
Fast, frugal, and rational: How rational norms explain behavior

Nick Chater,a,* Mike Oaksford,b Ramin Nakisa,c and Martin Redingtonc

a Department of Psychology, University of Warwick, Coventry CV7 4AL, UK
b School of Psychology, Cardiff University, P.O. Box 901, Cardiff CF1 3YG, UK
c Department of Experimental Psychology, University of Oxford, Oxford, UK

Abstract

Much research on judgment and decision making has focussed on the adequacy of classical rationality as a description of human

reasoning. But more recently it has been argued that classical rationality should also be rejected even as normative standards for

human reasoning. For example, Gigerenzer and Goldstein (1996) and Gigerenzer and Todd (1999a) argue that reasoning involves

‘‘fast and frugal’’ algorithms which are not justified by rational norms, but which succeed in the environment. They provide three

lines of argument for this view, based on: (A) the importance of the environment; (B) the existence of cognitive limitations; and (C)

the fact that an algorithm with no apparent rational basis, Take-the-Best, succeeds in an judgment task (judging which of two cities

is the larger, based on lists of features of each city). We reconsider (A)–(C), arguing that standard patterns of explanation in

psychology and the social and biological sciences, use rational norms to explain why simple cognitive algorithms can succeed. We

also present new computer simulations that compare Take-the-Best with other cognitive models (which use connectionist, exemplar-

based, and decision-tree algorithms). Although Take-the-Best still performs well, it does not perform noticeably better than the

other models. We conclude that these results provide no strong reason to prefer Take-the-Best over alternative cognitive models.

� 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Research on human judgment and decision making

has frequently focussed on the relationship between

observed human reasoning and classical rational

norms. Instances where actual reasoning and classical
norms diverge have been taken to exemplify cognitive

biases; human performance is viewed as failing to

measure up, in some ways and under some circum-

stances, to classical rational norms. For example,

people appear to persistently fall for logical blunders

(Evans, Newstead, & Byrne, 1993), probabilistic falla-

cies (e.g., Tversky & Kahneman, 1974), to make in-

consistent decisions (Kahneman, Slovic, & Tversky,
1982; Tversky & Kahneman, 1986), and to make ir-

rational moves in games (Colman, 1995). Indeed, the

concepts of logic, probability, decision theory and the

like do not appear to mesh naturally with our everyday

reasoning strategies: these notions took centuries of

intense intellectual effort to construct, and present a

tough challenge for each generation of students. From

this perspective, the gap between observed decision

making behavior and classical rationality may appear a

yawning gulf.

Various factors have been viewed as contributing to
this gulf: performance errors, computational limita-

tions, and differences between the understanding of the

task employed by experimenter and experimental par-

ticipant (e.g., Ayton & Hardman, 1997; Cohen, 1981;

Oaksford & Chater, 1993; Stanovich, 1999; Stanovich

& West, 2000; Stein, 1996). There have also been

persuasive arguments that individual differences con-

cerning cognitive ability and/or educational back-
ground can substantially affect the gap between

observed behavior and classical norms. Where cogni-

tive ability is high and/or the task constraints do not

severely impact cognitive limitations of memory and

attention, people may on occasion conform quite well

to classical rational norms, even on tasks where per-

formance is typically viewed as systematically irrational

(Stanovich & West, 1998a, 1998b, 1998c). This line of
argument suggests that the gulf between performance
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and classical rationality may be bridged, at least for
some individuals, in some circumstances (Stanovich,

1999, although see, for example, Ayton, 2000; Hertwig,

2000).

Recently, a number of theorists have suggested a

more radical alternative—that comparing human be-

havior against classical rationality is like comparing

apples and oranges. Whereas the traditional viewpoint

with psychology and economics is that the comparison
is appropriate, but that the disparity between the two

may be substantial, the radical viewpoint suggests that

the comparison itself is misconceived.

Evans and Over (1996, 1997), for example, distin-

guish between two notions of rationality:

Rationality1: Thinking, speaking, reasoning, making a decision,

or acting in a way that is generally reliable and efficient for

achieving one�s goals

Rationality2: Thinking, speaking, reasoning, making a decision,

or acting when one has a reason for what one does sanctioned by

a normative theory. (Evans & Over, 1997, p. 2)

Crucially, Evans and Over argue that these two kinds of

rationality are largely independent: ‘‘people are largely

rational in the sense of achieving their goals

(rationality1) but have only a limited ability to reason or

act for good reasons sanctioned by a normative theory

(rationality2)’’ (Evans & Over, 1997, p. 1). If this is right,

then achieving one�s goals can be achieved without fol-
lowing the precepts of classical rationality—i.e., without
there being a justification for the actions, decisions or

thoughts which lead to success: rationality1 does not

require rationality2. That is, Evans and Over are com-

mitted to the view that thoughts, actions or decisions

which cannot be normatively justified using classical

rational norms can, nonetheless, consistently lead to

practical success.

Relatedly, Gigerenzer and his colleagues (e.g., Gi-
gerenzer, 2000; Gigerenzer & Goldstein, 1996; Gige-

renzer & Todd, 1999a) have developed a major research

program on human judgment that attempts to break

out of the restrictive mould of comparing human per-

formance with classical rationality. Like Evans and

Over (1996, 1997), Gigerenzer and colleagues have ar-

gued that, instead, inference should be assessed in terms

of its success in solving ecologically relevant problems
in natural environmental contexts: ‘‘the minds of living

systems should be understood relative to the environ-

ment in which they evolved rather than to the tenets of

classical rationality [i.e., probability theory, expected

utility theory and so on]. . .’’ (Gigerenzer and Goldstein,
p. 651) (emphasis added). The proposal is that the

point of reasoning is to allow people to deal with the

everyday world, rather than conforming with rational
norms.

The aim of this paper is to consider the viability of

this radical proposal. For concreteness, we focus on a

particularly influential formulation, by Gigerenzer and
Goldstein (1996), but we intend our analysis to apply

more generally to accounts of ecological and classical

norms of rationality.

Gigerenzer and Goldstein (1996) give three lines of

argument that an ecological standard of rationality (i.e.,

that reasoning gets good results in the real world)

should replace classical norms as the appropriate

comparison for human reasoning, based on: (A) the
importance of the environment; (B) the existence of

cognitive limitations; and (C) an �existence proof,� i.e., a
specific algorithm, Take-the-Best that exemplifies their

approach. Take-the-Best succeeds in a real environ-

ment, even though it has no apparent rational justifi-

cation.

Gigerenzer and colleagues also argue that Take-the-

Best is also more than a mere existence proof—it is in-
tended to be a cognitively plausible model of a specific

kind of cognitive estimation (e.g., Gigerenzer & Gold-

stein, 1996; Gigerenzer, 2000). The task Gigerenzer and

Goldstein consider is that of two alternative forced

choice concerning which of two German towns has the

larger population, based on a set of nine binary �fea-
tures� of each town (e.g., ‘‘has a soccer team,’’ ‘‘is a state
capital,’’ etc.). Gigerenzer and Goldstein (1996) consider
the computational problem of learning how to predict

which of two cities is the larger, from a �training set� of
cities, their features, and populations. From the point of

view of conventional statistics, an �obvious� way to
proceed in such a task is to attempt to use some form of

regression (e.g., linear regression) to assess the influence

of each of the features on city size. When presented with

a forced choice test, the regression might then be used to
integrate all the features of the two cities, to come to an

overall conclusion concerning which is likely to be the

larger.

Gigerenzer and Goldstein�s Take-the-Best algorithm,
however, takes a radically different approach. It has

two steps. The first routine, the recognition principle

states that, if a reasoner recognises the name of one city

but not the other, then the first city should be assumed
to be the larger–no further memory search is carried

out. If the recognition principle does not decide the

issue, Take-the-Best moves to a second and more

elaborate routine (on which we concentrate below).

Features of the cities are considered in order, one-by-

one, from the feature most diagnostic of city size to the

feature that is least diagnostic of city size (where di-

agnosticity is calculated as the probability that the
feature will correctly signal which is the larger of two

randomly chosen cities which differ on this feature). As

soon as a feature is found on which the cities differ

(e.g., one city has a soccer team but the other does not),

then the feature is used to decide which city is the larger

(the city with the soccer team) and the calculation

terminates. This means that the decision is based on a

64 N. Chater et al. / Organizational Behavior and Human Decision Processes 90 (2003) 63–86



single feature, rather than attempting to �integrate� all
the different features of the two cities; and indeed many

of the features of the cities are not even considered in

the decision. Gigerenzer and Goldstein (1996) showed

that, despite this very �frugal� use of information, Take-
the-Best performs impressively. In a computational

�competition� using real features of German cities,

Take-the-Best performs as well as linear regression and

a range of approximations to linear regression. Sub-
sequent computational simulation work has success-

fully generalized these findings to a remarkable range of

domains, ranging from judgments of levels of home-

lessness based on features of US cities, to judgments of

house prices, professors� salaries, the amount of time 35
species of mammal spend asleep based their biological

features, and many more (Czerlinski, Gigerenzer, &

Goldstein, 1999).
Take-the-Best has interesting antecedents in previous

work in the literature of behavioral decision making.

Non-compensatory strategies (i.e., those that use aspects

of individual features to make a decision, rather than

integrating all the features given) have been widely dis-

cussed (e.g., Einhorn, 1970, 1971; Ganzach, 1995), in-

cluding �elimination by aspects� (Tversky, 1972) and the
lexicographic heuristic (Tversky, 1969).
More broadly, the Adaptive Decision Maker research

program of Payne and colleagues (Payne, 1976; Payne,

Bettman, & Johnson, 1988, 1990, 1993; Payne, Bettman,

& Luce, 1996), has emphasized that the decision maker

can strategically choose between a range of decision

making methods—many of which will be �fast and fru-
gal.� In the Adaptive Decision Maker framework,

though, fast and frugal algorithms are one end of a
continuum of options from which the decision maker

may choose—given sufficient time, cognitive resources

and motivation, participants may choose strategies

which integrate the information that they have been

given in more elaborate ways (although not necessarily

with better decision making results). Work within this

tradition focuses in considerable detail on the conditions

under which particular �fast and frugal� methods are
applied, and under what conditions these methods are

successful (Payne et al., 1993). One difference of em-

phasis between the two approaches is that the Adaptive

Decision Maker program has been concerned primarily

with understanding how people make choices between

options, where Gigerenzer and colleagues have focussed

primarily on questions of judgment: i.e., tasks in which

people have to judge, on limited information, which of
two states of the world holds. Although, from a nor-

mative point of view, the domains of choice and judg-

ment are very different (roughly, the normative theory

for choice is utility theory; the normative theory for

judgment is decision theory), it is quite possible that

some of the underlying cognitive algorithms used the

two cases are closely related. Indeed, Tversky�s (1969)

lexicographic heuristic, mentioned above, is very closely
related to Take-the-Best.1

The Adaptive Decision Maker framework stresses the

flexible use of cognitive heuristics and strategies. By

contrast, Gigerenzer and Goldstein (1996) do not ex-

plicitly discuss whether they see Take-the-Best as a

universal cognitive algorithm, or as being selected dy-

namically by decision makers from a range of decision

making methods. But the latter position appears to be
embodied in the idea of the �adaptive toolbox� (Gige-
renzer & Todd, 1999b; Gigerenzer, 2000, 2001; Gige-

renzer & Selten, 2001). The adaptive toolbox is ‘‘the

collection of specialized cognitive mechanisms that

evolution has built into the human mind for specific

domains of inference and reasoning, including fast and

frugal heuristics’’ (Gigerenzer & Todd, 1999b, p. 30).

Gigerenzer and Todd (1999b) suggest that, for example,
there may be adaptive selection from within the family

of Take-the-Best-type algorithms (and presumably also

outside this family), depending on, among other things,

the kinds of factors analysed in the Adaptive Decision

Maker framework (Payne et al., 1993). We shall see, at

the end of this paper, that the empirical evidence con-

cerning Take-the-Best is most consistent with this type

of interpretation.
The two parts of this article focus on general and

specific issues in turn. In the first part, we begin by

outlining the central role for rational norms in the ex-

planation of human behavior. This role for rational

norms is quite different from that embodied in ‘‘classi-

cal’’ or ‘‘unbounded’’ rationality (Gigerenzer & Gold-

stein, 1996; Gigerenzer & Todd, 1999b), but we believe it

underlies explanation throughout much of the social and
biological sciences. In particular, we argue that norms of

classical rationality are crucially involved in explaining

why a particular behavior is ecologically successful.

Thus, we argue that classical and ecological notions of

rationality are complementary, rather than standing in

competition. With this analysis in mind, we reevaluate

and counter the three arguments (A)–(C) that Gigeren-

zer and Goldstein (1996) give for the thesis that an
ecological notion of rationality should replace classical

rationality. The second part of this article conducts a

new �competition,� between Take-the-Best and a range
of algorithms based on existing cognitive architectures

widely used in cognitive science and artificial intelligence,

1 Specifically, the lexicographic rule compares two choice options

by considering features of each option, one by one, in descending order

of importance. If one option �wins� on a particular feature, it is chosen;
if there is a tie, the next most important feature is chosen, and so on.

The core component of Take-the-Best makes a judgment between two

options—e.g., which is the largest city—by considering cues in

descending order of �cue validity� concerning that judgment; again, if
one option �wins� on a cue, it is chosen (e.g., judged to be the largest
city); if there is a tie, the next most �valid� cue is chosen.
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and considers theoretical arguments which appear to
favor Take-the-Best. We conclude that, while Take-the-

Best�s performance is again impressive, there is no

strong reason to view Take-the-Best as having greater

cognitive plausibility than a range of other algorithms.

This competition also raises questions concerning the

relationship between research on judgment and decision

making and computational and experimental work on

basic mental processes in cognitive psychology (e.g.,
Dougherty, Gettys, & Ogden, 1999; Weber, Goldstein,

& Barlas, 1995).

2. Rationality and the explanation of behavior

We have seen that some leading theorists (e.g.,

Evans & Over, 1996, 1997; Gigerenzer & Goldstein,
1996; Gigerenzer & Todd, 1999b) have argued that

classical rational principles have no useful role in ex-

plaining everyday behavior; that classical rationality

and �ecological� rationality are entirely separate do-
mains. One implication is that classical rational prin-

ciples, of logic, probability, decision theory, and game

theory do not even provide normative standards

against which everyday behavior can be compared—
because to make such a comparison is to compare

apples and oranges. Everyday behavior is properly

judged by its results, rather than conformity to ab-

stract standards of reasoning. If their analysis is cor-

rect, then it appears to have large ramifications across

the social and biological sciences, where classical ra-

tional principles are frequently used to explain every-

day behavior. But, we suggest, this apparently radical
perspective is rooted in an incorrect characterization of

the role that classical rational principles play in ex-

planation in the social and biological sciences. Specif-

ically, critics of the application of classical rational

principles typically assume that such principles explain

behavior by assuming that the mind performs rational

�calculations.� We believe that is a crucial mischarac-
terization of the project of rational explanation in the
social and biological sciences, which aim for rational

description, without ascribing rational calculations to

the cognitive system.

2.1. Rational calculation vs. rational description

Gigerenzer and Goldstein�s characterization of the
classical view—that rational norms are the laws of
thought—is intended to encompass the broad sweep of

rational explanation of behavior across several disci-

plines.

From Pierre Laplace to George Boole to Jean Piaget, many

scholars have defended the now classical view that the laws of

human inference are the laws of probability and statistics. . . Fol-

lowing this time-honored tradition, much contemporary research

in psychology, behavioral ecology, and economics assumes stan-

dard statistical tools to be the normative and descriptive models

of inference and decision making. (p. 650)

Gigerenzer and Todd (1999b, p. 9) amplify the point:

Unbounded rationality is a strange and demanding beast. On

the one hand, researchers who envision rationality in this

way accept the difference between God, or Laplace�s [hypothet-
ical] superintelligence, and mere mortals. Humans must make

inferences from behind a veil of uncertainty, but God sees

clearly; the currency of human thought is probabilities,

whereas God deals in certitude. On the other hand, where it

comes to how they think these uncertain inferences are exe-

cuted, those who believe in unbounded rationality paint hu-

mans in God�s image. God and Laplace�s superintelligence do
not worry about limited time, knowledge, computational ca-

pacities. The fictional, unboundedly rational human mind does

not either. . .

The idea that rational explanation presupposes that

rational calculation (and implausibly vast amounts of

such calculation) is conducted by the human mind fits

well with Evans and Over�s (1996, 1997) viewpoint that
classical rational norms explain an agent�s behavior only
when the agent understands the relevant normative

justification—this is their rationality2, above. Their view

is that rationality2 explanation requires that an agent
possesses rational norms and can calculate their impli-

cations for the particular decision being faced. Evans

and Over point out, echoing the quotes above, that the

complexity of these calculations is likely to exceed the

capacity of the cognitive system, for most interesting

real world reasoning problems (see also Oaksford &

Chater, 1991, 1993).

We suggest that the view that rational explanation
requires that people themselves carry out the relevant

rational calculations is a fundamental mischaracteriza-

tion of how rational principles are used to explain

thought and behavior in behavioral ecology, economics,

and psychology. Instead of being committed to what we

shall call rational calculation, researchers in these dis-

ciplines are actually committed to a very different and

more modest claim: rational description.2;3

Rational calculation is the view that the mind works

by carrying out probabilistic, logical, or decision-theo-

retic operations. Gigerenzer and Goldstein (1996) en-

dorse this reading of the role of rationality in the social

2 The terminological picture is further complicated by the fact that

in discussing their competition between algorithms, Gigerenzer and

Goldstein (1996) carefully define algorithms to be ‘‘rational’’—with

quotation marks—if they use all informational available to them, and if

they combine all this information together (p. 657). Gigerenzer and

Goldstein quite deliberately set this usage apart against general notions

of rationality, such as we are discussing here. To minimize confusion,

we shall not refer to ‘‘rational algorithms’’ here.
3 There are direct relations between this distinction and the general

distinction between rule-described and rule-following behavior (Chom-

sky, 1980; Hahn & Chater, 1998; Kripke, 1982).
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and biological sciences, arguing that theorists in these
domains are implicitly committed to the view that the

mind is a ‘‘supercalculator. . .—carrying around the col-
lected works of Kolmogoroff, Fisher, or Neyman’’ (p.

651). Rational calculation is explicitly avowed by rela-

tively few theorists, though it has clear advocates with

respect to logical inference: Mental logicians propose

that much of cognition is a matter of carrying out logical

calculations (e.g., Braine, 1978; Inhelder & Piaget, 1958;
Rips, 1994).

Rational description, by contrast, is the view that

behavior can be approximately described as conforming

with the results that would be obtained by some rational

calculation. This view does not assume (though it does

not rule out) that the thought processes underlying be-

havior involves any rational calculation. An analogy

may be useful: the wings of a bird may approximate the
results of a rational calculation of optimal aerodynamic

design. Moreover, this observation helps explain why

the wing has the structure that it does; but there is, of

course, no presumption that the bird conducts any cal-

culations in designing its wing.

Behavioral ecologists extend this pattern of biological

explanation from anatomy and physiology to behavior.

They attempt to explain an animal�s strategies for for-
aging, defending territory, or choosing mates, by

showing that these can be approximately described as

the results of a rational calculation of optimal behavior.

There is no presumption that the animal carries out

complex probabilistic or decision-theoretic calculations

underlying this behavior, any more than it rationally

calculates the optimal length of its incisors, or the op-

timal structure of its lungs. Indeed, behavioral ecologists
expressly disavow a rational calculation interpretation

of their theories, as being patently at variance with the

cognitive limitations of the animals they study (e.g.,

McFarland & Houston, 1981).

Contemporary economics also aims to explain be-

havior by rational description, rather than rational cal-

culation. Indeed, the emphasis in economic explanation

in the middle and latter part of the past century has been
to attempt to minimize psychological claims as far as

possible (Loewenstein, 1992). For example, many nine-

teenth century theorists, drawing on the philosophical

tradition of utilitarianism, viewed utility as a psycho-

logical construct; and they hypothesized that economic

agents act in order to maximize their utility—hence at

least some calculations concerning utility would seem to

be inevitably attributed to the agent. But the twentieth
century has seen the development of the �revealed pref-
erence� interpretation of utility (Samuelson, 1937)—

utilities are defined in terms of people�s patterns of
preferences. In this interpretation, utility is a behavioral

(and economically observable) construct, rather than a

component of internal mental calculations. This be-

havioral approach has been extended to expected utility

theory (von Neumann & Morgenstern, 1944) and to
subjective probability (Anscombe & Aumann, 1963;

Savage, 1954). Patterns of observable choice behavior

are used to attribute utilities and probabilities to an

economic agent. Crucially, there is no assumption that

these utilities or probabilities are internal to the agent;

and hence, a fortiori, there is no assumption that agents

actually engage in probabilistic or decision-theoretic

calculations.
There is, moreover, a recognition in economics that

applying rational theories, such as probability theory,

expected utility theory, and game theory will only pro-

vide an approximation model of people�s behavior.
Economists allow that ‘‘Faced with complexity, indi-

viduals resort to rules of thumb, to �back of the enve-
lope� calculations, to satisficing behavior. . .’’ (Kreps,
1990, p. 119). Economists thus recognise that behavior
only approximates to rationality; but economic theory

typically idealises away from such limitations. Various

justifications for these idealizations have been proposed,

ranging from making a virtue of severe idealization, so

long as the resulting theory makes successful predictions

(Friedman, 1953), to the view that �errors� in individual
agents will cancel out on aggregate, to the view that

errors be gradually eliminated in contexts where indi-
viduals can learn (e.g., Cyert & de Groot, 1974; de Ca-

nio, 1979), or eliminated in competitive markets (see

Akerlof & Yellen, 1985, for theoretical analysis). There

are also those skeptical of much economic theory, who

are unpersuaded by any of these arguments (e.g., Nelson

& Winter, 1982; Simon, 1959). For our purposes, the

important point is that most economists interpret their

theories as about rational description, but not rational
calculation (at best, people act �as if� they made rational
calculations; but they do not actually perform such

calculations); and they agree furthermore that actual

behavior is only an approximation to rational stan-

dards.4

This leads us naturally to consider the psychology of

human reasoning, judgment and decision making. The

4 It is also true, of course, that there are often many aspects of

purely descriptive psychological models, e.g., of processes in catego-

rization or memory, in which some aspects of the machinery of the

model is not assumed to be calculated by the cognitive system, but is

instead a description of cognitive processes. For example, in models

that involve retrieval of stored instances or traces from memory, a

measure of mental �distance� between present and stored item is often
used to predict categorization or memory performance (e.g., Nosofsky,

1986). But it is typically assumed that the cognitive system does not

itself calculate this distance, any more than planets need to compute

the �distance� between them to calculate the gravitational forces

between them. Moreover, many cognitive models are formulated in a

way that leaves vague the distinction between aspects of the model that

are intended to be calculated by the cognitive system, rather than as

descriptions of its operation. We thank an anonymous reviewer for

raising this point.
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question at issue is how well people�s behavior fits with
rational models based on probability, expected utility

theory, or game theory—and hence how far the ratio-

nality assumptions in economic models idealise away

from actual human behavior. Thus, crucially, as in

economics, the issue again concerns rational descrip-

tion—how well behavior conforms to rational descrip-

tion—rather than how far people make rational

calculations. Only rarely is any attempt made to assess
whether people are actually carrying out internal prob-

abilistic, decision- or game-theoretic calculations (e.g.,

Gigerenzer & Hoffrage, 1995)—generally, the working

hypothesis seems to be that they are not.5

We have seen that theoretical economists have as-

sumed that the predictions of rational theories are only

followed to an approximation. Laboratory studies of

individual behavior, by both psychologists and experi-
mental economists, have confirmed this assumption.

Indeed, they have revealed that behavior can show many

substantial and systematic departures from normative

theories. People appear to fall for numerous probabi-

listic fallacies (Kahneman et al., 1982), make predictable

logical blunders (Evans, 1982, 1989), show inconsistent

preferences with (Allais, 1953; Ellsberg, 1961) and

without (May, 1954) uncertainty, and to fail to adopt
the predicted ‘‘Nash equilibria’’ (Nash, 1950) in game

theory (Flood, 1958; Ledyard, 1995). The practical

question of interest for theorists applying rational

principles to explain behavior is not whether the mind is

carrying out the rational calculations that they postu-

late—in most cases, at least, it seems inconceivably un-

likely that this is true. Instead, the real question is

whether and how the broad outlines of human behavior
in everyday contexts can usefully be described in ra-

tional terms at all.

So, we suggest, across economics, biology, and psy-

chology, the working assumption of those producing

rational explanations is that these explanations aim to

explain observed behavior, in terms of its optimality in

relation to goals, environment, and computational re-

sources.
Todd and Gigerenzer (1999, p. 365), by contrast, sum

up the findings of their research program with the

statement that ‘‘A bit of trust in the abilities of the mind

and the rich structure of the environment may help us to

see how thought processes that forgo the baggage of the

laws of logic and probability can solve real-world

adaptive problems quickly and well.’’ But we would

suggest that proponents of rational explanation were
never committed to the idea that the thought processes

themselves are weighed down by the baggage of nor-

mative models. And we shall suggest that where a simple

heuristic is shown to succeed in a real-world environ-

ment, the question of why it succeeds still remains to be

answered—and it is hard to see how this question can be

addressed without taking up the �baggage� of normative
theory once more.
We shall argue that the mischaracterization of ra-

tional explanation in the social and biological sciences as

involving rational calculation, rather than just rational

description, is of critical importance. Moreover, once

the rational description viewpoint is properly under-

stood, the fundamental attacks on the relevance of ra-

tional norms in explaining behavior lose their force. We

therefore now turn to spelling out a methodology for
explanation by rational description, which has been

crisply expressed in Anderson�s (1990) methodology of
‘‘rational analysis.’’

3. Rational analysis: A methodology for the rational

description of behavior and cognition

3.1. Rational and algorithmic explanations of cognition

Human inferential behavior is spectacularly success-

ful. In the face of severe memory and time constraints,

the cognitive system vastly outperforms the most so-

phisticated artificial intelligence systems in almost every

real-world domain (see, e.g., McDermott, 1987; Pearl,

1988). Two fundamental questions must be addressed.
First, why is inference successful? Following Anderson

(1990), we characterize answers to this question as ex-

planations at the rational level. Second, how is this

success achieved? Again following Anderson (1990,

1991), we characterize answers to this question as ex-

planations at the algorithmic level (Marr, 1982)—i.e., by

specifying the computational procedures involved in

inference, such as Take-the-Best and the other algo-
rithms in Gigerenzer and Goldstein�s competition.

3.2. Rational analysis

The central idea underlying explanation at the ra-

tional level is that, if cognition is well adapted to

achieving a goal in some environment, then it can be

described as approximating, to some degree, the optimal
solution to achieving that goal in that environment.

Providing a rational level explanation requires specify-

ing the goals of the system, the structure of the envi-

ronment, and formally deriving an optimal solution for

achieving the goal in that environment. An elegant

methodology for constructing such explanations has

been formulated in the context of cognitive psychology

5 There is a telling contrast here with the empirical testing of the

mental logic theory of deductive reasoning mentioned above, a theory

that does concern rational calculation. In the literature on this theory,

there has been considerable emphasis on attempting to show, using

error and reaction time data, that the internal processes underlying

deductive reasoning involve carrying out steps in a logical calculation

(see Rips, 1994).
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in Anderson�s concept of rational analysis.6 Anderson�s
approach involves six steps:

1. Specify precisely the goals of the cognitive system.

2. Develop a formal model of the environment to which

the system is adapted.

3. Make minimal assumptions about computational

limitations. [Sometimes �minimal� assumptions will
be no assumptions at all—this step is therefore op-

tional.]
4. Derive the optimal behavior function given 1–3

above. [This requires mathematical analysis using ra-

tional norms, such as probability theory and expected

utility theory.]

5. Examine the empirical evidence to see whether the

predictions of the behavior function are confirmed.

[Note crucially that the goal is to use the rational

analysis to predict and describe behavior. Thus, the
rational calculations in Step 4 are not assumed to

be carried out by the cognitive system. This is what

makes rational analysis a theory of rational descrip-

tion, rather than rational calculation.]

6. Repeat, iteratively refining the theory.

As we will see below, this pattern of explanation is

equally appropriate to characterizing classical rational

explanation in economics or behavioral ecology.
In the following three sections, we illustrate rational

and algorithmic explanation by reference to specific

examples from psychology and the social and biological

sciences, showing how such explanation appears to un-

dermine each of Gigerenzer and Goldstein�s (1996) ar-
guments (A)–(C). For each argument, we outline its

basis in Anderson�s account of rational analysis (1–6
above), and exemplify these points from psychology and
other areas of the social and biological sciences.

3.3. Ecological considerations

Advocates of ecological views of rationality (Evans &

Over, 1996, 1997; Gigerenzer & Goldstein, 1996; Gige-

renzer & Todd, 1999a) make much of the contrast be-

tween everyday human behavior, the success of which
must be judged in the context of a specific and complex

environment, and abstract classical principles of ratio-

nality, which appear to be justified a priori, and hence to

embody no constraints concerning the reasoning envi-

ronment. In short, the concern is that classical principles

of rationality are �unecological,� and hence inappropri-
ate as standards of real-world reasoning.

But, as we have seen, a central element of rational

analysis is modeling the environment at an appropriate

level of idealization (Anderson�s Step 2). The environ-
mental success of inference is explained to the extent

that it approximates the optimal behavior function

(Anderson�s Step 4) derived by applying rational prin-
ciples to the environmental problem. Consequently, on
this view, rational principles and environmental success

are complementary, and not in opposition. In psychol-

ogy, this is familiar from perception, where rational level

theory (Marr�s computational level) involves detailed
modeling of the visual environment. Only then can op-

timal models for visual processing of that environment

be defined. Indeed, Marr (1982) explicitly allies this level

of explanation with Gibson�s ‘‘ecological’’ approach to
perception (Gibson, 1979), where the main focus is on

environmental structure.

Similarly, in behavioral ecology, environmental ide-

alizations of resource depletion and replenishment of

food stocks, patch distribution and time of day are

crucial to determining optimal foraging strategies

(Gallistel, 1990; McFarland & Houston, 1981; Stephens

& Krebs, 1986). And in economics, idealizations of the
‘‘environment’’ are crucial to determining rational eco-

nomic behavior (McCloskey, 1985). In microeconomics,

modeling the environment (e.g., game-theoretically) in-

volves capturing the relation between each actor and the

environment of other actors and exogenous variables

(Kreps, 1990). In macroeconomics, explanations using

rational expectations theory (Muth, 1961) begin from a

formal model of the environment, as a set of equations
governing macro-economic variables.

In summary, environmental analysis cannot replace

rational norms as an explanation of why behavior is

successful. In rational explanation in psychology, be-

havioral ecology, and economics, both environmental

modeling and rational principles are required.

Whereas in some contexts, Gigerenzer and colleagues

consider environment analysis as a possible alternative
to explanation in terms of rational norms, in other

contexts, environmental analysis is viewed as a potential

�add-on� to rational explanation. Gigerenzer and Todd
(1999b, p. 11), for example, state that ‘‘in Anderson�s
rational analysis framework (Anderson, 1990; Oaksford

& Chater, 1994) constraints from the environment are

used to modify one�s understanding of what is optimal
behavior in a particular context.’’ We would argue in-
stead that, without constraints from agent�s goals and
environment (and, optionally, computational con-

straints) the notion of �optimal behavior� is simply
ill-defined—the goals and environment define the opti-

mization problem. In particular, then, it is misleading to

think of constraints from the environment modifying

one�s understanding of optimal behavior, as Gigerenzer

6 Gigerenzer and Goldstein (1996) argue that Anderson�s (1990)
framework for rational analysis is an example of classical rationality in

psychology. More specifically, Gigerenzer and Todd (1999a) classify

Anderson�s (1990) rational analysis as rationality subject to con-
straints. See Oaksford and Chater, 1998b for a collection of recent

work in this tradition; and Chater and Oaksford, 2000, relating the

methodology to other philosophical positions concerning rationality

and behavior.
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and Todd suggest. Without a specification of the struc-
ture of the environment, optimal behavior is not well

defined.

Although Gigerenzer and Goldstein�s (1996) and
Evans and Over�s (1996, 1997) arguments do not un-
dermine rational explanation in psychology, their ar-

guments do have a genuine target. Their emphasis on

the environment does count against decontextualized

accounts of human inference, which ignore content and
context. Part of the reason for this is the attempt to

devise empirical tests of descriptive rational theories

which are independent of specific beliefs or utilities,

which has led to a focus on internal consistency of be-

havior in highly artificial conditions, rather than on how

behavior meshes with the environment. Reasoning that

may appear poor in an ecologically invalid laboratory

context may be highly adaptive in the natural environ-
ment, as has been extensively argued (Gigerenzer, Hell,

& Blank, 1988; Gigerenzer & Hoffrage, 1995; Gigerenzer

& Murray, 1987; Oaksford & Chater, 1991, 1993, 1998a;

Oaksford, Chater, & Stenning, 1990). Thus, it is im-

portant to stress the environmental context in which

reasoning takes place in order to understand everyday

human inference (Oaksford & Chater, 1995).

3.4. Cognitive limitations

If rational explanation in the social and biological

sciences is assumed to involve rational calculation, then

this style of explanation seems to run into immediate

problems of computational complexity. Evans and Over

(1997) note that problems of computational complexity

bedevil rationally-based theories in the psychology of
reasoning; and Gigerenzer and Goldstein (1996) argue,

as we have already noted, that classical rational expla-

nation requires the assumption that the mind is a ‘‘su-

percalculator.’’

But if we adopt the view that we have been advo-

cating, that rational explanation should be understood

in terms of �rational description� rather than �rational
calculation,� then these concerns about computational
complexity disappear. To be sure, in rational analysis,

deriving the optimal behavior function (Anderson�s Step
4) is frequently very complex. Indeed, the relevant ra-

tional theories in which these calculations are made,

including probability theory, expected utility theory and

logic are typically computationally intractable for

complex problems (Cherniak, 1986; Garey & Johnson,

1979; Good, 1971; Paris, 1992; Reiner, 1995; Stanovich
& West, 2000; Stich, 1990). Intractability results imply

that no computer algorithm could perform the relevant

calculations given the severe time and memory limita-

tions of a ‘‘fast and frugal’’ cognitive system. Thus it

might appear that there is an immediate contradiction

between the limitations of the cognitive system and the

intractability of rational explanations.

There is no contradiction, however, because the op-
timal behavior function is an explanatory tool, not part

of an agent�s cognitive equipment. To extend our earlier
analogy, the theory of aerodynamics is a crucial com-

ponent of explaining why birds can fly. But clearly birds

know nothing about aerodynamics, and the computa-

tional intractability of aerodynamic calculations does

not in any way prevent birds from flying. Similarly,

people do not need to calculate their optimal behavior
functions in order to behave adaptively. They simply

have to use successful algorithms; they do not have to be

able to make the calculations that would show that these

algorithms are successful.

This viewpoint is standard in rational explanations

across a broad range of disciplines. Economists do not

assume that people make complex game-theoretic or

macroeconomic calculations (Harsanyi & Selten, 1988);
zoologists do not assume that animals calculate how to

forage optimally (e.g., McFarland & Houston, 1981);

and, in psychology, rational analyses of, for example,

memory, do not assume that the cognitive system cal-

culates the optimal forgetting function with respect to

the costs of retrieval and storage (Anderson & Milson,

1989; Anderson & Schooler, 1991). Such behavior may

be built in by evolution or be acquired via a long process
of learning—but it need not require on-line computation

of the optimal solution.

In some contexts, however, some on-line computa-

tions may be required. Specifically, if behavior is highly

flexible with respect to environmental variation, then

calculation is required to determine the correct behav-

ior, and this calculation may be intractable. Thus the

two leading theories of perceptual organization assume
that the cognitive system seeks to optimize on-line either

the simplicity (e.g. Leeuwenberg & Boselie, 1988) or

likelihood (von Helmholtz, 1910/1962; see Pomerantz &

Kubovy, 1987) of the organization of the stimulus array.

These calculations are recognized to be computationally

intractable (see Chater, 1996). This fact does not inval-

idate these theories, but it does entail that they can only

be approximated at the algorithmic level. Within the
literature on perceptual organization, there is consider-

able debate concerning the nature of such approxi-

mations, and which perceptual phenomena can be

explained in terms of optimization, and which result

from the particular approximations that the perceptual

system adopts (van der Helm & Leeuwenberg, 1996).

More generally, where on-line computations of �ra-
tional� thought or behavior is required, the usefulness of
traditional rational models depends on the (often im-

plicit) assumption that theoretical predictions of ra-

tional theories are reasonably stable if the optimization

assumption is weakened. For example, in economics,

weakenings of rational assumptions have been argued to

not just preserve the basic pattern of predictions of

economic models, but to enrich them (e.g., by distin-
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guishing viable from non-viable equilibria consistent
with rationality assumptions, van Damme, 1991; Hars-

anyi & Selten, 1988).7 In behavioral ecology, it has been

argued that many phenomena can only be fully under-

stood by showing how the limitations of the animal�s
cognitive abilities interact with the goal of optimization

(see, e.g., Brunner, Kacelnik, & Gibbons, 1992; Kacel-

nik, 1998; Todd & Kacelnik, 1993). In sum, psycholo-

gists, economists, and behavioral ecologists using
rational explanation do not claim that the mind

has unlimited computational power, and they do not

have to.

Rational level explanation, like all scientific expla-

nations of complex phenomena, involves drastic sim-

plifications. Psychologists, economists, and zoologists

have pursued optimality approaches in the hope that

idealizing away from cognitive limitations may provide
an approximate, and insightful, description of aspects of

human or animal behavior. The hope is that, by ignor-

ing limitations on rationality, just as physicists some-

times ignore friction, a useful idealization may be

possible (Roth, 1996). Whether this hope will prove

justified is the real locus of debate concerning optimality

models in psychology, economics and behavioral ecol-

ogy (see, e.g., Arrow, Colombatto, Perlman, & Schmidt,
1996; Simon, 1992, for discussion). Both advocates and

detractors of perfect rationality idealizations agree that

computational limitations exist, and must form part of

any complete explanation of human or animal behavior.

That is, they agree that the mind is not a Laplacean

demon.8

Interestingly, Gigerenzer and Todd (1999b) ac-

knowledge that advocates of classical rational explana-
tion typically accept that cognitive limitations are real:

‘‘Proponents of unbounded rationality generally ac-

knowledge that their models assume that humans act as

if they were unboundedly rational. On this interpreta-

tion, the laws of probability do not describe the process

but merely the outcome of reasoning.’’ (Gigerenzer &

Todd, p. 9). This is entirely consonant with the present

view—and seems to undercut their concern with the
cognitive complexity of rational explanation. We pre-

sume that Gigerenzer and Todd (1999b) would argue

that the �as if� interpretation of rational explanation
(which we would endorse) is, in some way, illegitimate;

and showing this would seem to be of substantial

importance for their position. They do not, however,
discuss this issue further.

The concerns over computational complexity that

Gigerenzer and Goldstein (1996), and Evans and Over

(1996, 1997), raise do have a genuine target: psycho-

logical models of inference where normative theories are

interpreted as models of mental calculation, not merely

behavioral description. The paradigm example of such

models are �mental logic� theories in the psychology of
reasoning, which regard the syntactic proof theory for

logic as the basis of the algorithms that implement

logical inference in the mind (e.g., Braine, 1978; Fodor

& Pylyshyn, 1988; Rips, 1994). However, these algo-

rithms are intractable and therefore cannot apply to

complexities of real-world contextualized inference

(Chater & Oaksford, 1990; Cherniak, 1986; McDermott,

1987; Oaksford & Chater, 1991). Consequently, con-
siderations of cognitive limitations and computational

complexity are primarily relevant at the algorithmic le-

vel, ruling out computationally intractable implemen-

tations of rational calculi such as logic as models of

human inferential processes. But these considerations do

not undermine the role of these calculi in rational level

description.9

3.5. Take-the-Best as an existence proof

The main body of Gigerenzer and Goldstein�s attack
on the role of classical rational norms in understanding

real-world reasoning and decision making is devoted to

providing an existence proof ‘‘. . . that cognitive mech-
anisms capable of successful performance in the real

world do not need to satisfy the classical norms of ra-
tional inference’’ (p. 650). They therefore conclude that

providing algorithms alone can be regarded as an al-

ternative to the standard approach to rational expla-

nation that we have been arguing for in this article.

We argue instead that Take-the-Best illustrates that

successful rational algorithms can be developed, before

a rational explanation for why they work has been de-

veloped.10 From this perspective, rather than standing

7 The concern has been raised, however, that certain weakenings of

rationality assumptions can have more drastic consequences on overall

system-level predictions (e.g., Akerlof & Yellen, 1985).
8 Indeed, to the extent that Stanovich and West�s (2000) position

that normative results are often obtained by a many cognitively able

individuals, it could be argued computational limitations cannot be too

overwhelming an obstacle to normative, or near-normative, perfor-

mance. We thank an anonymous reviewer for raising this point.

9 Oaksford and Chater (1991, 1995) point out than an even more

serious problem for logic-based theories of inference is that they do not

predict people�s common sense reasoning behavior, and therefore fail
at the rational level. Oaksford and Chater (1994) therefore propose

different rational explanations which they claim provide a better

explanation of common sense reasoning and data from laboratory

tasks. They do not assume, however, that their rational level account is

directly implemented (Oaksford & Chater, 1998a).
10 The opposite pattern, where rational explanations of behavior

have proceeded without considering how they might be approximated

by cognitive algorithms, is also common, whether in social behavior

(Crawford, Smith, & Krebs, 1987; Messick, 1991), economics (e.g.,

Muth, 1961; von Neumann & Morgenstern, 1944) or animal behavior

(Maynard-Smith & Price, 1973).
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as a lone �existence proof� Take-the-Best stands in an
illustrious tradition.

Let us consider three examples of psychological in-

terest: associative learning, connectionist models and

statistical tests.

First, the Rescorla–Wagner learning rule for asso-

ciative learning (Rescorla & Wagner, 1972) was devel-

oped without any clear �rational analysis� of why it leads
to successful learning. But such an analysis has been
provided, by showing that the algorithm asymptotically

approximates the optimal solution in a normative

probabilistic account of causal reasoning (Cheng, 1997;

Shanks, 1995a, 1995b).

Second, connectionist models typically embody al-

gorithms that are shown to learn some task, without a

rational explanation of why that learning is successful.

For example, in the study of reading, connectionist
models mapping from orthography to phonology,11

(e.g., Bullinaria, 1994; Plaut, McClelland, Seidenberg, &

Patterson, 1996; Seidenberg & McClelland, 1989) learn

to �read aloud� effectively, although not based on a ra-
tional theory of the orthography-phonology mapping,

or how it should be learned. But these successes have led

to a large research program of providing a rational ex-

planation of connectionist learning (e.g., Chater, 1995;
Mackay, 1992; McClelland, 1998; Neal, 1993), as well as

theoretical analysis of the orthography-phonology

mapping (Brown, 1998).

Third, the history of statistical tests used in psy-

chology shows the widespread use of tests as calculating

algorithms, before a rational analysis of the conditions

under which they apply has been developed (Gigerenzer

& Murray, 1987). In response to this, a range of statis-
tical theories have been developed to provide a rational

basis for practical statistical algorithms (e.g., Bernado &

Smith, 1995).

In each case, where algorithms have proved practi-

cally successful in the absence of an obvious rational

basis, this has triggered a search to provide a rational

explanation for why the algorithm is successful. We

suggest that, analogously, Gigerenzer and Goldstein�s
impressive demonstration of the success of Take-the-

Best should lead to a search for a rational analysis of

why it succeeds, rather than the conclusion that rational

explanation is dispensable.

Indeed, recent important work by Gigerenzer and

colleagues (e.g., Martignon & Hoffrage, 1999; Marti-

gnon & Laskey, 1999) suggests that there may be no

fundamental dispute on this issue. They provide a rig-
orous formal analysis of the conditions under which

Take-the-Best succeeds. Thus, they provide a descrip-

tive rational explanation for the success of Take-the-
Best�s behavior, using standard normative principles to
do so.

Thus, Take-the-Best stands as an outstanding ex-

ample of how a �fast and frugal� algorithm can succeed

in the real world, and exemplifies that environmental

success does not require that the cognitive system en-

gages in rational calculation using probability or sta-

tistical theory. But this does not challenge the use of
descriptive rational theories, to explain why algorithms

are successful—and, as noted above, Gigerenzer and

colleagues have themselves provided such an analysis

of the success of Take-the-Best. Thus, once it is

recognized that rational explanation in psychology,

economics or behavioral ecology involves rational de-

scription rather than rational calculation, it is clear that

the success of Take-the-Best does not undermine, but is
consistent with, rational explanation in these disci-

plines.

3.6. Counterarguments and replies

We have argued that rational explanation has a

central role in the social and biological sciences—it

provides descriptions of behavior as approximating ra-
tionally optimal behavior, given a specific problem, en-

vironment, and (possibly) set of cognitive limitations.

We close this section by briefly responding to two pos-

sible lines of counterargument: (1) that the iterative as-

pect of rational analysis (Step 6) betrays a fundamental

difference with respect to normative rational theories

under test in the psychology and economics of judgment

and decision making; (2) that appeal to evolutionary
considerations provides an alternative answer to ques-

tions of why cognition succeeds, obviating the need for

rational explanation.

3.6.1. Iteration and rational norms

It might appear that the iterative step in Anderson�s
rational analysis (Step 6) betrays a fundamental dif-

ference between the program of rational analysis of
behavior and norms of classical rationality, as used in

economics, psychology, or behavioral ecology.12 The

norms of classical rationality have been derived by a

priori analysis, typically from deriving normative the-

ories from seemingly incontrovertible axioms or as-

sumptions. For example, probability theory can, for

example, be justified by a range of (converging) argu-

ments, such as the Dutch book theorem, which states
(given certain assumptions) that if a person�s judg-
ments violate the laws of probability theory, they will

accept a bet that they will certainly lose (which seems

11 We take no stand here on whether such models are compatible

with detailed psychological and neuropsychological data. See, e.g.,

Coltheart, Curtis, Atkins, and Haller (1993) for discussion.

12 We thank an anonymous reviewer for pointing out this possible

concern.
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undeniably irrational). If logic, probability theory, ex-
pected utility theory, and game theory, are justified by

a priori analysis, then it would seem that they cannot

be iteratively modified, in order to provide better fits

with empirical phenomena (as Anderson�s Step 6 im-
plies).

This argument is, however, misleading. The modifi-

cation involved in Anderson�s Step 6 does not typically
involve modification to the rational norms themselves
(i.e., modification of the calculating machinery used at

Anderson�s Step 4)—a radical option suggested, for ex-
ample, by Cohen (1981). Rather, it involves modifica-

tions at Steps 1–3—a revised formulation of the goals of

the agent, the environment, or cognitive limitations. In

explaining foraging behavior, for example, the behav-

ioral ecologist may improve the rational description by

noting that the animal aims not merely to maximise
food intake, but to minimise variance in food intake

(e.g., to avoid the risk of obtaining very little food on

some occasions with perhaps life-threatening conse-

quences). The same behavioral ecologist may incorpo-

rate a richer model of the environment, incorporating,

for example, the length and temperature of the night

time period (this will partly determine what lower bound

on food intake is acceptable if the animal is to survive
the night); and the behavioral ecologist may also note

that the animal can only monitor the amount of food it

has obtained with Weberian accuracy, which also im-

pacts on its foraging strategy (see Brunner et al., 1992).

Parallel examples from economics and psychology have

the same form. Crucially, Anderson�s Step 6 is not
typically concerned with modifying, e.g., the laws of

probability. Hence the suspected clash with a priori ra-
tional norms does not typically arise.

To sum up, the iterative aspect of rational descriptive

modelling need not involve tinkering with apparently

incontrovertible norms of reasoning. Instead, it involves

iteratively modifying the empirical assumptions, con-

cerning the agent�s goals, environment, and cognitive
limitations, which are an input to rational calcula-

tions.13

3.6.2. Evolution as an alternative ‘‘why’’ explanation

One line of research that is often perceived as allied

with the �ecological� view of cognition, and hostile to

classical rationality, is evolutionary psychology (e.g.,
Barkow, Cosmides, & Tooby, 1992; Pinker, 1998). In-

deed, both Evans and Over (1996) and Gigerenzer and

Goldstein draw on evolutionary considerations in de-

veloping their accounts of ecological rationality. This

raises the critical question of whether evolutionary ex-

planation might provide an alternative explanation for

why cognitive mechanisms succeed in their environ-

ments—an explanation that can replace explanations
that invoke classical rationality.

Perhaps natural selection has ensured that our cog-

nitive algorithms succeed; or perhaps our learning

mechanisms have simply favored algorithms that work.

But explanations in terms of evolution or learning do

not explain why specific cognitive algorithms are adap-

tive. Instead, they explain why we possess adaptive ra-

ther than non-adaptive algorithms—essentially because
adaptive algorithms, by definition, perform better in the

natural environment, and processes of natural selection

or learning will tend to favor algorithms that are suc-

cessful.

Let us illustrate this point with an example from a

domain in which evolutionary explanation is widely

accepted. An account of optimal foraging in behav-

ioral ecology may explain why particular foraging
strategies are successful and others are not. Behavioral

ecologists assume evolution explains why animals

possess good foraging strategies, but do not take

evolutionary explanation to provide an alternative to

the rational level explanation given by optimal forag-

ing theory.

There is, though, a way of sharpening this concern

further, in the light of the iterative character of rational
analysis, that we dealt with above.14 This is that the

process of iteratively developing a rational analysis

might have much in common with the �iterative� refine-
ment of the algorithms employed by the cognitive sys-

tem, during biological evolution. Indeed, one might even

suppose that the parallel between the �meta� level of
theoretical �evolution� and the process of biological

evolution might be strong—after all, each involve suc-
cessive modifications in order to provide a better fit

between environment, goals and computational re-

sources. This might suggest (although spelling out a

detailed argument is not straightforward) that devising

an explanation of some behavior in terms of rational

analysis will only be possible where some evolutionary

process can lead to the corresponding algorithm. And

this might further suggest that an explanation in terms
of rational analysis will work only when a parallel

evolutionary explanation would serve equally well.

We suggest that, nonetheless, an evolutionary ex-

planation is not an alternative explanation of why a

13 In economics, there is, interestingly, work which does seek to

challenge norms of rationality on the basis of empirical data, thus

challenging the very premise of the claim that iterative modification

does not fit with the a priori character of rational norms. The

motivation underlying this challenge is that rational norms are

ultimately justified only insofar as they capture human reasoning

behavior (e.g., Cohen, 1981). For example, it has been argued that

Allais�s paradox undermines the normative status of expected utility
theory, and that the theory should be revised to fit with our intuitions

(see Allais, 1953; Chew, 1983; Fishburn, 1983; Kahneman & Tversky,

1979; Loomes & Sugden, 1982; Machina, 1982). 14 We thank an anonymous reviewer for raising this point.
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cognitive algorithm is successful. Evolutionary expla-
nations are based on the fact that certain algorithms are

more successful than others (where success is measured

in terms of contribution to the inclusive fitness of the

individual with that algorithm). But we still have to

address the question of why some algorithms are suc-

cessful in the environment, whereas some are not. An-

swering this question requires analysing the structure of

the environment, the goals of the agent, and studying
how these goals can be achieved given that environment.

In short, it involves rational level explanation. This

suggests that rational explanation addresses a different

question to evolutionary explanation. Rational expla-

nation is required to explain why a particular cognitive

algorithm succeeds (given particular goals, environment,

and computational limitations). Evolutionary explana-

tion explains how the differential success of different
algorithms can lead to the gradual predominance of

successful algorithms, through a process of natural se-

lection. These are fundamentally different questions,

and hence it is not appropriate to view evolutionary

explanation as a potential alternative to rational expla-

nation.

3.7. Summary

We have considered three lines of argument that aim

to undercut the role of rational explanation in under-

standing everyday judgment and decision making. For

each argument, we have found points of agreement: We

endorse the emphasis on the environment and on cog-

nitive limitations, and on finding simple algorithms that

work well in the real environment. But we have argued
that these positive points are entirely consistent with

‘‘classical rationality,’’ as it is used to explain behavior

in the social and biological sciences. Indeed, we argue

that rational explanation is always desirable: without it,

the adaptive success of cognitive algorithms is left un-

explained.

It is worth noting that the consequences of rejecting

rational level explanation would be alarming. The very
idea that human thought can be understood as reason-

ing rather than as a collection of uninterpreted proce-

dures involves the assumption that some rational norms

are being approximated (see Newell, 1982; Oaksford &

Chater, 1995). Giving up the idea that thought involves

reasoning has catastrophic implications, not just within

psychology, but more broadly: Assumptions of (ap-

proximate) human rationality are at the core of ‘‘ra-
tional choice’’ explanations in the social sciences and

economics (e.g., Elster, 1986) and appear to underpin

the attribution of meaning both to mental states and to

natural language (Davidson, 1984; Quine, 1960). For-

tunately, these alarming consequences need not be

faced. Whereas Gigerenzer and Goldstein argue that the

cognitive system is fast and frugal, but does not admit of

rational explanation; we argue instead that cognition is
fast, frugal and can be explained in rational terms.15

4. How Plausible is Take-the-Best?

We now turn to the question of the plausibility of

Take-the-Best as a model of cognitive estimation. We

present a new competition between Take-the-Best and a
range of standard algorithms used in cognitive modeling

in psychology, and find that Take-the-Best�s perfor-
mance is impressive. We agree with Gigerenzer and

Goldstein (1996, 1999) that Take-the-Best is a serious

contender as a model of this kind of cognitive estima-

tion.

We argue, though, that there are grounds for caution.

Take-the-Best performs well in city size estimation (and
in a wide range of other domains, Czerlinski et al.,

1999), and at a level comparable with human perfor-

mance. On the other hand, as we shall see later, the

empirical evidence for Take-the-Best is not clear cut.

Gigerenzer and Goldstein�s case for the cognitive
plausibility of Take-the-Best has three components: (1)

Take-the-Best performs well on city size estimation (and

other tasks); (2) Take-the-Best is fast; (3) Take-the-Best
is frugal (i.e., it uses relatively little information from

memory).

We suggest that none of these points provide strong

grounds for presuming that Take-the-Best is more

plausible than a range of other algorithms. Specifically,

we argue: (1) that many standard algorithms perform

comparably with Take-the-Best; (2) that these algo-

rithms may be just as fast as Take-the-Best; and (3) that
frugality in terms of informational retrieval may not

confer any advantage in terms of cognitive plausibility.

We begin by reviewing Take-the-Best and Gigerenzer

and Goldstein�s original competition.

4.1. Gigerenzer and Goldstein’s competition

Gigerenzer and Goldstein (1996, 1999) consider a
range of algorithms for comparing the populations of

pairs of cities, based on a list of features of each city.

They show that a very simple algorithm, Take-the-Best,

performs as well as ‘‘various �rational� decision proce-

15 The argument is complicated here by the fact that Gigerenzer

and colleagues argue that �rationality� should be used in an ecological
sense, rather than in a normative sense—i.e., a mental process is

ecologically rational if it �just works� even if there may, putatively, be
no normative explanation for why it works. Hence, in common with

the present view, they embrace the conclusion that fast and frugal

algorithms can also be �rational�—e.g., ‘‘models of reasoning need not
forsake rationality for psychological plausibility. . .’’ (Todd & Gige-

renzer, 1999, p. 365). But clearly this conclusion has very different

implications from ours, precisely because �rationality� has been
decoupled from normative explanation.
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dures’’ (p. 650). As we noted in the introduction, Take-
the-Best discriminates the size of cities by sequentially

considering individual features (until the two cities differ

on a feature). The features are considered in descending

order of the validity of each feature for city size–the first

feature in the order on which the cities differ determines

the judgment concerning which city has the larger

population.

Gigerenzer and Goldstein�s five comparison algo-
rithms are linear regression and various approximations

to linear multiple regression (‘‘tallying,’’ ‘‘weighted tal-

lying,’’ the ‘‘unit weighted linear model,’’ the ‘‘weighted

linear model’’). The most important comparison is be-

tween Take-the-Best and multiple regression, for two

reasons. First, the other algorithms are approximations

to multiple regression, and hence would be expected to

show comparable (or poorer) levels of performance—if
Take-the-Best can match multiple regression, it is likely

to match or exceed the performance of the other algo-

rithms. Second, in a vast range of tasks, from clinicians

predicting the outcomes of their patients to bankers

predicting the viability of companies, linear regression

performs as well as, and often better than, human ex-

perts (e.g., Einhorn, 1972; Libby, 1976; Meehl, 1954;

Sawyer, 1966).
It is crucial, though, to recognise that multiple re-

gression has a very different status from the normative

laws of logic, expected utility, or probability. Whereas

these laws are candidates for universal rational princi-

ples, which can be given a priori justification, this is

definitely not the case for multiple regression. Multiple

regression requires that different pieces of information

combine linearly, and this is known to be appropriate
only in a very restricted set of cases. The restricted

character of linear regression is often recognized in the

psychological literature. Indeed, much research has been

concerned with exploring when cues are integrated lin-

early, and when they are integrated non-linearly (e.g.,

Hammond & Summers, 1965), and with clarifying the

conditions under which linear regression works well in

practice, even if its underlying linearity assumptions are
violated (e.g., Dawes & Corrigan, 1974). The limitations

of linear regression have also motivated the vast statis-

tical literature on various non-linear regression meth-

ods, including projection-pursuit regression (Intrator,

1993), regression using multilayer connectionist net-

works (Neal, 1993)16 and exemplar-based regression

methods (Duda & Hart, 1973). Multiple regression is a

pragmatically useful tool, which works well under re-
stricted conditions. The results of multiple regression

cannot, therefore, be viewed as embodying principles of
rationality defining ‘‘correct’’ reasoning, despite this

impression sometimes being given in research in the

literature.17

Gigerenzer and Goldstein present computer simu-

lations that compare these algorithms. Take-the-Best

and the other methods learn on a subset of cities

(which are therefore ‘‘known’’), and it is ‘‘tested’’ on

the entire set of cities. Specifically, Take-the-Best
learns cue validities from the initial subset, from which

the ordering and significance of cues is derived. The

generalization performance of Take-the-Best and three

of the alternative algorithms, linear regression, tallying

and weighted tallying are almost identical. These sim-

ulations provide an interesting and useful set of com-

parisons in a psychologically important yet tractable

domain. Gigerenzer and Goldstein argue that the good
performance of Take-the-Best in their competition,

and its speed, is evidence for its cognitive plausibility.

But we will argue that the more general and psycho-

logically familiar algorithms that we now consider are

at least as cognitively plausible as models of city size

estimation.18

4.2. A new competition

The algorithms we consider are drawn from the range

of standard methods used in cognitive psychology and

artificial intelligence research, rather than originating in

statistics. We suggest that these kinds of models may

usefully be viewed as �null hypotheses� against which
more specialized algorithms (such as Take-the-Best) can

be compared.
The first algorithms are exemplar-based, and assume

that people store previous examples, and judge new

examples in relation to their similarity to stored exam-

ples. Exemplar-based methods are general with respect

to domain: They have been widely used in psychological

models of categorization (e.g., Nosofsky, 1986) and

memory (e.g., Hintzman, 1986), and are related to non-

parametric statistical methods which have been exten-
sively applied in statistics, pattern recognition and

artificial intelligence concerned with both classification

16 For those familiar with connectionism, it may be useful to note

that multiple regression is mathematically closely related to the single

layer perceptron; connectionist research was largely abandoned in the

late 1960s partly because this device could learn such as limited range

of problems (Minsky & Papert, 1969; Rumelhart & McClelland, 1986).

17 We thank an anonymous reviewer for raising this issue.

Gigerenzer and Goldstein (1996) signal this distinction by using

explicitly putting ‘‘rationality’’ in inverted commas when referring to

the linear regression and its variants, which integrate information

across all features, but using the term without inverted commas when

referring to putatively universal rational norms such as probability

theory or logic.
18 Although these algorithms are general, and psychologically

familiar, these algorithms have no transparent relationship to rational

analysis—although the project of explaining the performance of neural

network and exemplar models in �rational� terms is now quite well

developed, as touched on briefly above (e.g., Chater, 1995; McClel-

land, 1998; Mackay, 1992; Neal, 1993; Nosofsky, 1990).
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and interpolation problems (Duda & Hart, 1973; Par-
zen, 1962; see Ashby & Alfonso-Reese, 1995, for dis-

cussion). They are also extremely general with respect to

the structure of the data they can handle (Cover & Hart,

1967).19 Interestingly, moreover, an exemplar-based

model of memory and generalization (Hintzman�s (1984,
1988), MINERVA2 model) has recently been used as

the basis for an influential recent model of the processes

underlying probability judgments (Dougherty et al.,
1999), as well as the PROBEX model of probabilistic

inference (Juslin & Persson, 2001).

The second type of algorithm is the multilayered,

feedforward neural network, trained by back-propaga-

tion (Rumelhart, Hinton, & Williams, 1986). Like ex-

emplar models, these models are very general with

respect to domain. This is shown by the vast amount of

psychological and applied research using these methods
across a range of problem types (Christiansen, Chater,

& Seidenberg, 1999; Rumelhart & McClelland, 1986).

They are also very general with respect to the structure

of the data that they can handle, being able to deal, for

example, with highly non-linear mappings, and map-

pings that mix rules and exceptions (e.g., Seidenberg &

McClelland, 1989), although the limits of this generality

are not clear.
The third type of algorithm is a standard classifica-

tion learning algorithm from machine learning research,

the C4.5 decision tree model, which has been used across

a wide range of problem domains. It has also been used

to a limited degree in psychological modelling (e.g., Ling

& Marinov, 1993, 1994).20

4.2.1. Representation of data

Gigerenzer and Goldstein represent each city as a

vector of nine binary (0 or 1) cue values. To facilitate

comparison between algorithms, we represented each

pair of cities by nine features representing the difference
between the nine cue values for each city. For example,

for the cities with features (1, 1, 0, 0, 1, 0, 0, 1, 1) and (1,

0, 1, 1, 1, 0, 1, 1, 0), the corresponding difference pattern

would be (0, 1, )1, )1, 0, 0, )1, 0, 1). Each pattern is
associated with a label indicating whether the popula-

tion of the first city was smaller than, equal to, or larger

than, the population of the second city. This change of

representation has no effect on Take-the-Best. Taking all
pairs of distinct cities in both orders yielded a possible

83� 82 ¼ 6806 training patterns.
In order to capture the effects of limited knowledge,

we trained each of the algorithms on a subset of the 6806

comparisons. In Fig. 1, the percentage of training ex-

amples refers to the percentage of these comparisons

presented during the training of each algorithm. The

values shown in Fig. 1 are for generalization perfor-
mance, for predicting the outcome of all 6806 compar-

isons. This approach allowed the algorithms to be

assessed on an equal footing.

4.2.2. Take-the-Best

As described by Gigerenzer and Goldstein, the cue

validity for each feature was calculated as the fraction of

training examples in which the feature correctly picked
out the larger city divided by the total number of

training pairs on which that feature differed between

cities. The cue validities determined the order in which

features are considered by Take-the-Best, and the first

feature in this order that discriminated between the two

cities was taken to be the model�s answer.

4.2.3. Exemplar-based models

We used two exemplar-based models: Nearest

Neighbor (e.g., Cover & Hart, 1967) and the General-

ized Context Model (Nosofsky, 1990). In both models,

exemplars are the difference patterns, representing the

difference between the features for pairs of cities. As

noted above, each difference pattern is associated with a

label indicating whether the first or second city in the

pair is larger.
In the nearest neighbor algorithm, the difference

pattern associated with each test pair is constructed.

Thus, each pattern corresponds to a point inside in a

nine dimensional hypercube, with values on each di-

mension taking values )1, 0, or 1. The nearest difference
pattern associated with a training pair of cities is then

selected. If this difference pattern is associated with the

first city of the training pair being larger, then the al-
gorithm responds that the first city of the test pair is

larger; and similarly if the second city of the training

pair is larger, then the algorithm responds that the sec-

ond city of the test pair is larger. Distance between

difference patterns is measured by the Euclidean dis-

tance metric (i.e., the square root of the sum of the

squared distance along each dimension).

19 Of course, the cognitive plausibility of these algorithms can also

be challenged, e.g., on the grounds that the requirement that past cases

are retrieved imposes an unreasonable memory load on the cognitive

system. Advocates of exemplar models might respond by suggesting

that retrieval of quite a small subset of items from memory would

produce very similar results. But, from the present point of view, we

note simply that this class of algorithms is widely used in cognitive

modeling in categorization and memory, and hence is presumably

viewed, at least by its advocates, as cognitively plausible. The same

point applies to the other classes of algorithms in our competition.
20 One difference between Gigerenzer and Goldstein�s simulations

and those reported here is that we have assumed that people only have

to compare familiar cities. Gigerenzer and Goldstein considered cases

in which some cities might not be recognized, and used their

‘‘recognition principle’’ to deal with this case. The recognition principle

is that cities which are recognized are assumed to be larger than cities

which are not recognized. Gigerenzer and Goldstein allow all the

algorithms in their competition to use this principle. In these

simulations, we consider only the case where all cities and all features

of each city are known, and hence the recognition principle is not

relevant (because all cities are recognized).
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The Generalized Context Model (Nosofsky, 1990) is

similar to Nearest Neighbor, but the response is deter-

mined by a weighted sum of all training pairs, rather than
just the nearest training pair. The influence of a training

pair is determined by its similarity to the test example.

Specifically, the influence of each training pair is a

Gaussian function of its distance from the test example,

again using a Euclidean distance metric. In practice, in

this model, which city is judged to be the larger depends

on the influence of possibly several nearby difference

patterns, rather than just the nearest difference pattern,
as in the Nearest Neighbor algorithm. The Generalized

Context Model has adjustable parameters concerning

the relative weighting of each feature, and also allows a

parameter for response bias. For simplicity we did not

include such parameters, and thus each feature was

weighted equally, and there was no response bias. We

included just one adjustable parameter, the standard

deviation of the Gaussian. The standard deviation of the
Gaussian determines the �narrowness� of the search
among the differences patterns. If the standard deviation

is small, then typically only the nearest item will have any

substantial influence on the judgment, and hence the

results of the algorithm become identical with the

Nearest Neighbor algorithm. If the standard deviation is

large, then many difference patterns have some influence

(although that influence still diminishes with increasing
distance from the difference pattern representing the pair

of cities about whom the judgment is being made). This

standard deviation was optimized straightforwardly by

measuring the generalization score for many different

values and choosing the best.

It might be thought that, by not allowing free choice

for the other parameters in the Generalized Context

Model, we unreasonably disadvantaged the Generalized
Context Model. Certainly, if these additional parame-

ters are adjusted freely, post hoc, in order to obtain the

highest level of accuracy, a modest improvement in

performance is obtained. On the other hand, however,
this improvement is wiped out if we �train� the parame-
ters on only some of the city comparisons, and then

generalize to the remaining comparisons. That is, it

appears that the slight advantage of using these pa-

rameters is due to �overfitting.� Hence, in the simulations
shown, we decided to avoid such complexities and set

the parameter values to be equal (the specific fixed value

chosen for all of these parameters is arbitrary).
It turns out, moreover, that performance is remark-

ably insensitive to the specific parameter values that are

chosen. This is appears to be an analog of the �flat
maximum� phenomenon that is found for linear regres-
sion for similar problems: that quite large variations of

regression weights in a linear model lead to remarkably

similar levels of performance.

4.2.4. Feedforward connectionist network

We used a three-layer feedforward network with nine

input units, two hidden units, and one output unit,

trained using the backpropagation algorithm (Rumelhart

& McClelland, 1986). The inputs were the difference

patterns, and the output corresponded to the decision

about which city is larger. The target values for the out-

put were 0, .5, and 1, for smaller, equal to, and bigger,
respectively. Weights were initialized to random values

within the range ().5, .5). The net was trained for 100
epochs (passes through each training sample), with a

learning rate of .01, and a momentum of .9 (these pa-

rameters were not adjusted to obtain good performance—

the parameter values used in the simulations reported

here were the first values that we used). The order of the

training examples was randomized within each epoch.
During test, output values less than .5 were classified as

Fig. 1. Results of the competition. Percentage of correct inferences about the populations of German cities as a function of percentage of cities seen in

training.
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‘‘smaller,’’ and values greater than .5 were classified as
larger. The results that we obtained appear to be insen-

sitive to the specific choices of parameters (e.g., numbers

of hidden units, learning rate, momentum, etc.).

4.2.5. Decision trees: C4.5

The decision tree algorithm, C4.5 (Quinlan, 1993),

was used to construct a decision tree on the basis of the

nine features of the difference patterns. At the top level
of a decision tree the feature that best distinguishes

smaller from larger cities is used to divide the difference

patterns into two groups. One group putatively contains

the pairs of cities for which the first city is the larger, the

other group putatively contains the pairs of cities for

which the second city is the larger. Classification on the

basis of this single difference feature will be wrong for

some city pairs. Therefore at the next level in the tree,
another feature can be used to subdivide these cases.

The leaves of the decision tree are associated with a

‘‘decision’’—that the first or second city is the larger. The

number of levels and mode of construction of the deci-

sion tree is determined by an information-theoretic

measure. See Quinlan (1993) for a detailed description

and source code for the C4.5 algorithm.

Like Take-the-Best, decision trees use a small number
of features, rather than integrating all the features.

However, whereas Take-the-Best relies on a single cue,

decision trees may make reference to several cues in

navigating through the tree to reach a decision. The

precise way in which this is done is somewhat complex

(Quinlan, 1993); nonetheless, the approach is of interest,

partly because it has been successfully applied in other

psychological contexts (Ling & Marinov, 1993, 1994).

5. Results and discussion

The performance of Take-the-Best is again impres-

sive: it outperforms the other algorithms where limited

data is available, and performs almost as well, when

most or all relevant data is available.21

Notice that, that the overall levels of performance

across many simulations algorithms are very similar.

Combined with Gigerenzer and Goldstein�s observation
that Take-the-Best had almost exactly the same perfor-

mance profile as tallying, weighted tallying and multiple

regression, this suggests that this population estimation

task is a poor discriminator between algorithms.22 The

familiar cognitive algorithms used in this competition
are widely used to model data from other domains, and

match Take-the-Best�s performance in Gigerenzer and
Goldstein�s cognitive estimation task. It would therefore
seem that these widely used cognitive models have a

comparable level of prima facie plausibility as Take-the-

Best as potential cognitive models in this city size esti-

mation task. There results are also broadly in line with

recent results from Gigerenzer�s laboratory, in which
Take-the-Best is found to perform nearly as well as two

Bayesian statistical methods: so-called na€ııve Bayes,
which assumes (typically incorrectly) that all cues are

conditionally independent given the outcomes values

(i.e., which city is the larger); and, by contrast, a cutting-

edge �Bayesian network� learning algorithm (specifically,
an algorithm developed by Cooper & Herskovits, 1992;

Friedman & Goldszmit, 1996; see Frey, 1998; Pearl,
1988). Successful performance by Take-the-Best was,

moreover, found to hold across the wide range of data

sets used by Czerlinski et al. (1999).

Gigerenzer and Goldstein, however, argue that Take-

the-Best is particularly attractive because it is fast (it

involves a small number of serial processing steps) and

frugal (it draws on very limited information, because it

is non-integrative). We now argue that neither consid-
eration straightforwardly gives Take-the-Best an ad-

vantage over the available alternatives.

5.1. Is Take-the-Best especially fast?

Gigerenzer and Goldstein argue that Take-the-Best is

faster than the other algorithms in their competition, in

terms of the amount of information searched in mem-
ory. The possibility therefore arises that Take-the-Best

may be preferable to the general purpose algorithms we

have considered on grounds of speed. There are two

points to consider.

First, very rapid integration of vast amount of in-

formation is believed to occur in language processing,

perception, motor control, and commonsense reasoning,

as we shall discuss in the next subsection. Therefore
there seems no reason to suppose that integrative pro-

cessing cannot be fast enough to account for presumably

relatively slow human responses in cognitive estimation

tasks such as city size estimation. Without empirical

evidence concerning human performance on the cogni-

tive estimation task, and in particular without infor-

mation about how rapidly people might perform it, the

emphasis on speed as a deciding factor between algo-
rithms may be inappropriate.

Second, Gigerenzer and Goldstein�s measure of

speed, which favors Take-the-Best, depends on specific

assumptions about the architecture of the cognitive

system (Chater & Oaksford, 1990; Oaksford & Chater,

1991, 1993, 1995). On a serial architecture, in which it

may be presumed that information is searched in

21 We thank Gerd Gigerenzer for stressing the importance of Take-

the-Best�s performance with limited data.
22 Persson and Juslin (1999) provide important additional simula-

tions on this task, showing very similar performance levels for

PROBEX, an exemplar-based algorithm, ridge regression, and Take-

the-Best. Both PROBEX and ridge regression outperform Take-the-

Best for small amounts of data in these simulations.
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memory at a constant rate, Take-the-Best would be
more rapid than, for example, multiple regression, or the

neural network model and exemplar accounts we have

considered here. But in a parallel architecture, speed of

processing will not generally be related to the amount of

information searched in memory, because large amounts

of information can be searched in memory simulta-

neously. So, for example, both the learning and appli-

cation of multiple regression can be implemented in
parallel using a connectionist network with a single layer

of connections. This implementation could operate very

rapidly—in the time it takes to propagate activity across

one layer of connections (e.g., Hinton, 1989). Similarly

the back-propagation account could also be rapidly

implemented in parallel, in connectionist hardware. In

the same way, in an instance-based architecture, where

instances can be retrieved in parallel, the Nearest
Neighbor and General Context Model algorithms would

be the quickest.

Taken literally, the sequential character of Take-the-

Best might even make it a rather slow algorithm, if

implemented in these architectures, although fast par-

allel implementations of Take-the-Best may be possible

(e.g., using exponentially distributed weights on a single

layer neural network, so that each weight dominates the
sum of all smaller weights—see Martignon & Hoffrage,

1999). In any case, Take-the-Best only appears to have a

clear advantage over other algorithms if we assume that

cognitive processes are serial. Given that there are ex-

tensive research programs aimed at establishing the vi-

ability of instance-based and connectionist architectures

as general accounts of cognitive architecture (e.g., Ko-

lodner, 1993; Rumelhart & McClelland, 1986), it seems
that considerable caution must be used in applying a

measure of speed which presupposes a serial architec-

ture.

5.2. Is frugality an advantage?

Take-the-Best is undoubtedly a very frugal algorithm.

Rather than integrating all the information that it is
given (all the features of the cities), it draws on only

enough feature values to �break the tie� between the two
cities. For example, across Gigerenzer and Goldstein�s
(1996) simulations, only about 1/3 of features were re-

trieved. But does the frugality of Take-the-Best make it

more cognitively plausible? Comparison with other do-

mains suggests that it may not.

In other cognitive domains, there is a considerable
evidence for the integration of multiple sources of in-

formation. For example, in speech perception, there is a

wealth of experimental work showing rapid integration

of different cues, including cues from different modalities

(e.g., Massaro, 1987). This integration even appears to

obey law-like regularities (e.g., Morton, 1969), which

follow from a Bayesian approach to cue integration

(Movellan & Chadderdon, 1996), and can be modelled
by neural network learning models (Movellan & McC-

lelland, 1995). Recent work on sentence processing has

also shown evidence for the rapid integration of multiple

‘‘soft’’ constraints of many different kinds (MacDonald,

Pearlmutter, & Seidenberg, 1994; Taraban & McClel-

land, 1988). Motor coordination is a very different do-

main in which a vast number of constraints must be

rapidly and simultaneously respected in order to plan a
successful action (Jeannerod, 1988). Finally, Brunswick

(1934) provided a wide range of examples where differ-

ent sources of information appear to be integrated in

judging, for example, the weight or value of a collection

of coins (see Gigerenzer & Murray, 1987: p. 66 for dis-

cussion).

Two points from these examples are relevant to the

cognitive plausibility of Take-the-Best. First, the ability
to integrate large amount of information may be cog-

nitively quite natural—and hence it is at least not to be

taken for granted that the non-frugality of connectionist

or exemplar-based models should count against their

cognitive plausibility. Second, the processes above ap-

pear to require rich and rapid information integration,

which cannot be handled by a non-integrative type of

algorithm such as Take-the-Best. Thus a non-integrative
algorithm such as Take-the-Best may be at a prima facie

disadvantage with respect to the generality of its cog-

nitive performance.

A possible objection to this viewpoint may be that

evidence for rapid integration of large amounts of in-

formation in perceptual and motor domains does not

necessarily carry over to the kind of reasoning involved

in a judgment task, such as deciding which of two cities
is the larger.23 Perhaps, in such a task, retrieval from

memory is slow and sequential, and hence rapid infor-

mation integration cannot occur. This is an important

possibility, which would need to be supported by de-

tailed empirical work on how people make city size es-

timates, and related judgments. Moreover, there is

evidence from related choice tasks that people may focus

on a restricted amount of information, rather than at-
tempting to integrate many pieces of information.

On the other hand, though, note that in most areas of

everyday reasoning (e.g., reasoning about each other�s
behavior, reasoning about the physical world) it seems

that very large amounts of knowledge are rapidly re-

cruited (e.g., Oaksford & Chater, 1991, 1998a)—indeed,

the amount of knowledge recruited appears to be in-

definitely large, as the �frame problem� in artificial in-
telligence and cognitive science appears to show

(Pylyshyn, 1987). It seems reasonable to view estimating,

say, the approximate size of a city as a specific example

of everyday inference, and hence to assume that large

23 We thank Gerd Gigerenzer for pointing out this objection.
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amounts of information from memory can be retrieved
and applied rapidly in this case also. If so, there may be

no strong reason to favor cognitive algorithms that are

�frugal.�
Building on the ideas of Payne et al. (1993) and Gi-

gerenzer and Todd (1999a), one might postulate that

whether or not frugality is a relevant constraint for a

cognitive algorithm depends on the nature of the task.

Perhaps, for example, the cognitive system is able to
bring to bear very large amount of information in par-

allel when that information is already known (and per-

haps even heavily overlearned); but perhaps there are

strong limitations on the deployment of such informa-

tion when information must be �loaded in� to memory in
the experimental task. This kind of division would ex-

plain why, on the one hand, it appears possible to de-

ploy and integrate vast amounts of information in
perception, motor control, and common sense inference,

whereas the amount of information that can be inte-

grated and deployed in some explicit judgment tasks is

severely limited (e.g., if an experimental participant is

given a list of properties or cues of an object, loading

these into memory, let alone integrating them together,

may be slow and difficult). This may reconcile the ap-

parent severe limits of the cognitive system (e.g., Payne
et al., 1993; Shepard, 1967) with its apparently impres-

sive information integration performance (e.g., Ander-

son, 1981). This viewpoint is consistent with the idea

that ‘‘Higher order cognitive mechanisms can often be

modeled by simpler algorithms than can lower order

mechanisms’’ (Gigerenzer & Todd, 1999a, p. 31), with

the proviso that this applies only to higher order

mechanisms for which there is severe bottleneck of in-
formation uptake.

If this is right, this opens up the intriguing possibility

that apparently minor variations of the judgment tasks

to which Take-the-Best has been applied (Czerlinski

et al., 1999; Gigerenzer & Goldstein, 1996) may have

different psychological characteristics. Where the back-

ground �cues� that are being drawn upon are part of the
prior general knowledge of the experimental participant,
one might not expect limitations of information inte-

gration to be severe. On the other hand, where the cues

are not part of the participant�s background knowledge,
and are explicitly provided to the participant in the ex-

periment, one might expect information uptake would

be limited, and hence that the cognitive algorithm would

be limited. Gigerenzer and Goldstein (1996) are not

explicit about which scenario they would take to be
most appropriate for testing Take-the-Best, or whether

it should apply in both cases. As we shall discuss in the

next subsection, subsequent experimental work has fo-

cused on cases where cues are not part of the back-

ground knowledge of the participant in experimental

work testing the approach (perhaps the most favorable

conditions for Take-the-Best). This is essentially because

it allows the experimenter to control the cues that par-
ticipants can use, and the validity of these cues.

At minimum, then, it seems that the conditions under

which frugality is a crucial constraint on judgment are

not straightforward, and hence that there is no auto-

matic advantage of a simple non-integrative and �frugal�
algorithm such as Take-the-Best over alternative cog-

nitive algorithms (such as we considered in our new

competition above) that do allow information integra-
tion.

Overall, we may conclude that issues both of speed

and frugality are difficult to assess outside the context of

specific assumptions about cognitive architecture. For a

serial processor, with very limited memory capacity,

searching one item at a time may optimise speed, and be

appropriately frugal. But for a connectionist network,

parallel information integration may be very rapid; and
integration all available information may be computa-

tionally just as easy, or even easier, than �frugally�
choosing only the most important information.

5.2.1. Empirical evidence for Take-the-Best

We have considered computational evidence that

Take-the-Best performs well in relation to a range of

cognitive algorithms, in judgments in the city size esti-
mation task. We now turn to consider empirical evi-

dence. This evidence can be both direct and indirect.

Indirect evidence concerns the degree to which there is

independent empirical motivation for the underlying

principles upon which Take-the-Best is founded, in re-

lation to rival cognitive models. Here, the picture is

unclear.

On the one hand, the tradition of empirically suc-
cessful models of choice using non-integrative methods

(e.g., Payne et al., 1993; Tversky, 1969, 1972) and the

fact that, under some circumstances at least, people

appear to be able to focus only on a limited amount of

information (e.g., Shepard, 1967), provides some inde-

pendent motivation for the underlying principles in

Take-the-Best and related models. Moreover, as a rule-

based system, Take-the-Best can draw on a long tradi-
tion of rule-based proposals concerning cognitive

architectures (e.g., Anderson, 1983; Newell, 1991—al-

though the specifics of these architectures are quite

distantly related to Take-the-Best).

On the other hand, as we have discussed the other

models in our competition also have been used across

other cognitive domains, and are here applied with little

modification (whereas Take-the-Best is specifically con-
structed in order to perform this kind of judgment task).

Most notably, the now vast tradition of detailed cogni-

tive psychological modeling using connectionist meth-

ods suggests that connectionist principles arguably have

a strong empirical basis (e.g., Christiansen & Chater,

2001; MacLeod, Plunkett, & Rolls, 1998; Rumelhart &

McClelland, 1986).
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In the absence of clear evidence concerning the em-
pirical plausibility of the principles underlying Take-the-

Best vs. rival algorithms, we turn to the direct empirical

evidence.24

Working in Gigerenzer�s laboratory, Rieskamp and
Hoffrage (1999) attempted to gather relevant empirical

evidence, in the context of a task in which people had to

judge the most profitable of four companies, on the

basis of six cues. Unlike the city size case, described
above, the cues here are real valued, rather than binary:

share price, recognition rate (i.e., what proportion of

people have heard of the company), dividend, share

capital, investment and number of employees. The

sample in the experiments was taken from information

about 70 German companies. Cue validities (which are

here defined slightly differently from the cue validities in

the city size case) were given to the participants (and
were visible throughout the experiment). The experi-

mental task was to sample information from a matrix of

companies and their properties, by clicking on a cell in

the matrix with a mouse—only one piece of information

was visible at a time. Rieskamp and Hoffrage found that

people sampled information quite frugally (i.e., they did

not exhaustively sample the entire matrix, even when

they had time to do so). Moreover, they tended to
sample information �cue-wise�—i.e., they chose a partic-
ular cue, and then sampled the values of each company

on that cue. Rieskamp and Hoffrage note, though, that

their data does not provide rich enough evidence to back

up Take-the-Best, at least when considered on its own.

Perhaps most fundamentally, integrative algorithms

appear to be severely disadvantaged from the outset,

because the information can only be sampled sequen-
tially in this experimental paradigm. Moreover, cue-wise

sampling seems to be appropriate on almost any algo-

rithm, assuming that participants have poor base rate

estimates for the various cues, so that they have no way

of interpreting the likely significance of, say, the abso-

lute value of the share capitalization of one company,

without assessing this in relation to other companies.

More generally, the complexity of the relationship be-
tween strategies for information integration, and opti-

mal data selection methods (Berger, 1995; Lindley, 1956;

Oaksford & Chater, 1994) geared to those strategies is

sufficiently great, that it seems unlikely that this source
of data will be decisive. Nonetheless, Rieskamp and

Hoffrage�s results certainly appear compatible with

Take-the-Best, as well as a broad range of other algo-

rithms.

A more direct test of Take-the-Best was performed by

Br€ooder (2000). His experiment involved three phases: a
period of training, during which participants learned cue

validities from experience; the core phase of experi-
mental judgments; and a final phase, in which partici-

pants were explicitly asked about cue validities, to check

that they had learned them successfully. Br€ooder used
carefully crafted sets of cues. The critical variable in the

experiment was the whether �dominated� cues (i.e., cues
that should never be assessed, if cues are sampled in

order of validity) agreed or disagree with the �dominant�
cue. According to Take-the-Best the values of these cues
should be irrelevant, because people will not sample

them. Nonetheless, Br€ooder found substantial effects of
these cues, aggregated across his participant population.

Br€ooder also conducted careful statistical analysis of in-
dividual participants behavior, and argued that a sub-

stantial number of participants (28% in one study; 53%

in another) do roughly conform to Take-the-Best (or,

more generally, some kind of non-compensatory deci-
sion strategy—these might include decision trees, as used

in the competition above). These findings are consistent

with the idea that non-compensatory strategies, such as

Take-the-Best may be among the heuristics available to

the adaptive decision maker (Payne et al., 1993) or

present in the adaptive toolbox (Gigerenzer & Selten,

2001).

Similar conclusions were reached in a study of a close
variant of Take-the-Best (the Matching Heuristic) in the

context of judgments concerning whether defendants

should, or should not, be given bail, where participants

were lay magistrates in the English legal system (Dhami

& Ayton, 2001). The Matching Heuristic was found to

provide the best fit to data from a substantial minority

of magistrates, when compared to two integrative al-

gorithms. Again, this suggests that non-compensatory
algorithms may be among the cognitive strategies that

people can use, although it also suggests that people are

able to integrate information.25 In a complementary

study, in a medical context, the Matching Heuristic was

found to do as well as logistic regression in describing

English doctors decisions about prescriptions (Dhami &

Harries, 2002).

24 Gigerenzer and Goldstein (1996) and Goldstein and Gigerenzer

(1999) note that there is empirical evidence for an aspect of the Take-

the-Best strategy, the recognition principle. Although important, this

evidence for the recognition principle does not bear on their compe-

tition, because they allow that the recognition principle is combined

with all the algorithms in their competition. Similarly, the recognition

principle is not relevant to present competition, because we consider

the case where all cities (and their features) are known, so that the

recognition principle is not triggered. So empirical evidence concerning

the recognition principle does not provide empirical evidence that can

help decide between rival �competitors,� with similar levels of �ecolog-
ical� success.

25 Note, though, that this latter conclusion is not straightforward

to infer once one allows the possibility of noise in the process of

ordering the cues to be assessed. This would also lead to the apparently

non-compensatory patterns in Br€ooder�s study, because �dominated�
cues would be sampled on some occasions, and hence could influence

participants� decisions.
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Finally, Newell and Shanks (2001) built on Br€ooder�s
(2000) studies. Specifically, participants had to buy cue

values that they could use to help them decide which of

two shares would have the best payout (the experimental

set-up and cover story was borrowed from Br€ooder�s
experiments 3 and 4). According to Take-the-Best, one

might expect that people would buy just enough infor-

mation to allow them to discriminate the two shares

(i.e., to break the tie between the two), and then would
buy no further information. However, people typically

bought a great deal more information than they needed,

although some participants went to the opposite extreme

of undersampling information, and hence �guessing� on
many trials. Although the conditions used by Newell

and Shanks appeared well suited to engaging the Take-

the-Best heuristic (e.g., information could only be sam-

pled sequentially) there appeared to be large individual
variation in performance, with few participants con-

forming at all closely to the predictions of Take-

the-Best.

Overall, the state of the empirical evidence is mixed.

There seems some tentative reason to believe that

Take-the-Best, or some similar non-compensatory

heuristic, may be among the strategies that people can

adopt (Br€ooder, 2000; Dhami & Ayton, 2001; Rieskamp
& Hoffrage, 1999); but there seems to be large indi-

vidual variation, and, in at least one study (Newell &

Shanks, 2001), a poor fit between detailed patterns of

behavior with the predictions of Take-the-Best. Note,

in particular, that the other algorithms that we con-

sidered in the competition above (e.g., connectionist,

exemplar-based and decision-tree models) have not

been explicitly compared with empirical data. Given
the closely related performance of all these algorithms

(together with traditional statistical algorithms related

to linear regression), discriminating between these em-

pirically represents an important challenge for future

work.

5.2.2. Summary

In this section, we have argued that familiar and
widely applicable cognitive algorithms give comparable

results to Take-the-Best on the city size estimation task,

and are at least as plausible on grounds on speed and

�frugality.� Moreover, we suggest that there is not pres-
ently sufficient empirical evidence to tip the balance in

favor of Take-the-Best—and indeed, much of the em-

pirical evidence appears to face Take-the-Best algorithm

with some challenges. Overall, then, the algorithms in
our competition, which are well established in psychol-

ogy and artificial intelligence, appear at least as cogni-

tively plausible as Take-the-Best. Moreover, the current

empirical evidence does little to help resolve these issues.

So far, it appears that Take-the-Best may capture the

data for a substantial minority of participants—but how

alternative models might fair in relation to the same

empirical data is by no means clear. At present, it seems
reasonable to conclude that Take-the-Best is not a uni-

versal cognitive algorithm for judgment tasks; but the

data is consistent with it being an element of the

�adaptive toolbox� that participants have available to
them (Gigerenzer, 2001).

A more general implication of this discussion is that

there may be scope for a broader interchange between

research on judgment and decision making, and general
cognitive science research. It has been persuasively ar-

gued that rich experimental techniques may be usefully

imported into judgment and decision making research

from cognitive psychology (e.g., Dougherty et al., 1999;

Payne et al., 1993; Weber et al., 1995); we suggest that it

may also be useful to import the general purpose

cognitive architectures and algorithms that have been

developed within cognitive science and artificial intelli-
gence.

6. Conclusions

In this paper, we have argued for two claims. First,

we have argued that standard notions of rational ex-

planation in psychology and the biological and social
sciences are not undermined by recent challenges. This

pattern of explanation involves providing rational de-

scriptions which explain why behavior is successful,

rather than viewing the mind as a probabilistic or

statistical calculating machine. The standard notion of

rational explanation: (A) stresses rather than ignores

the environment; (B) takes cognitive limitations into

account; and (C) allows that algorithmic theories may
run ahead of rational explanation, as Take-the-Best

illustrates. Second, we have argued that familiar cog-

nitive algorithms equal the performance of Take-

the-Best on the city size estimation task, and may be

equally plausible in terms of speed, memory require-

ments, and, currently, empirical evidence. We also

emphasise the importance of the project of providing

rational descriptive explanations that can explain
when and why the cognitive system is adaptively suc-

cessful.
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