Section 1: Anatomy of the Nervous System

Alexis Franklin adfrankl@ucsd.edu OH: Tuesday 9-10am in CSB 114

COGS 17: Summer I 2019

Section 7/3, Week 1

Professor Boyle	<u>mboyle@ucsd.edu</u>	Tues/Wed 6-7pm	CSB 130
Tania	<u>tadelgad@ucsd.edu</u>	TBD	TBD
Lexi	<u>adfrankl@ucsd.edu</u>	Tuesday, 9-10 am	CSB 114

Directions and Views

Directions and Views

- Directions
 - Dorsal and Ventral: top/bottom
 - Rostral and Caudal: front/back
 - Anterior and Posterior: front/back
 - Lateral and Medial: side/middle
- Sections
 - Coronal
 - Horizontal
 - Sagittal
- Connections
 - Ipsilateral: same side
 - Contralateral: opposite side

Overview of Important Structures

Overview of Important Structures

Mid-Saggittal Section Parietal **Cingulate gyrus** Cerebral cortex lobe **Frontal lobe** Corpus Thalamus callosum Occipital lobe Superior & Hypothalamusinferior Midcolliculi brain Pituitary Tegmentum gland Pons Cerebellum Medulla Central canal Spinal cord of spinal cord

Divisions of the Nervous System

- Central Nervous System
 - Spinal cord and the Brain
 - Encased in bone and meninges
- Peripheral Nervous System
 - Nerves outside of the CNS
 - Sensory PNS:
 - Special Sensations: taste, olfaction, auditory, vision, equilibrium balance
 - General Sensations:
 - Somatic: skin, touch, pain, temperature, locomotor system, and proprioception
 - Visceral: dull pain, distention
 - Motor PNS:
 - Somatic Motor: voluntary control
 - Autonomic Motor: involuntary control
 - Sympathetic NS: "Fight or Flight"
 - Parasympathetic NS: "Rest and Digest"

Support Structures

Support Structures

Support Structures

- Meninges
 - Pia Mater: flexible inner layer that conforms to the brain and spinal surfaces
 - Arachnoid Space: spongy layer filled with CSF
 - Dura Mater: thick outer layer
- Ventricles
 - Hollow inter-connected cavities
 - Produces CSF
 - 2 lateral ventricles, third ventricle, cerebral aqueduct, and fourth ventricle
 - Cushions and supports the brain
 - Hydrocephalus

- Blood Vessels
 - Web of incoming arteries and outgoing veins
 - Cleanses brain
 - Uses A LOT of blood relative to its weight
- Blood-Brain Barrier
 - Strict control over chemicals in the brain
 - Protects the brain from infection
 - What it protects: brain, spinal cord, and peripheral nerves
 - What is allowed in: water, O2, CO2, lipids, glucose, amino acids
 - What is <u>not</u> allowed in: large and highly polarized molecules

Side Note: Capillaries

- Blood Vessels in the Body:
 - artery -> arteriole -> capillary -> venule -> vein

- Types of Capillaries in the Body
 - Continuous/ Tight: no gap between endothelial cells
 - Fenestrated: pores in the endothelial cells
 - $\circ \qquad {\rm Sinusoidal: \, bigger \, gaps \, between \, the \, cells}$

- Capillaries in the Brain
 - Continuous endothelial cells
 - Tight junctions
 - Location chosen by astrocytes

Hindbrain

Hindbrain

Hindbrain

- Medulla
 - Vital reflexes
- Pons
 - Relay between cortex & cerebellum and brain & spinal cord
 - Includes reticular formation (arousal) and raphe system (sleep)
- Cerebellum
 - "Little Brain"
 - \circ $\,$ Motor programs with real-time sensory coordination $\,$
 - Critical for timing actions
 - Guides movement
- Cranial Nerves
 - Most enter/exit through the Medulla and Pons

Midbrain

Midbrain

Midbrain

• Tectum

- Part of sensory pathways
- Superior Colliculus: detects visual motion
- Inferior Colliculus: detects auditory motion
- Tegmentum
 - Contains major motor pathways and some cranial nerves
 - Includes Red Nucleus and Substantia Nigra
 - Contains dopaminergic neurons that degenerate in Parkinson's disease
 - Contains cranial nerves to control eye movements
 - Part of the the reticular formation for arousal
- "Tectum to detect 'em, Tegmentum for momentum"

Forebrain - Diencephalon

Forebrain - Diencephalon

Forebrain - Diencephalon

- Forebrain is divided into 2 parts
 - Diencephalon: brain stem
 - Telencephalon: the rest
- Thalamus
 - Primary source of input to cortex
 - Nuclei of many sensory and motor systems
 - Involved in cortical arousal
- Hypothalamus
 - Controls the "4 F's"
 - Regulates temperature and internal clock
 - Controls the endocrine system via the Pituitary Gland
 - Anterior pituitary: receives "releasing hormones" via veins
 - Posterior pituitary: receives other hormones (ex: NTs) via axons and then releases into bloodstream

Forebrain - Telencephalon

Limbic System

What are the two other structures in the Telencephalon?

Forebrain - Telencephalon

Limbic System

What are the two other structures in the Telencephalon?

- 1. Basal Ganglia
- 2. Basal Forebrain

Forebrain - Telencephalon

- Limbic System
 - Motivation and emotions
 - Hippocampus: formation of new memories and spatial mapping
 - Amygdala: emotional expression
 - **Cingulate Gyrus:** "Re-entrant" system to assess good/bad
 - **Olfactory Bulb**: exchanges olfactory information with the rest of the limbic system
- Basal Ganglia
 - Includes caudate, putamen, and globus pallidus
 - Another "Re-entrant" system
 - Control of movement
- Basal Forebrain
 - Important for attention and cortical arousal
 - Main source of ACh and GABA

Cerebral Cortex - 4 Lobes of the Brain

Cerebral Cortex - 4 Lobes of the Brain

Cerebral Cortex - 4 Lobes of the Brain

- Parietal Lobe
 - Higher visual and somatosensory processing
 - Spatial mapping
 - Contains the dorsal pathway
- Frontal Lobe
 - Important for motor movements, language production, and strategy
 - Precentral gyrus: motor cortex
 - Premotor areas
 - Prepares for action, planning
 - Include Mirror cells and Broca's Area
 - Prefrontal cortex
 - Planning, self control, impulse control

- Occipital Lobe
 - Visual processing
 - Contains V1
 - Receives projections from the LGN of the thalamus
 - Separate pathways for details projects to other lobes
- Temporal Lobe
 - Contains higher visual, audition, emotion, and language comprehension
 - Contains auditory areas (including Wernicke's Area)
 - Inferior Temporal (IT): ventral, "who/what" pathway
 - Medial Temporal (MT): dorsal "where/how" pathway

Major Visual Pathways

Major Visual Pathways

Corpus Callosum

- Made up of axons that connect the two hemispheres of the brain
- Part of the "white matter" of the brain
 - White matter
 - Axons
 - Use a Weigart stain
 - Grey matter:
 - cell bodies
 - Use a Nissl stain
- Brain is 66% white matter by volume

Quiz Time!

- No talking, signaling, or communicating of any kind.
- Put away your books, notes, computers, phones, etc.
- Pen or pencil is okay (just make sure it's a black pen and you press hard with a pencil).
- Write your name in the "Name" box, write and circle in your PID, and <u>sign</u> the academic integrity agreement.
- Bubble in this section
- Please have your student ID out when you turn in your quiz!