(.5pt) The propagation of an action potential from node to node along a myelinated axon is called:
 a) saltatory conduction
 b) an inhibitory postsynaptic potential
 c) nodes of Ranvier
 d) an excitatory postsynaptic potential

(1pt) Neurotransmitters are released from synaptic vesicles into the__________, where they attach to receptor sites on the__________
 a) inhibitory neuron, presynaptic membrane
 b) presynaptic membrane, axon
 c) synaptic cleft, postsynaptic membrane
 d) synaptic cleft, inhibitory neuron

(1pt) Diffusion is the movement of particles from _______to _______concentration.

(1pt) Which of the following are in greater concentration outside the cell (there may be multiple correct):
 a) Na⁺
 b) Cl⁻
 c) Large Negative Proteins
 d) K⁺

(1.5 Pts/.25ea) Using the numbers in the picture below, match the following with the corresponding number(s) on the graph
 ______ Relative Refractory Period
 ______ Repolarization
 ______ Hyperpolarization
 ______ Depolarization
 ______ Absolute Refractory Period
 ______ Voltage Gated Na⁺ Channels Close

(1pt) Depolarization of the postsynaptic membrane produces an ________, whereas hyperpolarization produces an ____________.
 a. IPSP, EPSP
 b. EPSP, IPSP
 c. action potential, inhibitory potential
 d. autoimmune response, autoimmune inhibition
(1pt) ___________ summation is when potentials are combining over different locations on a neuron, while ___________ summation is the combined effects of potential over time.

**(1pt) Bonus: In a myelinated axon where might Voltage-Gated Na⁺ channels not be found:

(3pts) a) What is the sodium potassium pump and b) why is it important c) and why ATP is needed (Please give specifics about what/how much it is pumping, reasons it is pumping, and incorporate the forces the pump is counteracting)