(more) vision

COGS17 - WEEK 4 7/22/19 "it doesn't matter what one cell does, it matters HOW they are connected"

Review of the potential connectivity patterns of photoreceptors, bipolar cells, and retinal ganglion cells

ON center vs OFF center bipolar cells

What happens when the photoreceptor is...

In the light:

 $ON \rightarrow depolarizes$

 $OFF \rightarrow$ hyperpolarizes

In the dark:

 $ON \rightarrow hyperpolarizes$

OFF \rightarrow depolarizes

why?

ON = metabotropic receptor (mGluR6, g-protein coupled!)

OFF = ionotropic receptor (AMPA)

glutamate has opposite effects on these receptors

In the light:

 $\mathsf{ON} \to \mathsf{less}$ glutamate around, so voltage-gated Na+ channels are open

 $\ensuremath{\mathsf{OFF}}\xspace \to$ less glutamate around, so less Na+ enters via channels

In the dark:

 $\ensuremath{\mathsf{ON}}\xspace \to \ensuremath{\mathsf{over}}\xspace$ and the set of the

OFF \rightarrow more glutamate, so more Na+ enters via channels

Center-Surround

- Excitatory center and inhibitory surround receptive fields
- Refers to receptive fields for cells in a place on the retina
- Plus and minus refer to what the target cell is doing
- Receptive fields are overlapping thus many receptor cells contribute to many receptive fields

Light On Retina

Response

Of Target Cel

(None)

- Cones
 - Low convergence
 - 1:1 or few : 1
 - High acuity
 - Information about details gets preserved
- Rods
 - High convergence
 - Many : 1
 - Poor acuity
 - Details can be lost
- In dim light (cones)
 - Each cone reacts slightly
 - Not enough activity for each bipolar cell to cross the threshold for ganglion cell to fire
 - Still too much inhibition coming from the rods
- In dim light (rods)
 - Little bit of excitation from each bipolar cell
 - Ganglion cell will have enough input to cross threshold and start to fire

convergence

- Receptive field: set of receptors whose activity influences the activity of a "target" cell
- Better acuity when a cell has a smaller receptive field

visual crossover

- Information from the right visual field goes to the left side of the eye
- Information from the left visual field goes to the right side of the eye
- Right visual field information goes to left side of the brain and vice versa
- Each optic nerve divides and goes to both sides of the brain

Only after reaches Cortex, is visual field info combined via Corpus Callosum

visual crossover

- Information from the right visual field goes to the left side of the eye
- Information from the left visual field goes to the right side of the eye
- Right visual field information goes to left side of the brain and vice versa
- Each optic nerve divides and goes to both sides of the brain

(upper bank of LGN fibers) Retrolenticular: Fibers representing superior retinal quadrants (inferior visual field)

> (lower bank of LGN fibers) Sublenticular: Fibers representing inferior retinal quadrants (superior visual field)

Lateral / geniculate nucleus

Lateral

ventricle

Meyer's loop

visual pathways

- Dorsal Pathway
 - "Where/how"
 - Motion and depth
 - Magnocellular pathway
 - Primarily rods
 - 'Large' ganglion cells
- Ventral Pathway
 - "Who/what"
 - Color and detail
 - Parvocellular pathway
 - Primarily cones
 - 'Small' ganglion cells

visual pathways

- Optic nerve goes to lateral geniculate nucleus (LGN) of the thalamus
- Optic chiasm: location where the axons cross (don't synapse)
- LGN
 - 6 layers
 - Magnocellular pathways project to layers 1 and 2
 - Parvocellular pathways projects to layers 3-6
- Some axons from magnocellular pathway project to the super colliculus

