallying algorithms treat negative information and miss-

ing information identically. That is, they consider only positive

evidence. The following algorithms distinguish between nega-

tive and missing information and integrate both positive and

negative information.

Contestant 3: Unit- Weight Linear Model

The unit-weight linear model is a special case of the equal-

weight linear model (Huber, 1989) and has been advocated as a

good approximation of weighted linear models (Dawes, 1979;

Einhorn & Hogarth, 1975). The decision criterion for unit-

weight integration is the same as for tallying, only the assign-

ment of a, and b, differs:

1 if the Jth cue value is positive

— 1 if the fth cue value is negative

0 if the ith cue value is unknown.

Comparing objects a and b from Figure 1 would involve as-

signing 1.0 points to a and 1.0 points to b and, thus, choosing

randomly. This simple linear model corresponds to Model 2 in

Einhorn and Hogarth (1975, p. 177) with the weight parameter

set equal to 1.

Contestant 4: Weighted Linear Model

This model is like the unit-weight linear model except that

the values of a, and b, are multiplied by their respective ecolog-

ical validities. The decision criterion is the same as with

weighted tallying. The weighted linear model (or some variant

of it) is often viewed as an optimal rule for preferential choice,

under the idealization of independent dimensions or cues (e.g.,

Keeney & Raiffa, 1993; Payne etal., 1993). Comparing objects

a and b from Figure 1 would involve assigning 1.0 points to a

and 0.8 points to b and, thus, choosing a to be the larger.

Contestant 5: Multiple Regression

The weighted linear model reflects the different validities of

the cues, but not the dependencies between cues. Multiple re-

gression creates weights that reflect the covariances between
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predictors or cues and is commonly seen as an "optimal" way
to integrate various pieces of information into an estimate (e.g.,
Brunswik, 1955;Hammond, 1966). Neural networks using the
delta rule determine their "optimal" weights by the same prin-
ciples as multiple regression does (Stone, 1986). The delta rule
carries out the equivalent of a multiple linear regression from
the input patterns to the targets.

The weights for the multiple regression could simply be cal-
culated from the full information about the nine.ecological
cues, as given in the Appendix. To make multiple regression an
even stronger competitor, we also provided information about
which cities the simulated individuals recognized. Thus, the
multiple regression used nine ecological cues and the recogni-
tion cue to generate its weights. Because the weights for the rec-
ognition cue depend on which cities are recognized, we calcu-
lated 6 X 500 X 84 sets of weights: one for each simulated indi-
vidual. Unlike any of the other algorithms, regression had
access to the actual city populations (even for those cities not
recognized by the hypothetical person) in the calculation of the
weights.4 During the quiz, each simulated person used the set of
weights provided to it by multiple regression to estimate the
populations of the cities in the comparison.

There was a missing-values problem in computing these 6 X
84 x 500 sets of regression coefficients, because most simulated
individuals did not know certain cue values, for instance, the
cue values of the cities they did not recognize. We strengthened
the performance of multiple regression by substituting un-
known cue values with the average of the cue values the person
knew for the given cue.5 This was done both in creating the
weights and in using these weights to estimate populations. Un-
like traditional procedures where weights are estimated from
one half of the data, and inferences based on these weights are
made for the other half, the regression algorithm had access to
all the information in the Appendix (except, of course, the un-
known cue values)—more information than was given to any
of the competitors. In the competition, multiple regression and,
to a lesser degree, the weighted linear model approximate the
ideal of the Laplacean Demon.

Results

Speed

The Take The Best algorithm is designed to enable quick de-
cision making. Compared with the integration algorithms, how
much faster does it draw inferences, measured by the amount
of information searched in memory? For instance, in Figure
1, the Take The Best algorithm would look up four cue values
(including the recognition cue values) to infer that a is larger
than b. None of the integration algorithms use limited search;
thus, they always look up all cue values.

Figure 5 shows the amount of cue values retrieved from
memory by the Take The Best algorithm for various levels of
limited knowledge. The Take The Best algorithm reduces
search in memory considerably. Depending on the knowledge
state, this algorithm needed to search for between 2 (the num-
ber of recognition values) and 20 (the maximum possible cue
values: Each city has nine cue values and one recognition
value). For instance, when a person recognized half of the cities
and knew 50% of their cue values, then, on average, only about

4 cue values (that is, one fifth of all possible) are searched for.
The average across all simulated participants was 5.9, which was
less than a third of all available cue values.

Accuracy

Given that it searches only for a limited amount of informa-
tion, how accurate is the Take The Best algorithm, compared
with the integration algorithms? We ran the competition for all
states of limited knowledge shown in Figure 4. We first report
the results of the competition in the case where each algorithm
achieved its best performance: When 100% of the cue values
were known. Figure 6 shows the results of the simulations, car-
ried out in the same way as those in Figure 4.

To our surprise, the Take The Best algorithm drew as many
correct inferences as any of the other algorithms, and more than
some. The curves for Take The Best, multiple regression,
weighted tallying, and tallying are so similar that there are only
slight differences among them. Weighted tallying performed
about as well as tallying, and the unit-weight linear model per-
formed about as well as the weighted linear model—demon-
strating that the previous finding that weights may be chosen in
a fairly arbitrary manner, as long as they have the correct sign
(Dawes, 1979), is generalizable to tallying. The two integration
algorithms that make use of both positive and negative infor-
mation, unit-weight and weighted linear models, made consid-
erably fewer correct inferences. By looking at the lower-left and
upper-right corners of Figure 6, one can see that all competitors
do equally well with a complete lack of knowledge or with com-
plete knowledge. They differ when knowledge is limited. Note
that some algorithms can make more correct inferences when
they do not have complete knowledge: a demonstration of the
less-is-more effect mentioned earlier.

What was the result of the competition across all levels of
limited knowledge? Table 2 shows the result for each level of
limited knowledge of cue values, averaged across all levels of
recognition knowledge. (Table 2 reports also the performance
of two variants of the Take The Best algorithm, which we dis-
cuss later: the Minimalist and the Take The Last algorithm.)
The values in the 100% column of Table 2 are the values in
Figure 6 averaged across all levels of recognition. The Take The
Best algorithm made as many correct inferences as one of the
competitors (weighted tallying) and more than the others. Be-
cause it was also the fastest, we judged the competition goes to
the Take The Best algorithm as the highest performing, overall.

To our knowledge, this is the first time that it has been dem-
onstrated that a satisficing algorithm, that is, the Take The Best
algorithm, can draw as many correct inferences about a real-

4 We cannot claim that these integration algorithms are the best ones,
nor can we know a priori which small variations will succeed in our

bumpy real-world environment. An example: During the proof stage of

this article we learned that regressing on the ranks of the cities does

slightly better than regressing on the city populations. The key issue is

what are the structures of environments in which particular algorithms

and variants thrive.
5 If no single cue value was known for a given cue, the missing values

were substituted by .5. This value was chosen because it is the midpoint
of 0 and 1, which are the values used to stand for negative and positive
cue values, respectively.
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Percentage of Cue
Values Known
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Number of Objects Recognized
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Figure 5. Amount of cue values looked up by the Take The Best algorithm and by the competing integra-

tion algorithms (see text), depending on the number of objects known (0-83) and the percentage of cue

vulues known.
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Figure 6. Results of the competition. The curve forthe Take The Best algorithm is identical with the 100%
curve in Figure 4. The results for proportion correct have been smoothed by a running median smoother,

to lessen visual noise between the lines.
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Table 2

Results of the Competition: Average Proportion

of Correct Inferences

Percentage of cue values known

Algorithm

Take The Best
Weighted tallying
Regression
Tallying
Weighted linear model
Unit-weight linear model

Minimalist
Take The Last

10

.621

.621

.625

.620

.623

.621

.619

.619

20

.635

.635

.635

.633

.627

.622

.631

.630

50

.663

.663

.657

.659

.623

.621

.650

.646

75

.678

.679

.674

.676

.619

.620

.661

.658

100

.691

.693

.694

.691

.625

.622

.674

.675

Average

.658

.658

.657

.656

.623

.621

.647

.645

A'o(t>. Values are rounded; averages are computed from the unrounded
values. Bottom two algorithms are variants of the Take The Best algo-
rithm.

world environment as integration algorithms, across all states

of limited knowledge. The dictates of classical rationality would

have led one to expect the integration algorithms to do substan-

tially better than the satisncing algorithm.

Two results of the simulation can be derived analytically. First

and most obvious is that if knowledge about objects is zero,

then all algorithms perform at a chance level. Second, and less

obvious, is that if all objects and cue values are known, then

tallying produces as many correct inferences as the unit-weight

linear model. This is because, under complete knowledge, the

score under the tallying algorithm is an increasing linear func-

tion of the score arrived at in the unit-weight linear model.6

The equivalence between tallying and unit-weight linear models

under complete knowledge is an important result. It is known

that unit-weight linear models can sometimes perform about as

well as proper linear models (i.e., models with weights that are

chosen in an optimal way, such as in multiple regression; see

Dawes, 1979). The equivalence implies that under complete

knowledge, merely counting pieces of positive evidence can

work as well as proper linear models. This result clarifies one

condition under which searching only for positive evidence, a

strategy that has sometimes been labeled confirmation bias or

positive test strategy, can be a reasonable and efficient inferen-

tial strategy (Klayman & Ha, 1987; Tweney& Walker, 1990).

Why do the unit-weight and weighted linear models perform

markedly worse under limited knowledge of objects? The rea-

son is the simple and bold recognition principle. Algorithms

that do not exploit the recognition principle in environments

where recognition is strongly correlated with the target variable

pay the price of a considerable number of wrong inferences. The

unit-weight and weighted linear models use recognition infor-

mation and integrate it with all other information but do not

follow the recognition principle, that is. they sometimes choose

unrecognized cities over recognized ones. Why is this? In the

environment, there are more negative cue values than positive

ones (see the Appendix), and most cities have more negative

cue values than positive ones. From this it follows that when a

recognized object is compared with an unrecognized object, the

(weighted) sum of cue values of the recognized object will often

be smaller than that of the unrecognized object (which is — 1 for

the unit-weight model and -.8 for the weighted linear model).

Here the unit-weight and weighted linear models often make

the inference that the unrecognized object is the larger one, due

to the overwhelming negative evidence for the recognized ob-

ject. Such inferences contradict the recognition principle. Tal-

lying algorithms, in contrast, have the recognition principle

built in implicitly. Because tallying algorithms ignore negative

information, the tally for an unrecognized object is always 0

and, thus, is always smaller than the tally for a recognized ob-

ject, which is at least 1 (for tallying, or .8 for weighted tallying,

due to the positive value on the recognition cue). Thus, tallying

algorithms always arrive at the inference that a recognized ob-

ject is larger than an unrecognized one.

Note that this explanation of the different performances puts

the full weight in a psychological principle (the recognition

principle) explicit in the Take The Best algorithm, as opposed

to the statistical issue of how to find optimal weights in a linear

function. To test this explanation, we reran the simulations for

the unit-weight and weighted linear models under the same con-

ditions but replacing the recognition cue with the recognition

principle. The simulation showed that the recognition principle

accounts for all the difference.

Can Satisficing Algorithms Get by With Even Less

Time and Knowledge?

The Take The Best algorithm produced a surprisingly high

proportion of correct inferences, compared with more compu-

tationally expensive integration algorithms. Making correct in-

ferences despite limited knowledge is an important adaptive

feature of an algorithm, but being right is not the only thing

that counts. In many situations, time is limited, and acting fast

can be as important as being correct. For instance, if you are

driving on an unfamiliar highway and you have to decide in an

instant what to do when the road forks, your problem is not

necessarily making the best choice, but simply making a quick

choice. Pressure to be quick is also characteristic for certain

types of verbal interactions, such as press conferences, in which

a fast answer indicates competence, or commercial interactions,

such as having telephone service installed, where the customer

has to decide in a few minutes which of a dozen calling features

to purchase. These situations entail the dual constraints of lim-

ited knowledge and limited time. The Take The Best algorithm

is already faster than any of the integration algorithms, because

it performs only a limited search and does not need to compute

weighted sums of cue values. Can it be made even faster? It can,

if search is guided by the recency of cues in memory rather than

by cue validity.

The Take The Last Algorithm

The Take The Last algorithm first tries the cue that discrimi-

nated the last time. If this cue does not discriminate, the algo-

6 The proof for this is as follows. The tallying score / for a given object

is the number n+ of positive cue values, as defined above. The score u
for the unit weight linear model is n* - n~, where n~ is the number of
negative cue values. Under complete knowledge,« - n+ + n~, where n
is the number of cues. Thus, t - n*, and u - n* - n~. Because n~ = n
- n +, by substitution into the formula for u, we find that w = rt+—(n —
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rithm then tries the cue that discriminated the time before last,

and so on. The algorithm differs from the Take The Best algo-

rithm in Step 2, which is now reformulated as Step 2':

Step 2': Search for the Cue Values of the

Most Recent Cue

For the two objects, retrieve the cue values of the cue used

most recently. If it is the first judgment and there is no discrim-

ination record available, retrieve the cue values of a randomly

chosen cue.

Thus, in Step 4, the algorithm goes back to Step 2'. Variants

of this search principle have been studied as the "Einstellung

effect" in the water jar experiments (Luchins & Luchins,

1994), where the solution strategy of the most recently solved

problem is tried first on the subsequent problem. This effect

has also been noted in physicians' generation of diagnoses for

clinical cases (Weber, Bockenholt, Hilton, & Wallace, 1993).

This algorithm does not need a rank order of cues according

to their validities; all that needs to be known is the direction

in which a cue points. Knowledge about the rank order of cue

validities is replaced by a memory of which cues were last used.

Note that such a record can be built up independently of any

knowledge about the structure of an environment and neither

needs, nor uses, any feedback about whether inferences are

right or wrong.

The Minimalist Algorithm

Can reasonably accurate inferences be achieved with even

less knowledge? What we call the Minimalist algorithm needs

neither information about the rank ordering of cue validities

nor the discrimination history of the cues. In its ignorance, the

algorithm picks cues in a random order. The algorithm differs

from the Take The Best algorithm in Step 2, which is now re-

formulated as Step 2":

Step 2": Random Search

For the two objects, retrieve the cue values of a randomly

chosen cue.

The Minimalist algorithm does not necessarily speed up

search, but it tries to get by with even less knowledge than any

other algorithm.

Results

Speed

How fast are the fast algorithms? The simulations showed

that for each of the two variant algorithms, the relationship be-

tween amount of knowledge and the number of cue values

looked up had the same form as for the Take The Best algorithm

(Figure 5). That is, unlike the integration algorithms, the

curves are concave and the number of cues searched for is max-

imal when knowledge of cue values is lowest. The average num-

ber of cue values looked up was lowest for the Take The Last

algorithm (5.29) followed by the Minimalist algorithm (5.64)

and the Take The Best algorithm (5.91). As knowledge be-

comes more and more limited (on both dimensions: recogni-

tion and cue values known), the difference in speed becomes

smaller and smaller. The reason why the Minimalist algorithm

looks up fewer cue values than the Take The Best algorithm is

that cue validities and cue discrimination rates are negatively

correlated (Table 1); therefore, randomly chosen cues tend to

have larger discrimination rates than cues chosen by cue

validity.

Accuracy

What is the price to be paid for speeding up search or reduc-

ing the knowledge of cue orderings and discrimination histories

to nothing? We tested the performance of the two algorithms on

the same environment as all other algorithms. Figure 7 shows

the proportion of correct inferences that the Minimalist algo-

rithm achieved. For comparison, the performance of the Take

The Best algorithm with 100% of cue values known is indicated

by a dotted line. Note that the Minimalist algorithm performed

surprisingly well. The maximum difference appeared when

knowledge was complete and all cities were recognized. In these

circumstances, the Minimalist algorithm did about 4 percent-

age points worse than the Take The Best algorithm. On average,

the proportion of correct inferences was only 1.1 percentage

points less than the best algorithms in the competition (Ta-

ble 2).

The performance of the Take The Last algorithm is similar to

Figure 7, and the average number of correct inferences is shown

in Table 2. The Take The Last algorithm was faster but scored

slightly less than the Minimalist algorithm. The Take The Last

algorithm has an interesting ability, which fooled us in an earlier

series of tests, where we used a systematic (as opposed to a ran-

dom) method for presenting the test pairs, starting with the

largest city and pairing it with all others, and so on. An integra-

tion algorithm such as multiple regression cannot "find out"

that it is being tested in this systematic way, and its inferences

are accordingly independent of the sequence of presentation.

However, the Take The Last algorithm found out and won this

first round of the competition, outperforming the other com-

petitors by some 10 percentage points. How did it exploit sys-

tematic testing? Recall that it tries, first, the cue that discrimi-

nated the last time. If this cue does not discriminate, it proceeds

with the cue that discriminated the time before, and so on. In

doing so, when testing is systematic in the way described, it

tends to find, for each city that is being paired with all smaller

ones, the group of cues for which the larger city has a positive

value. Trying these cues first increases the chances of finding a

discriminating cue that points in the right direction (toward the

larger city). We learned our lesson and reran the whole compe-

tition with randomly ordered of pairs of cities.

Discussion

The competition showed a surprising result: The Take The

Best algorithm drew as many correct inferences about un-

known features of a real-world environment as any of the inte-

gration algorithms, and more than some of them. Two further

simplifications of the algorithm—the Take The Last algorithm

(replacing knowledge about the rank orders of cue validities by

a memory of the discrimination history of cues) and the Mini-

malist algorithm (dispensing with both) showed a compara-
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Figure 7. Performance of the Minimalist algorithm. For comparison, the performance of the Take The
Best algorithm (TTB) is shown as a dotted line, for the case in which 100% of cue values are known.

lively small loss in correct inferences, and only when knowledge

about cue values was high.

To the best of our knowledge, this is the first inference com-

petition between satisficing and "rational" algorithms in a real-

world environment. The result is of importance for encouraging

research that focuses on the power of simple psychological

mechanisms, that is, on the design and testing of satisficing al-

gorithms. The result is also of importance as an existence proof

that cognitive algorithms capable of successful performance in

a real-world environment do not need to satisfy the classical

norms of rational inference. The classical norms may be suffi-

cient but are not necessary for good inference in real

environments.

Cognitive Algorithms That Satisfice

In this section, we discuss the fundamental psychological

mechanism postulated by the PMM family of algorithms: one-

reason decision making. We discuss how this mechanism ex-

ploits the structure of environments in making fast inferences

that differ from those arising from standard models of rational

reasoning.

One-Reason Decision Making

What we call one-reason decision making is a specific form of

satisficing. The inference, or decision, is based on a single, good

reason. There is no compensation between cues. One-reason

decision making is probably the most challenging feature of the

PMM family of algorithms. As we mentioned before, it is a de-

sign feature of an algorithm that is not present in those models

that depict human inference as an optimal integration of all in-

formation available (implying that all information has been

looked up in the first place), including linear multiple regres-

sion and nonlinear neural networks. One-reason decision mak-

ing means that each choice is based exclusively on one reason

(i.e., cue), but this reason may be different from decision to

decision. This allows for highly context-sensitive modeling of

choice. One-reason decision making is not compensatory. Com-

pensation is, after all, the cornerstone of classical rationality,

assuming that all commodities can be compared and everything

has its price. Compensation assumes commensurability. How-

ever, human minds do not trade everything, some things are

supposed to be without a price (Elster, 1979). For instance, if a

person must choose between two actions that might help him or

her get out of deep financial trouble, and one involves killing

someone, then no amount of money or other benefits might

compensate for the prospect of bloody hands. He or she takes

the action that does not involve killing a person, whatever other

differences exist between the two options. More generally, hier-

archies of ethical and moral values are often noncompensatory:

True friendship, military honors, and doctorates are supposed

to be without a price.

Noncompensatory inference algorithms—such as lexico-

graphic, conjunctive, and disjunctive rules—have been dis-

cussed in the literature, and some empirical evidence has been

reported (e.g.. Einhorn, 1970;Fishburn, 1988). The closest rel-
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ative to the PMM family of satisficing algorithms is the lexico-
graphic rule. The largest evidence for lexicographic processes
seems to come from studies on decision under risk (for a recent
summary, see Lopes, 1995). However, despite empirical evi-
dence, noncompensatory lexicographic algorithms have often
been dismissed at face value because they violate the tenets of
classical rationality (Keeney & Raiffa, 1993; Lovie & Lovie,
1986). The PMM family is both more general and more specific
than the lexicographic rule. It is more general because only the
Take The Best algorithm uses a lexicographic procedure in
which cues are ordered according to their validity, whereas the
variant algorithms do not. It is more specific, because several
other psychological principles are integrated with the lexico-
graphic rule in the Take The Best algorithm, such as the recog-
nition principle and the rules for confidence judgment (which

are not dealt with in this article; see Gigerenzer et al., 1991).
Serious models that comprise noncompensatory inferences

are hard to find. One of the few examples is in Breiman, Fried-
man, Olshen, and Stone (1993), who reported a simple, non-
compensatory algorithm with only 3 binary, ordered cues,
which classified heart attack patients into high- and low-risk
groups and was more accurate than standard statistical classi-
fication methods that used up to 19 variables. The practical rel-
evance of this noncompensatory classification algorithm is ob-
vious: In the emergency room, the physician can quickly obtain
the measures on one, two, or three variables and does not need
to perform any computations because there is no integration.
This group of statisticians constructed satisficing algorithms
that approach the task of classification (and estimation) much
like the Take The Best algorithm handles two-alternative
choice. Relevance theory (Sperber, Cara, & Girotto, 1995) pos-
tulates that people generate consequences from rules according
to accessibility and stop this process when expectations of rele-
vance are met. Although relevance theory has not been as for-
malized, we see its stopping rule as parallel to that of the Take
The Best algorithm. Finally, optimality theory (Legendre, Ray-
mond, & Smolensky, 1993; Prince & Smolensky, 1991) pro-
poses that hierarchical noncompensation explains how the
grammar of a language determines which structural description
of an input best satisfies well-formedness constraints. Optimal-
ity theory (which is actually a satisficing theory) applies the
same inferential principles as PMM theory to phonology and
morphology.

Recognition Principle

The recognition principle is a version of one-reason decision
making that exploits a lack of knowledge. The very fact that
one does not know is used to make accurate inferences. The
recognition principle is an intuitively plausible principle that
seems not to have been used until now in models of bounded
rationality. However, it has long been used to good advantage by
humans and other animals. For instance, advertisement tech-
niques as recently used by Benetton put all effort into making
sure that every customer recognizes the brand name, with no
effort made to inform about the product itself. The idea behind
this is that recognition is a strong force in customers' choices.
One of our dear (and well-read) colleagues, after seeing a draft
of this article, explained to us how he makes inferences about
which books are worth acquiring. If he finds a book about a

great topic but does not recognize the name of the author, he
makes the inference that it is probably not worth buying. If,
after an inspection of the references, he does not recognize most
of the names, he concludes the book is not even worth reading.
The recognition principle is also known as one of the rules that
guide food preferences in animals. For instance, rats choose the
food that they recognize having eaten before (or having smelled
on the breath of fellow rats) and avoid novel foods (Gallistel,
Brown, Carey, Gelman, & Keil, 1991).

The empirical validity of the recognition principle for infer-
ences about unknown city populations, as used in the present
simulations, can be directly tested in several ways. First, partic-
ipants are presented pairs of cities, among them critical pairs in
which one city is recognized and the other unrecognized, and
their task is to infer which one has more inhabitants. The rec-
ognition principle predicts the recognized city. In our empirical
tests, participants followed the recognition principle in roughly
90% to 100% of all cases (Goldstein, 1994; Goldstein & Giger-
enzer, 1996). Second, participants are taught a cue, its ecologi-
cal validity, and the cue values for some of the objects (such as
whether a city has a soccer team or not). Subsequently, they are
tested on critical pairs of cities, one recognized and one unrec-
ognized, where the recognized city has a negative cue value
(which indicates lower population). The second test is a harder
test for the recognition principle than the first one and can be
made even harder by using more cues with negative cue values
for the recognized object, and by other means. Tests of the sec-
ond kind have been performed, and participants still followed
the recognition principle more than 90% of the time, providing
evidence for its empirical validity (Goldstein, 1994; Goldstein
& Gigerenzer, 1996).

The recognition principle is a useful heuristic in domains
where recognition is a predictor of a target variable, such as
whether a food contains a toxic substance. In cases where rec-
ognition does not predict the target, the PMM algorithms can
still perform the inference, but without the recognition princi-
ple (i.e., Step 1 is canceled).

Limited Search

Both one-reason decision making and the recognition princi-
ple realize limited search by defining stopping points. Integra-
tion algorithms, in contrast, do not provide any model of stop-
ping points and implicitly assume exhaustive search (although
they may provide rules for tossing out some of the variables in
a lengthy regression equation). Stopping rules are crucial for
modeling inference under limited time, as in Simon's examples
of satisficing, where search among alternatives terminates when
a certain aspiration level is met.

Nonlinearity

Linearity is a mathematically convenient tool that has domi-
nated the theory of rational choice since its inception in the
mid-seventeenth century (Gigerenzer et al., 1989). The as-
sumption is that the various components of an alternative add
up independently to its overall estimate or utility. In contrast,
nonlinear inference does not operate by computing linear sums
of (weighted) cue values. Nonlinear inference has many variet-
ies, including simple principles such as in the conjunctive and
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disjunctive algorithms (Einhorn, 1970) and highly complex

ones such as in nonlinear multiple regression and neural net-

works. The Take The Best algorithm and its variants belong to

the family of simple nonlinear models. One advantage of simple

nonlinear models is transparency; every step in the PMM algo-

rithms can be followed through, unlike fully connected neural

networks with numerous hidden units and other free

parameters.

Our competition revealed that the unit-weight and weighted

versions of the linear models lead to about equal performance,

consistent with the finding that the choice of weights, provided

the sign is correct, does often not matter much (Dawes, 1979).

In real-world domains, such as in the prediction of sudden in-

fant death from a linear combination of eight variables

(Carpenter, Gardner, McWeeny & Emery, 1977), the weights

can be varied across a broad range without decreasing predic-

tive accuracy: a phenomenon known as the "flat maximum

effect" (Lovie & Lovie, 1986; von Winterfeldt & Edwards,

1982). The competition in addition, showed that the flat maxi-

mum effect extends to tallying, with unit-weight and weighted

tallying performing about equally well. The performance of the

Take The Best algorithm showed that the flat maximum can

extend beyond linear models: Inferences based solely on the best

cue can be as accurate as any weighted or unit-weight linear

combination of all cues.

Most research in psychology and economics has preferred

linear models for description, prediction, and prescription

(Edwards, 1954, 1962; Lopes, 1994; von Winterfeldt & Ed-

wards, 1982). Historically, linear models such as analysis of

variance and multiple regression originated as tools for data

analysis in psychological laboratories and were subsequently

projected by means of the "tools-to-theories heuristic" into the-

ories of mind (Gigerenzer. 1991). The sufficiently good fit of

linear models in many judgment studies has been interpreted

that humans in fact might combine cues in a linear fashion.

However, whether this can be taken to mean that humans actu-

ally use linear models is controversial (Hammond & Summers.

1965; Hammond & Wascoe, 1980). For instance, within a cer-

tain range, data generated from the (nonlinear) law of falling

bodies can be fitted well by a linear regression. For the data in

the Appendix, a multiple linear regression resulted in R2 - .87,

which means that a linear combination of the cues can predict

the target variable quite well. But the simpler, nonlinear, Take

The Best algorithm could match this performance. Thus, good

fit of a linear model does not rule out simpler models of

inference.

Shepard (1967) reviewed the empirical evidence for the

claim that humans integrate information by linear models. He

distinguished between the perceptual transformation of raw
sensory inputs into conceptual objects and properties and the

subsequent inference based on conceptual knowledge. He con-

cluded that the perceptual analysis integrates the responses of

the vast number of receptive elements into concepts and prop-

erties by complex nonlinear rules but once this is done, "there

is little evidence that they can in turn be juggled and recom-

bined with anything like this facility" (Shepard, 1967. p. 263).

Although our minds can take account of a host of different fac-

tors, and although we can remember and report doing so, "it is

seldom more than one or two that we consider at any one time"
(Shepard, 1967, p. 267). In Shepard's view, there is little evi-

a b
Cuel

Cue 2

Cue 3

Figure 8 Limited knowledge and a stricter discrimination rule can
produce intransitive inferences.

dence for integration, linear or otherwise, in what we term in-

ferences from memory—even without constraints of limited

time and knowledge. A further kind of evidence does not sup-

port linear integration as a model of memory-based inference.

People often have great difficulties in handling correlations be-

tween cues (e.g., Armelius & Armelius, 1974), whereas inte-

gration models such as multiple regression need to handle in-

tercorrelations. To summarize, for memory-based inference,

there seems to be little empirical evidence for the view of the

mind as a Laplacean Demon equipped with the computational

powers to perform multiple regressions. But this need not be

taken as bad news. The beauty of the nonlinear satisficing algo-

rithms is that they can match the Demon's performance with

less searching, less knowledge, and less computational might.

Intransitivity

Transitivity is a cornerstone of classical rationality. It is one

of the few tenets that the Anglo-American school of Ramsey

and Savage shares with the competing Franco-European school

of Allais (Fishburn, 1991). If we prefer a to b and b to c, then

we should also prefer a to c. The linear algorithms in our com-

petition always produce transitive inferences (except for ties,

where the algorithm randomly guessed), and city populations

are, in fact, transitive. The PMM family of algorithms includes

algorithms that do not violate transitivity (such as the Take The

Best algorithm), and others that do (e.g., the Minimalist

algorithm). The Minimalist algorithm randomly selects a cue

on which to base the inference, therefore intransitivities can re-

sult. Table 2 shows that in spite of these intransitivities, overall

performance of the algorithm is only about 1 percentage point

lower than that of the best transitive algorithms and a few per-

centage points better than some transitive algorithms.

An organism that used the Take The Best algorithm with a

stricter discrimination rule (actually, the original version found

in Gigerenzer et al., 1991) could also be forced into making

intransitive inferences. The stricter discrimination rule is that

search is only terminated when one positive and one negative

cue value (but not one positive and one unknown cue value)
are encountered. Figure 8 illustrates a state of knowledge in

which this stricter discrimination rule gives the result that a

dominates b, b dominates c, and c dominates a.7

7 Note that missing knowledge is necessary for intransitivtties to oc-
cur. If all cue values are known, no intransitive inferences can possibly
result. The algorithm with the stricter discrimination rule allows precise
predictions about the occurrence of intransitivities over the course of
knowledge acquisition. For instance, imagine a person whose knowl-
edge is described by Figure 8, except that she does not know the value
of Cue 2 for object c. This person would make no intransitive judgments
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Biological systems, for instance, can exhibit systematic in-
transitivities based on incommensurability between two sys-
tems on one dimension (Gilpin, !975;Lewontin, 1968).Imag-
ine three species: a, b, and c. Species a inhabits both water and
land; species b inhabits both water and air. Therefore, the two
only compete in water, where species a defeats species b. Species
c inhabits land and air, so it only competes with b in the air,
where it is defeated by b. Finally, when a and c meet, it is only
on land, and here, c is in its element and defeats a. A linear
model that estimates some value for the combative strength of
each species independently of the species with which it is com-
peting would fail to capture this nontransitive cycle.

Inferences Without Estimation

Einhorn and Hogarth (1975) noted that in the unit-weight
model "there is essentially no estimation involved in its use" (p.
177), except for the sign of the unit weight. A similar result
holds for the algorithms reported here. The Take The Best algo-
rithm does not need to estimate regression weights, it only
needs to estimate a rank ordering of ecological validities. The
Take The Last and the Minimalist algorithms involve essen-
tially no estimation (except for the sign of the cues). The fact
that there is no estimation problem has an important conse-
quence: An organism can use as many cues as it has experi-
enced, without being concerned about whether the size of the
sample experienced is sufficiently large to generate reliable esti-
mates of weights.

Cue Redundancy and Performance

Einhorn and Hogarth (1975) suggested that unit-weight
models can be expected to perform approximately as well as
proper linear models when (a) R2 from the regression model is
in the moderate or low range (around .5 or smaller) and (b)
predictors (cues) are correlated. Are these two criteria neces-
sary, sufficient, or both to explain the performance of the Take
The Best algorithm? The Take The Best algorithm and its vari-
ants certainly can exploit cue redundancy: If cues are highly
correlated, one cue can do the job.

We have already seen that in the present environment, R2 =
.87, which is in the high rather than the moderate nr low range.
As mentioned earlier, the pairwise correlations between the
nine ecological cues ranged between —.25 and .54, with an ab-
solute average value of .19. Thus, despite a high R2 and only
moderate-to-small correlation between cues, the satisficing al-
gorithms performed quite successfully. Their excellent perfor-
mance in the competition can be explained only partially by cue
redundancy, because the cues were only moderately correlated.
High cue redundancy, thus, does seem sufficient but is not nee-

comparing objects a, b, and c. If she were to learn that object c had a

negative cue value for Cue 2, she would produce an intransitive judg-

ment. If she learned one piece more, namely, the value of Cue 1 for

object c, then she would no longer produce an intransitive judgment.

The prediction is that transitive judgments should turn into intransitive

ones and hack, during learning. Thus, intransitivities do not simply de-

pend on the amount of limited knowledge but also on what knowledge

is missing.

essary for the successful performance of the satisficing
algorithms.

A New Perspective on the Lens Model

Ecological theorists such as Brunswik (1955) emphasized
that the cognitive system is designed to find many pathways to
the world, substituting missing cues by whatever cues happen to
be available. Brunswik labeled this ability vicarious functioning,
in which he saw the most fundamental principle of a science of
perception and cognition. His proposal to model this adaptive
process by linear multiple regression has inspired a long tradi-
tion of neo-Brunswikian research (B. Brehmer, 1994; Ham-
mond, 1990), although the empirical evidence for mental
multiple regression is still controversial (e.g., A. Brehmer & B.
Brehmer, 1988). However, vicarious functioning need not be
equated with linear regression. The PMM family of algorithms
provides an alternative, nonadditive model of vicarious func-
tioning, in which cue substitution operates without integration.
This gives a new perspective of Brunswik's lens model. In a one-
reason decision making lens, the first discriminating cue that
passes through inhibits any other rays passing through and de-
termines judgment. Noncompensatory vicarious functioning is
consistent with some of Brunswik's original examples, such as
the substitution of behaviors in Hull's habit-family hierarchy,
and the alternative manifestation of symptoms according to the
psychoanalytic writings of Frenkel-Brunswik (see Gigerenzer &
Murray, 1987, chap. 3).

It has been reported sometimes that teachers, physicians, and
other professionals claim that they use seven or so criteria to
make judgments (e.g., when grading papers or making a differ-
ential diagnosis) but that experimental tests showed that they
in fact often used only one criterion (Shepard, 1967). At first
glance, this seems to indicate that those professionals make out-
rageous claims. But it need not be. If experts' vicarious func-
tioning works according to the PMM algorithms, then they are
correct in saying that they use many predictors, but the decision
is made by only one at any time.

What Counts as Good Reasoning?

Much of the research on reasoning in the last decades has
assumed that sound reasoning can be reduced to principles of
internal consistency, such as additivity of probabilities, confor-
mity to truth-table logic, and transitivity. For instance, research
on the Wason selection task, the "Linda" problem, and the
"cab" problem has evaluated reasoning almost exclusively by
some measure of internal consistency (Gigerenzer, 1995,
1996a). Cognitive algorithms, however, need to meet more im-
portant constraints than internal consistency: (a) They need to
be psychologically plausible, (b) they need to be fast, and (c)
they need to make accurate inferences in real-world environ-
ments. In real time and real environments, the possibility that
an algorithm (e.g., the Minimalist algorithm) can make intran-
sitive inferences does not mean that it will make them all the
time or that this feature of the algorithm will significantly hurt
its accuracy. What we have not addressed in this article are con-
straints on human reasoning that emerge from the fact that
Homo sapiens is a social animal (Gigerenzer, 1996b). For in-
stance, some choices (e.g., who to treat first in an emergency
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room) need to be justified (Tetlock, 1992). Going with the sin-

gle best reason, the strategy of the Take The Best algorithm, has

an immediate appeal tor justification and can be more convinc-

ing and certainly easier to communicate than some complicated

weighting of cues.

further Research

Among the questions that need to be addressed in future re-

search are the following. First, how can we generalize the pres-

ent satisficing algorithm from two-alternative-choice tasks to

other inferential tasks, such as classification and estimation?

The reported success of the classification and regression tree

models (Breiman et al., 1993), which use a form of one-reason

decision making, is an encouraging sign that what we have

shown here for two-alternative-choice tasks might be generaliz-

able. Second, what is the structure of real-world environments

that allows simple algorithms to perform so well? We need to

develop a conceptual language that can capture important as-

pects of the structure of environments that simple cognitive al-

gorithms can exploit. The traditional proposal for understand-

ing the structure of environments in terms of ecological validi-

ties denned as linear correlations (Brunswik, 1955) may not be

adequate, as the power of the nonlinear satisficing algorithms

suggests.

Can Reasoning Be Rational and Psychological?

At the beginning of this article, we pointed out the common

opposition between the rational and the psychological, which

emerged in the nineteenth century after the breakdown of the

classical interpretation of probability (Gigerenzeret al., 1989).

Since then, rational inference is commonly reduced to logic and

probability theory, and psychological explanations are called on

when things go wrong. This division of labor is, in a nutshell,

the basis on which much of the current research on judgment

under uncertainty is built. As one economist from the Massa-

chusetts Institute of Technology put it, "either reasoning is ra-

tional or it's psychological" (Gigerenzer, 1994). Can not rea-

soning be both rational and psychological?

We believe that after 40 years of toying with the notion of

bounded rationality, it is time to overcome the opposition be-

tween the rational and the psychological and to reunite the two.

The PMM family of cognitive algorithms provides precise

models that attempt to do so. They differ from the Enlighten-

ment's unified view of the rational and psychological, in that

they focus on simple psychological mechanisms that operate

under constraints of limited time and knowledge and are sup-

ported by empirical evidence. The single most important result

in this article is that simple psychological mechanisms can yield

about as many (or more) correct inferences in less time than

standard statistical linear models that embody classical proper-

ties of rational inference. The demonstration that a fast and fru-

gal satisficing algorithm won the competition defeats the wide-

spread view that only "rational" algorithms can be accurate.

Models of inference do not have to forsake accuracy for sim-

plicity. The mind can have it both ways.
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Frankfurt
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Diisseldorf
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953,551 +
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191,694 + +
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Note. City populations were taken from Fischer Welt Almanack (1993).
* The two starred minus values are, in reality, plus values. Because of transcription errors, we ran all simulations with these two minus values. These

do not affect the rank order of cue validities, should not have any noticeable effect on the results, and are irrelevant for our theoretical argument.
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