Intermittent Metabolic Switching

By Got My Ion You (Andy, Lexi, Ryan, Sofia, Vicky & Yuval)
Introduction
Agenda

1. Introduction to **Intermittent Metabolic Switching** (IMS)
 → Different IMS protocols
2. Dive into IMS physiology
3. Neuronal adaptation
 → Animal models of IMS
4. Signaling pathways affected by IMS
5. How IMS relates to neurological disorders
6. Conclusions & Future Directions
IMS - The Big Picture
Today

- 700-900 calories
- 10-14 hours without exercise
Why Fast?

- Historically sporadic food access
- A brain and body that functions better during a fast will be more capable of:
 - Acquiring food
 - Surviving
 - Reproducing
What Happens in Fasting: Metabolic Switch!

1. Glycogen depleted
2. Adipose cells release fatty acids
3. Converted to ketone bodies
 - b-hydroxybutyrate (BHB)
 - acetoacetate (AcAc)
4. Used by neurons as energy substrate

G-to-K Switch

Low circulating glucose

Released into blood
Switching Back: Eating and Rest

- Switching results in cellular and molecular adaptations in brain neural networks
 - Enhances functionality
 - Improves resistance to:
 - Stress
 - Injury
 - Disease
What is Intermittent Metabolic Switching (IMS)?

- Ketosis induced
- G-to-K and K-to-G switches
- Possible:
 - Brain health and resilience optimization
 - Cognitive and physical performance enhancements
 - Cognition and mood circuit benefits
 - Neuroplasticity and resilience promotion
IMS Animal Protocols

1. Intermittent Fasting (IF)

2. Alternate-Day Fasting (ADF)
 a. 24 hr deprivation every other day

3. Daily Time-Restricted Feeding (TRF)
 a. Set time period deprivation
 OR
 b. Caloric restriction (CR)
 i. 20-22 hr fast
What you saw in the video:

16:8 Fasting Clock
The Rest of the Presentation:

Molecular and cellular adaptations to IMS

Cognition, mood regulation & motor control

- Enhanced insulin sensitivity
- Reduced abdominal fat
- Muscle mass maintenance
- Reduced resting HR & BP
Key Terms Review

TERMS TO RECOGNIZE:

● IF- simly intermittent fasting

● K->G switch

● ketones
 ● b-hydroxybutyrate (BHB)
 ● acetoacetate (AcAc)
WTF Happens When I Eat?

- We eat 3-4 times daily
- Each time replenishes our glycogen stores which should give us **700-900 calories of energy**
- This equates to 10-14 hours of energy (if you are not exercising)
- Is this **too much energy?**
Benefits of IMS - The Claims

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuroplasticity → learning / memory, mental acuity, cognitive performance</td>
<td>↑↑</td>
</tr>
<tr>
<td>Resting heart rate & blood pressure</td>
<td>↓↓</td>
</tr>
<tr>
<td>Insulin sensitivity</td>
<td>↓↓</td>
</tr>
<tr>
<td>Abdominal fat</td>
<td>↓↓</td>
</tr>
<tr>
<td>Resistance of nervous system to injury / disease</td>
<td>↓↓</td>
</tr>
<tr>
<td>Anxiety / depression</td>
<td>↓↓</td>
</tr>
</tbody>
</table>
G-to-K and K-to-G Switch
Energy Expenditure - The Physiology
Fasting vs. Not Fasting

- Fasting → **deplete** liver glycogen stores
 - Production of ketone bodies
 - β-Hydroxybutyrate
 - Use as energy source
- Breaking fast (by eating) → **replenish** liver glycogen stores
 - Liver glycogen → provide ~700-900 calories of energy, last for 10-14 hours if not exercising
What do we mean by “depleting” liver glycogen?

Glycogen = stored glucose

Depletion → through fasting OR exercise

- **Connection to video**: Sofia saying she is in “just as much pain as [the fasters]”

HOW?

- **Glycogenolysis** (fancy speak for breaking down glycogen) - how we use that stored glucose
Hepatic Glycogenolysis: The Bare Bones

Glycogenolysis = biochemical breakdown of glycogen (stored glucose) - just know that it involves a bunch of enzymes

Hepatic → refers to the liver

(b) Fasted state: glucagon dominates

↑ Glycogenolysis
↑ Gluconeogenesis
↑ Ketogenesis
So what happens when we use up all our glycogen?
Let's make it a party

Lipolysis Party

WHEN: After liver glycogen stores have been depleted

LOCATION: Adipocytes

WHAT: Let's cleave some fat cells! We'll be breaking down TAGs and DAGs to make Free Fatty Acids (FFA's) and then using these to make ketones for energy! It's sure to be a great time!

BYOB.
Lipolysis (in adipocytes) begins only after liver glycogen is depleted

Recall: It takes at least 10-14 hours for this to occur!

Generate **FFA’s** → generate acetyl CoA for **Kreb’s cycle** (from fatty acyl-CoA)
WHAT'S HAPPENING:

Stored glucose stores (glycogen) depleted in fasted state (hepatic glycogenolysis)

Once depleted → G-to-K switch can occur (generate ketones from fatty acids) → alternate energy source
WHAT'S HAPPENING:

Cleave DAG’s/TAG’s in adipocytes to form free fatty acids (FFA’s) = lipolysis

Can then be transported to liver or astrocytes via the bloodstream & converted to fatty acyl-CoA and subsequently acetyl CoA to use in the Kreb’s cycle
KEY TAKEAWAYS:

● Glucose = body’s *preferred* energy source
 ○ Will utilize ketones if ↓↓ blood glucose

● “G-to-K Switch” = transition from using glucose → fatty acids & ketones (energy)
 ○ IF protocols **INDUCE** this metabolic effect (why it requires fasting *at least* 10-14 hours)
Neuronal Adaptation to IMS
Behavioral Adaptations

Animal Models
Behavioral Adaptations - Young Mice

- Weaning age mice:
 - Daily TRF at 40% caloric restriction
 - Learning/memory remain unaffected by age
 - Locomotor performance improvement with age when compared to control mice
Behavioral Adaptations - Young Mice

- 14-month-old mice:
 - 10 months of fasting led to improved (relative to control mice):
 - Spatial navigation
 - Working memory
 - Strength
 - Coordination
Behavioral Adaptations - Older Mice

- Adult mice:
 - Daily TRF at 40% caloric restriction showed (relative to controls):
 - No hippocampal spatial learning/memory deficits
 - Lack of anxiety-related behaviors
 - Low-calorie diet for 4 consecutive days every other week for 7 months (relative to controls):
 - Elevated levels of ketones
 - Improved spatial learning/memory in maze tasks
 - Elevated performance in object recognition/working memory in novel object recognition tasks
Networks, Plasticity, & Neurogenesis

Animal/human models
Neuronal Network Activity - Epilepsy

- Human patients
 - Suffer from seizures - sudden excessive neural activity
 - Can lead to loss of consciousness, loss of bladder control, muscle spasms
 - Ketogenic diets benefit epileptic patients
 - Increase in ketones controls neuronal network activity
- Animal models
 - Rats exposed to alternate-day fasting exhibit ability to resist damage to hippocampus resulting from seizures.
Synaptic Plasticity

● IMS resulting from IF or exercise:
 ○ Rats and mice display (relative to controls) increased long-term potentiation in hippocampus
 ■ Forming basis for improved learning/memory

● Daily TRF (22 hours of fasting/day for three weeks):
 ○ Rats show improved maze task performance
 ○ Increased dendritic spine density and LTP in CA1 region of hippocampus

● Daily TRF (30% CR)
 ○ Control and diabetic mice displayed increased hippocampal dendritic spine density
 ○ Effects can be optimized by combining with exercise
Neurogenesis

- New hippocampal neurons constantly born in mammalian adult life.
- Running and IF:
 - Running increases proliferation of stem cells and strengthens connections between new neurons and brain areas important for learning/memory (entorhinal cortex & basal forebrain)
 - IF increases survival rate of new neurons
- Role of G-to-K switch on adult neurogenesis, and relationship with running/IF still being studied.
Signaling Pathways Affected by IMS
Glutamate

- Primary excitatory neurotransmitter in the central nervous system (brain)
 - Responsible for:
 - Triggers Ca^{2+} influx into postsynaptic neuron \Rightarrow dendritic spine growth, synaptogenesis, and long-term potentiation/depression
 - LTP and LTD important for balance
 - Downstream pathway: $\text{Ca}^{2+} \Rightarrow \text{CaMK + PKC + CREB + NF-kB}$
“Increased activity in neuronal circuits that occurs during exercise and fasting contribute to mitochondrial biogenesis via \(\text{Ca}^{2+} \)-CaMKII-CREB-PGC1\(\alpha \) pathway”
Proteins and Factors Involved in IMS

BDNF (brain-derived neurotrophic factor)
- Involved in **synaptic plasticity, neurogenesis**, and **neuronal stress resistance**

BHB (β-hydroxybutyrate)
- Involved in **regulating gene transcription, synaptic plasticity**, and **cellular stress resistance**

SIRT3
- Involved in **protecting neurons from mitochondrial stress and apoptosis** by deacetylating superoxide dismutase 2 and cyclophilin D

IGF1 (insulin-like growth factor 1)
- Involved in **enhancing neuroplasticity** and **protecting neurons against metabolic and oxidative stress**

FGF2 (fibroblast growth factor 2)
- Involved in **stimulating neural stem cell proliferation**, protecting neurons against **metabolic and oxidative stress**, and **regulating neurite outgrowth/cell survival during break development**

PGC-1α
- Transcription factor
- Involved in **mitochondrial biogenesis** through (nuclear respiratory factor) NRF1/NRF2
β-hydroxybutyrate

- Induces expression of BDNF (when glucose levels are low)
- Inhibits HDAC (histone deacetylase)
 - HDAC usually repressed BDNF
- Exercise decreases HDAC
- Fasting increases acetylation
 - Acetylation = proteins can be translated from RNA
- Triggers activation of NFkB
 - Goes to nucleus to induce BDNF expression
- Precursor to oligodendrocytes = myelination
- Research:
 - Oral administration of a BHB ester to rats for 5 days improved their spatial learning and memory, and enhances their endurance on a treadmill test!
mTOR

Mammalian/mechanistic target of rapamycin

- Protein kinase
- **Mediates local synthesis of proteins in dendrites**
- **Fasting/extended exercise:**
 - mTOR is inhibited because of an increase in AMPK
 - Intermittent AMPK activation = **enhance** neuroplasticity
 - Sustained AMPK activation = **impaired** axonal and dendritic plasticity
- **Short and intense exercise, eating, resting, and sleeping:**
 - mTOR is active ⇒ protein synthesis
 - Critical for learning, memory, and synaptic plasticity
Exercising and Fasting... Similar effects?

Exercise
- Uses liver glycogen stores
- Fuel source: Glucose \Rightarrow FA \Rightarrow Ketones
- Similar proteins released (BDNF, FGF2)
- mTOR activity decreases
- CREB activation (downstream of Ca$^{2+}$ pathway)
- Mitochondrial biogenesis (needed to use fats for energy)

Fasting
- Passive process
- Many types of fasting: Too many to name

Active process
- 2 types of exercise: (1) anaerobic (2) aerobic

Passive process
- Many types of fasting: Too many to name
Using Fats for Energy
Using Fats for Energy
Key Components:

- Mitochondrial biogenesis
 - Ca\(^{2+}\)/calmodulin-dependent protein kinase type II gamma (CaMKII)
 - AMPK
 - PGC-1\(\alpha\)
 - Transcription factor that can enhance BDNF expression
PGC-1α knockdown = basal synapse formation reduced and synaptogenesis reduced

Need mitochondria to maintain/support the function of synapses
MITOCHONDRIAL BIOGENESIS IS GOOD
Optimization through IMS

Fasting and exercise

- **Glucose-to-ketone switch (bioenergetic challenge)**
 - ↑ Ketones
 - ↑ Ghrelin
 - ↑ Myokines
 - ↓ Glucose
 - ↓ Leptin
 - ↓ Insulin
 - ↓ Cytokines

- **Cellular stress resistance (molecular recycling and repair pathways)**

Eating, resting and sleeping

- **Ketone-to-glucose switch (recovery period)**
 - ↓ Ketones
 - ↓ Ghrelin
 - ↓ Myokines
 - ↑ Glucose
 - ↑ Leptin
 - ↑ Insulin
 - ↑ Cytokines

- **Cell growth and plasticity pathways (mitochondrial biogenesis, synaptogenesis and neurogenesis)**

- **IMS**

Enhanced synaptic plasticity and neurogenesis
- **Enhanced performance (cognition, mood, motor and ANS function)**
- **Resistance to neuronal degeneration and enhanced recovery from injury**
Visualizing the effects of IMS

EFFECTS OF INTERMITTENT FASTING ON THE BODY AND BRAIN THAT MAY THWART OBESITY AND CHRONIC DISEASES

BRAIN
- Improved cognitive function
- Increased neurotrophic factors
- Increased stress resistance
- Reduced inflammation

HEART
- Reduced resting heart rate
- Reduced blood pressure
- Increased stress resistance

LIVER
- Increased insulin sensitivity
- Ketone body production
- Decreased IGF-1 levels

FAT CELLS
- Lipolysis
- Reduced leptin
- Increased adiponectin
- Reduced inflammation

INTESTINES
- Reduced energy uptake
- Reduced inflammation
- Reduces cell proliferation

MUSCLE
- Increased insulin sensitivity
- Increased efficiency
- Reduced inflammation
WTF DOES THIS HAVE TO DO WITH COGNITION
- glutamate is one of the body's key excitatory hormones
- it plays a role in synaptic activation and plasticity
- mouse studies of increased dendritic spines
Dendritic Spines

- products of excitatory signals
- can be increased through training
- however, same chemicals are released in training yet more are released through IF
-also shown to be beneficial in the formation of dendritic spines

-agonists easily cross BBB
-shock tests with mice who were also administered ghrelin agonist
corticotropin releasing hormone/ACTH system has role in anxiety
-shock mazes show that animals experienced more anxiety after their first treatment with ghrelin but these side effects went away
AMPK Pathways

- Play key role in energy balance and detecting levels of ATP.

- Other mice studies where AMPK was administered saw upregulation of mitochondrial genes in hippocampal areas.
- Suppression of pro-inflammatory cytokines
- Elevation of IL-1 alpha, IL-1 beta, and TNF alpha levels
- Prevents reduction of BDNF in hippocampal areas
- This reduces effects of systematic inflammation
We know:
IMS -----> Positive Brain Health

What About:
IMS --------> Acute Injury?
Findings:

Seizures

Factors for Injury:
- Excitotoxicity
- Metabolic Failure
- Oxidative Stress

Rats on IF:
- Exposure to the seizure ----> reduced loss of hippocampal pyramidal neurons + improved performance in a water maze test of spatial learning and memory
- daily IF ----> elevates circulating BHB levels + also suppresses seizures
Findings:

Strokes

Factors for Injury:
- Excitotoxicity
- Metabolic Failure
- Oxidative Stress

Rats on IF:
- On IF prior to cerebral vessel occlusion -----> reduced death of cerebral cortical neurons
- IF initiated either before or after a injury to the thoracic spinal cord significantly improves recovery of motor function
Conclusions

From strokes and seizures

- These findings demonstrate that IMS can protect neurons and enhance resilience following injury.
- Can IF help patients who suffered from stroke?
Findings

Cellular and Molecular mechanisms

IF upregulates: resistance to proteotoxic stress, neurotrophic factor signalling, DNA repair, mitochondrial metabolism and bioenergetics, antioxidant defences

IF downregulates: pro-inflammatory cytokines
IMS -----> Neurological Disorders

- Alzheimer disease (AD) and Parkinson disease (PD)
- Depression and anxiety disorders
- Autism spectrum disorder (ASD)
Alzheimer disease and Parkinson disease

- Major risk: aging
- How IF helps:
 - Extend lifespan by up to 40% and protect against chronic diseases
 - Overindulgent lifestyles are at increased risk of developing AD and PD
Alzheimer

Features of AD:
- β-amyloid (Aβ) plaque
- neurofibrillary tangle-like pathologies
- cognitive impairment
- Daily TRF (time restricted feeding) reduced the accumulation of Aβ plaques in App-mutant mice
- Long-term IF prevented development of cognitive impairment in AD mice that express beta amyloid precursor protein (APP)

Parkinson

- Selective degeneration of dopaminergic neurons, induced by administration of mitochondrial toxins that selectively accumulate in dopaminergic neurons.
- When mice are maintained on an IMS regimen before neurotoxin administration, their dopaminergic neurons are relatively resistant to degeneration and their motor deficits are reduced
Depression and Anxiety Disorder

- Overindulgent lifestyle ---> increases risk of anxiety disorder and depression.
- IMS by exercise or IF can improve mood and make anxiety and depression better
Depression and Anxiety Disorder

- BHB induces BDNF expression in hippocampal and cortical neurons----> ketones mediate the antidepressant effects of exercise and IF
Autism Spectrum Disorder

- Link b/w increase childhood obesity and autism
- Neurobiological mechanisms may include reduced BDNF expression and excessive mTOR pathway activation.
- Consistent with a potential benefit of IMS, exercise is effective in reducing behavioural issues in many children with ASD
WTF / Conclusion & Future Directions
-general anxiety and tiredness caused by the system “recalibrating”

-most of the subjects did not participate for a long enough time to see the cognitive benefits

-perhaps it is only in mice

-general reduction of body weight shows that's the first effect of IF

-questions!
Criticisms
- This study claimed general cognitive benefit
- Read between the lines
- Most studies point to better spatial awareness
- Lots of training of the mice also increases synaptic plasticity/ perhaps a better test can be used

Ideas for Future Studies
- Do studies that incorporate student/athlete/working professional lifestyle
- Recognize that the brain needs calories!
- Standardize sleep and other aspects that could affect cognition across studies