Targeting small Aβ oligomers: the solution to an Alzheimer’s disease conundrum?

William L. Klein, Grant A. Krafft and Caleb E. Finch

Amyloid β (Aβ) is a small self-aggregating peptide produced at low levels by normal brain metabolism. In Alzheimer’s disease (AD), self-aggregation of Aβ becomes rampant, manifested most strikingly as the amyloid fibrils of senile plaques. Because fibrils can kill neurons in culture, it has been argued that fibrils initiate the neurodegenerative cascades of AD. An emerging and different view, however, is that fibrils are not the only toxic form of Aβ, and perhaps not the neurotoxin that is most relevant to AD: small oligomers and protofibrils also have potent neurological activity. Immuno-neutralization of soluble Aβ-derived toxins might be the key to optimizing AD vaccines that are now on the horizon.

The amyloid β peptide (Aβ) of Alzheimer’s disease (AD) is now showing unexpected structural and biological complexities. Newly recognized forms of the aggregated peptide are soluble, and much smaller than the well-known amyloid fibrils. Moreover, these soluble Aβ assemblies, which exhibit surprising neurological activity, are detected in brain tissue from individuals with AD. Their activity could account for recognized weaknesses of the popular but controversial amyloid cascade hypothesis. Isolated from AD brains over 15 years ago, the Aβ peptide is recognized for its self-aggregation into amyloid. Amyloid comprises large fibrils and β-sheet secondary structure – characterized by Congo red or thioflavin S staining. Aβ peptides consist of 39–43 residues, but the species associated with senile plaques in the brain parenchyma are the less abundant but more hydrophobic 42–43 residue species, which most readily make fibrils. The 40-residue species is found mainly in vascular amyloid. Many studies support the hypothesis that fibrils drive neurodegeneration in AD (the ‘amyloid cascade hypothesis’ formalized by Hardy and Higgins3). In vivo, deposits of amyloid constitute a hallmark of AD (for historical background, see http://pubweb.acns.nwu.edu/~wklein/TiNS). Exposure of cultured neurons to synthetic Aβ leads to cell death4. Early studies showed that the toxic solutions contained abundant amyloid fibrils in addition to smaller species5–7. Other pivotal studies have linked inherited, early-onset AD to various mutations in the amyloid precursor protein (APP) and in presenilins 1 and 2 (PS1 and PS2) that increase production of the highly fibrillogenic Aβ1–42 (Refs 7, 8). This and other evidence has implicated amyloid fibril-induced nerve cell death as a primary cause of AD.

Nonetheless, in spite of some 5000 publications on Aβ over the past decade, debate over the amyloid cascade hypothesis remains contentious. Most problematic and at the heart of the problem, as argued by Terry and colleagues9, is the weak correlation between fibrillar amyloid load and measures of neurological dysfunction. In AD, moreover, amyloid deposits often form at a distance from sites of neuron loss. They also develop in cognitively normal individuals who have no evidence of local neuron damage. The best pathological correlate of dementia is loss of synaptic terminals, which correlates poorly with amyloid load5.

We are left with a fundamental puzzle – if manifestations of disease correlate weakly with amyloid, then what is the role played by Aβ? Findings reviewed below suggest a simple solution: fibrils are not the only neurotoxic form of Aβ, perhaps not even the most significant form for AD. Aβ also assembles into soluble forms (protofibrils and small oligomers; Fig. 1), which could affect neurons, but escape detection by measurements of solid amyloid. Soluble toxins would account for the poor correlation between fibrillar amyloid and disease progression, and could provide a unifying mechanism for AD pathogenesis. Soluble Aβ-derived toxins might also prove to be a crucial target for AD vaccine development.

APP transgenic mice models for AD: CNS deficits without detectable amyloid

A huge clue for understanding Aβ-driven pathogenesis comes from transgenic mice models for AD in which transgenes for human APP (hu-APP) provide elevated brain levels of Aβ. As anticipated, multiple strains show specific AD-like neurological deficits. These animal models thus recapitulate (in an exaggerated manner) the weak correlation between amyloid and disease in humans. The profound disconnection between pathogenesis and amyloid is exemplified by recent results from Mucke and colleagues12, who engineered multiple transgenic mice strains that overexpressed either mutant or wild-type hu-APP. Amyloid deposits were...
found in mutant strains, but not in wild type. When scored for synaptophysin immunoreactivity, all mice showed loss of synaptic terminals. APP transgenes thus triggered synapse loss regardless of whether amyloid was deposited. Altered APP expression per se was not the culprit because synapse loss and other deficits were unrelated to transgene hu-APP levels. Instead, synapse loss correlated with levels of soluble Aβ (Fig. 2a). This observation is particularly significant because synapse loss is an excellent correlate of cognitive decline in individuals with AD (Ref. 9).

The soluble Aβ hypothesis is in harmony with the idea that small oligomeric species of Aβ drive pathogenesis, as suggested in an earlier study. Transgenic animals with CNS deficits were once considered poor models of AD pathogenesis if they lacked amyloid deposits. Now, in an interesting turnaround, it appears that such animals actually provide good models for pathogenesis by non-fibrillar Aβ. Evidence that particular Aβ oligomers occur in transgenic mice has been obtained by Younkin and colleagues, although their mice also produce amyloid. These mice show age-dependent accumulation of oligomeric Aβ, roughly concomitant with onset of behavioral abnormalities.

Plaque-independent CNS pathology can be explained by the neurotoxicity of Aβ oligomers

Aβ monomers are innocuous and must self-associate to become neurotoxic, which until recently was taken to mean that Aβ must assemble into amyloid fibrils. However, consistent with the transgenic mice story, recent data show that neurotoxicity can be fibril independent, but still dependent upon self-association.

One toxic form is the Aβ-derived protofibril (PF), first discovered as an intermediate in Aβ1–40 amyloidogenesis. By atomic force microscopy, PFS can be seen to be curvilinear structures of 4–11 nm diameter and <200 nm length. They lack stability at low monomer concentrations but nonetheless can be isolated by molecular sieve chromatography. Isolated PFSs, although free of monomers and amyloid fibrils, are bioactive. In cell culture, PFSs cause oxidative stress and, eventually, neuronal death. They also elicit rapid electrophysiological changes, inducing membrane depolarization, and increased EPSPs and action potentials. In spite of their thermodynamic instability, PFSs apparently occur in CSF, according to a preliminary analysis of individuals with AD (Ref. 18).

Another neurotoxic form of Aβ distinct from PFSs comprises small oligomers, which are more stable than PFSs at low levels of Aβ, particularly for the AD-linked Aβ1–42 species. Metabolically derived oligomers accumulate in conditioned cell culture medium without evidence of PFSs or amyloid fibrils. Oligomer levels increase after transfection with mutated familial AD presenilins, which elevate levels of Aβ1–42. Solutions of synthetic Aβ1–42 oligomers without fibrils or PFSs can be made readily (Fig. 1), although the converse is not true. The stability of fibril-free solutions of toxic oligomers is consistent with the plaque-free pathology of transgenic mice discussed above.

The first evidence that any non-fibrillar Aβ might be toxic to neurons came from experiments in which Aβ1–40 was mixed with apolipoprotein J (ApoJ), which is secreted by astrocytes. At substoichiometric ratios, ApoJ inhibited formation of fibrillar Aβ, but, unexpectedly, it did not inhibit Aβ neurotoxicity, as measured by MTT reduction in PC12 cells. Toxicity of these solutions has been verified in live-dead assays in CNS slice cultures. These findings are contrary to the amyloid cascade hypothesis, which predicts fibril blockers should inhibit Aβ toxicity.

By atomic force microscopy, the ApoJ/Aβ1–42 toxic preparations are free of PFSs and other large structures (Fig. 1). Instead, the toxic molecules, which diffuse through filters, comprise only small Aβ.

Fig. 1. Different assembled states of amyloid β (Aβ). The assembled forms obtained from incubation of synthetic Aβ are highly sensitive to preparation and incubation. Widely differing proportions of insoluble fibrils, soluble protofibrils (PFs) and oligomers are revealed by atomic force microscopy. Typical PF and fibril preparations contain varying levels of small globular molecules, putatively Aβ1–40 oligomers; Aβ-derived diffusible ligand (ADDL) preparations initiated from monomeric dimethyl sulfoxide stock solutions are fibril- and PF-free, and (uniquely) comprise oligomers. Scale bar, 200 nm. Fibril, PF and ADDL preparations all show neurotoxicity in vitro. Courtesy of Brett Chromy and Blaine Stine.

Fig. 2. Synaptic density correlates inversely with soluble amyloid β (sAβ). (a) Transgenic mice carrying human amyloid precursor protein (APP) showed inverse correlations between sAβ and C-terminal truncated forms. The immunoblot detected Aβ1–40, Aβ1–42 and C-terminal truncated forms. The graph represents results from seven transgenic lines (three wild-type and four APP mutants associated with AD). (b) Brains from individuals with Alzheimer’s disease showed inverse correlations between sAβ1–40 and sAβ1–42 in the entorhinal cortex and superior frontal gyrus, and synaptophysin levels (western blots). nM is equivalent to mM or to pmol Aβ/g brain. (a) Modified, with permission, from Ref. 12; (b) modified, with permission from Ref. 13.
AD and typically is attributed to nerve cell death. An additional mechanism for memory loss is suggested by the rapid inhibition by ADDLs of LTP – a classical paradigm for synaptic plasticity and memory mechanisms. Complete inhibition takes place in less than 1 hr in vivo and in culture (Fig. 3b). Unpotentiated population spikes, EPSPs and LTD are unaffected (B. Trommer, unpublished observations). Chemical variants of Aβ that lack neurotoxicity or the capacity to form fibrils also block LTP (Ref. 27). Furthermore, LTP can be impaired in some transgenic mice with normal synaptic terminals, fast synaptic transmission and short-term plasticity. Overall, these results indicate that novel mechanisms independent of neuron death could contribute to mild cognitive impairments in early AD.

Signal transduction

The kinetics and specificity of LTP inhibition suggest that ADDLs could target signal transduction. This possibility is untested for LTP, but knockout experiments have implicated an LTP-related protein tyrosine kinase, Fyn (Ref. 29), in ADDL-induced neuron death. The role of Fyn in LTP is presumably downstream from glutamate receptors, to which it must be tethered by the scaffold protein PSD95 (Ref. 30). Fyn signaling pathways also lead to upregulation of reactive oxygen species, known to be associated with ADDL- and fibril-induced neurotoxicity through a mechanism recently attributed to iron release from aconitase. Fyn has been linked specifically to the memory dysfunction associated with murine AD models (Ref. 33) and was recently found to play a role in prion signal transduction. Of particular significance for AD are the observations that Fyn is coupled through GSK3β to tau phosphorylation and that its activity is increased 400% in tangle-positive neurons in AD-affected brains. It has been suggested that Fyn signaling might be affected by ADDLs via specific cell-surface toxin receptors, but intracellular ADDL–Fyn association is also possible.

We propose a dual-toxin hypothesis for AD that comprises three stages of neural dysfunction and degeneration (Fig. 4). The hypothesis derives in part from the rapid impact of ADDLs on LTP, along with the weak correlation of amyloid with pathogenesis. Because Aβ is also a normal metabolite, produced through highly regulated proteolysis, we speculate that transient physiological elevations in Aβ1–42 (which should exponentially favor oligomerization) could exert physiological control. With increased exposure and dose, the oligomers would convert from physiological to pathogenic molecules in AD.

Oligomer-induced memory dysfunction before neuron death

Research focusing on the electrophysiological impact of Aβ oligomers suggests a new concept for early-stage AD. Declarative memory impairment occurs early in

Fig. 3. In vitro activities of Aβ-derived diffusible ligands (ADDLs).

(a) ADDLs are potent neurotoxins that slowly kill hippocampal neurons in mature brain slice preparations. With the live–dead dual fluorescence assay, ADDLs selectively induce death in hippocampal CA1 neurons, whereas a subpopulation of CA3 neurons and cerebellar neurons are resistant (J. Kim and G.A. Krafft, unpublished observations). (b) ADDLs block LTP in hippocampal slice within 1 hr. In vivo stereotaxic injections give similar results. As seen here, ADDLs do not block pre-tetanic population spikes, nor do they inhibit EPSPs or LTD (B. Trommer, unpublished observations). The immediate effects of ADDLs thus are selective for particular mechanisms in neuroplasticity. (b) reproduced, with permission, from Ref. 19.

Oligomer-induced memory dysfunction before neuron death

Research focusing on the electrophysiological impact of Aβ oligomers suggests a new concept for early-stage AD. Declarative memory impairment occurs early in
Familial AD, risk factors

Aβ_{1-42} → Aβ_{1-42} Chronic↑ → Aβ_{1-42}↑↑↑

Oligomers Chronic↑

Oligomers → Prototibrils → Fibrils

Memory impairment (reversible?)

Synapse loss (reversible?)

Neuron death

Fig. 4. Pathogenic amyloid β_{1-42} (Aβ_{1-42}) cascades. Alzheimer’s disease (AD) is linked to chronic elevations in brain levels of Aβ_{1-42} which are associated with familial risk factors for AD (mutations in presenilins 1 and 2, and amyloid precursor protein) and possibly other risk factors (head trauma, apolipoprotein E4 alleles). Thermodynamic stability of the elevated Aβ_{1-42} can result from its self-association into oligomers, which are relatively stable at low concentrations, both for synthetic and metabolically derived Aβ_{1-42} (Ref. 20). The Aβ cascade would at first impair memory mechanisms (as observed experimentally in loss of LTP). As oligomers increasingly accumulate and duration of exposure expands, synaptic terminals would be damaged or destroyed; eventually, synaptic regression and other ADDL-induced effects will lead to neuron death. The structurally higher order protofibrils and macroscopic fibrils, which require higher concentrations of Aβ_{1-42} for assembly, will eventually accumulate to toxic levels as well, participating with Aβ-derived diffusible ligands in an overall pathogenic Aβ cascade.

What would be the target of an optimum Alzheimer’s vaccine?

Antibodies designed to combat the CNS effects of Aβ are now in early-stage clinical trials. Immunization against Aβ neurotoxicity represents a major new approach to AD therapeutics and is based on the revolutionary findings of Schenk and colleagues. If immunization is established as a safe procedure, it’s optimum use will require knowledge of the therapeutic mechanism and the specific antigen(s) being targeted.

In Schenk's experiments, amyloid-producing transgenic mice were injected with solutions of full-length Aβ_{1-42}, aged overnight in buffer. Such aged Aβ solutions typically contain amyloid fibrils together with a mixture of smaller species which, in our experience, typically include ADDLs. Vaccination produced a startling reduction in amyloid that also appeared to benefit neuritic structure. Similar vaccination of other transgenic mouse AD models preserved performance in memory tasks measured by the Morris water maze. Most recently, amyloid burden also has been reduced by passive immunization with Aβ antibodies. Thus, perhaps for AD, as well as stroke, therapeutic antibodies will potentially penetrate the blood–brain barrier.

It has been suggested that antibodies to Aβ might indirectly activate microglia, which leads to clearance of Aβ either before or after plaque formation. Alternatively, various Aβ-derived toxins could be targeted directly. A potentially therapeutic single chain antibody obtained by phage display dissolves fibrils in vitro and prevents toxicity in PC12 cells. This antibody targets the N-terminal amino acids that play a role in Aβ self-association. Aside from therapeutic value, these and other antibodies should be powerful tools for identifying toxic epitopes, which

http://tins.trends.com

Acknowledgements

We are grateful to K. Voia (NWU) for extensive help in preparing the manuscript and expert assistance in computer graphics; to N. Patel (USC) for preparation of Fig. 2; to T. Morgan (USC), B. Chromy, M. Lambert (NWU), J. Rogers (Sun Health Research Institute) and Y. Ihara (University of Tokyo) for critical comments on portions of the text; to B.C. for preparation of the website; and to the NIA for support (W.L.K. and G.A.K., AG-15502; C.E.F., AG-13499).
should provide molecular insights for the development of traditional small organic molecule drugs.

An important unanswered question is whether immunization provides benefit to amyloid-free transgenic mouse models. Given the neurological deficits in plaque-free transgenic mice, and the correlation between soluble Aβ and synapse loss, we hypothesize that major benefit from vaccines comes from immuno-neutralization of ADDLs or PFs, independently of plaque disappearance. ADDLs are immunogenic at low doses, more so than Aβ monomers, and oligomer-selective antisera show neuroprotection in nerve cell culture experiments. If the model in Fig. 4 is correct, therapeutic antibodies designed to target oligomers could ultimately intervene early in AD.

References

pathology in the PDAPP mouse. Nature 400, 173–177

The link between excitotoxic oligodendroglial death and demyelinating diseases

Carlos Matute, Elena Alberdi, María Domercq, Fernando Pérez-Cerdá, Alberto Pérez-Samartín and María Victoria Sánchez-Gómez

Oligodendrocytes, the myelinating cells of CNS axons, are highly vulnerable to excitotoxic signals mediated by glutamate receptors of the AMPA and kainate classes. Receptors in these cells are commonly activated by glutamate that is released from axons and glial cells. In addition, oligodendrocytes contribute to the control of extracellular glutamate levels by means of their own transporters. However, acute and chronic alterations in glutamate homeostasis can result in overactivation of AMPA and kainate receptors and subsequent excitotoxic oligodendroglial death. Furthermore, demyelinating lesions caused by excitotoxins can be similar to those observed in multiple sclerosis. This, together with the effect of AMPA and kainate receptor antagonists in ameliorating the neurological score of animals with experimental autoimmune encephalomyelitis (an animal model of multiple sclerosis), indicates that oligodendrocyte excitotoxicity could be involved in the pathogenesis of demyelinating disorders.

Enhanced glutamate signaling can lead to excitotoxicity, a phenomenon whereby overactivation of glutamate receptors (GluRs) triggers cell death. Excitotoxicity was first described in the late 1950s in retinal neurons3. Later, Olney and co-workers2 found that this vulnerability is shared by all central neurons that contain GluRs. Thereafter, glutamate excitotoxicity has been implicated in acute injury to the CNS and in chronic neurodegenerative disorders4–5. The concept of excitotoxic cell death has recently been expanded to CNS glia. Glial cells include astrocytes, oligodendrocytes and microglia, which are distributed throughout the CNS. Classical studies have assigned to glia various roles that contribute to the support of neuronal function6. In addition, in the past few years it has been shown that astrocytes and oligodendroglia can actively participate in neurotransmission7–9. Strikingly, oligodendrocytes, which myelinate axons and constitute the vast majority of cells in the white matter, are highly vulnerable to overactivation of GluRs (Refs 10–12). This feature led to the proposal that oligodendrogial excitotoxicity might also be involved in the pathogenesis of demyelinating diseases13–15, which are characterized by the destruction of myelin, oligodendrocyte cell death and inflammation16,17. This review discusses the current knowledge of the determinants of glutamate signaling in oligodendrocytes, the vulnerability of these cells to glutamate excitotoxicity and the evidence pointing to the relevance of this process in demyelinating disorders of the CNS.

All major types of CNS glial cells participate in glutamate signaling
Glutamate activates ionotropic and metabotropic receptors present in neurons and glial cells. Ionotropic GluRs can directly mediate excitotoxicity18. According to pharmacological, electrophysiological and molecular properties, ionotropic GluRs are classified as AMPA (subunits GluR1–4), kainate (subunits GluR5–7 and KA1–2) and NMDA (subunits NR1 and NR2A–D) receptors19–20. However, it should be noted that in spite of this nomenclature, kainate receptors both AMPA and kainate receptors21.

AMPA and kainate receptors are commonly present in astrocytes and oligodendrocytes22–26 as well as in microglia27,28. By contrast, NMDA receptors are rare or absent in these cells21. Importantly, AMPA receptors in differentiated oligodendrocytes (Table 1), both in vitro and in situ, lack the GluR2 subunit, a feature that renders them permeable to Ca2+ (Ref. 31). In addition, the kainate receptor subunit GluR6, which is expressed in oligodendrocytes is edited to a