Structure of the Human Obesity Receptor Leptin-Binding Domain Reveals the Mechanism of Leptin Antagonism by a Monoclonal Antibody

Byron Carpenter,1,4 Glyn R. Hemsworth,2 Zida Wu,3 Mabrouka Maamra,1 Christian J. Strasburger,3 Richard J. Ross,1,* and Peter J. Artymiuk2,*

1Academic Unit of Diabetes, Endocrinology and Reproduction, Department of Human Metabolism, University of Sheffield, Sheffield S10 2JF, UK
2Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
3Division of Endocrinology, Campus Charité Mitte, Schumannstrasse 20/21, 10117 Berlin, Germany
4Present address: MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
*Correspondence: r.j.ross@sheffield.ac.uk (R.J.R.), p.artymiuk@sheffield.ac.uk (P.J.A.)
DOI 10.1016/j.str.2012.01.019

SUMMARY

Leptin regulates energy homeostasis, fertility, and the immune system, making it an important drug target. However, due to a complete lack of structural data for the obesity receptor (ObR), leptin’s mechanism of receptor activation remains poorly understood. We have crystallized the Fab fragment of a leptin-blocking monoclonal antibody (9F8), both in its uncomplexed state and bound to the leptin-binding domain (LBD) of human ObR. We describe the structure of the LBD-9F8 Fab complex and the conformational changes in 9F8 associated with LBD binding. A molecular model of the putative leptin-LBD complex reveals that 9F8 Fab blocks leptin binding through only a small (10%) overlap in their binding sites, and that leptin binding is likely to involve an induced fit mechanism. This crystal structure of the leptin-binding domain of the obesity receptor will facilitate the design of therapeutics to modulate leptin signaling.

INTRODUCTION

Leptin, the product of the obese (Ob) gene, regulates energy homeostasis, fertility, and the immune system, making it an important drug target (Considine et al., 1996; Lord et al., 1998). Leptin therapy has proved successful at inducing weight loss in rare cases of congenital leptin deficiency (Farooqi et al., 1999) and correcting the metabolic abnormalities in patients with severe lipodystrophy (Oral et al., 2002). Despite the disappointing results of leptin treatment in simple obesity (Mantzoros and Flier, 2000), combination therapy with leptin and other weight-regulating drugs can induce and maintain weight loss in some patients (Chan et al., 2009; Roth et al., 2008). Leptin-antagonist therapy may also have a role in the treatment of immune-mediated disorders. Leptin is permissive to a Th1 mediated immune response (Lord et al., 1998) and blockade of leptin, in animal models, imparts resistance to antigen-induced arthritis (Busso et al., 2002), multiple sclerosis (Matarese et al., 2001a; Matarese et al., 2001b), atherosclerosis (Schäfer et al., 2004), and certain types of breast cancer (Cleary et al., 2004). Thus, there is a need to develop both leptin agonists and antagonists; however, a complete lack of structural data for the obesity receptor (ObR) and its complex with leptin has been a major obstacle in their design.

The extracellular domain of ObR is composed of: an N-terminal cytokine receptor homology domain (CRH-1); an immunoglobulin-like (Ig) domain; a second CRH domain (CRH-2), also referred to as the leptin-binding domain (LBD); and two Fibronectin type III (FNIII) domains (Haniu et al., 1998). ObR shares greatest sequence homology, as well as similar extracellular domain size and organization, with the granulocyte colony stimulating factor (GCSF) receptor and glycoprotein 130 (gp130) (Haniu et al., 1998). LBD forms a high-affinity 1:1 ratio complex with leptin in solution, but does not form the 2:1 ratio complex associated with the small cytokine receptors, such as the growth hormone receptor (GHR) (Sandowski et al., 2002). The 1:1 ratio interaction occurs through leptin’s binding site II, and can be blocked by mutations within this region (Iserentant et al., 2005; Niv-Spector et al., 2005b; Peelman et al., 2004; Sandowski et al., 2002). Mutations within the Ig domain of ObR and binding site III of leptin have been shown to inhibit signal transduction without disrupting receptor binding (Niv-Spector et al., 2005a; Peelman et al., 2004, 2006). This indicates that the leptin-signaling complex forms a crossover arrangement between two leptin-ObR complexes, as observed for the GCSF receptor (Tamada et al., 2006). Mutagenesis and functional studies by one group also suggest a role for leptin’s putative binding site I (Peelman et al., 2004, 2006; Zabau et al., 2004), and a model involving four ObR chains clustering around two leptin molecules, akin to the IL-6/gp130/IL-6x-receptor signaling complex, has been proposed (Peelman et al., 2006). However, the exact position of leptin’s binding site I is the subject of debate (Niv-Spector et al., 2005a; Peelman et al., 2006), and it is unclear if site I is an absolute requirement for signaling.

ObR displays additional characteristics that mean, in some ways, its mechanism of signaling is likely to differ from that of
GCSF and IL-6. First, ObR contains an additional CRH domain at its N terminus, which is not present in GCSF or gp130. The role of this domain is poorly understood, but there is some evidence to suggest that it enhances leptin signaling levels (Zabeau et al., 2004), and thus may play a role in complex formation. Second, ObR is known to dimerize in a ligand-independent fashion both on the cell surface and in solution (Couturier and Jockers, 2003; Devos et al., 1997; Nakashima et al., 1997; White et al., 1997), possibly through disulphide bridges between its membrane-proximal FNIII domains (Zabeau et al., 2005). However, it is currently unclear how these dimers are arranged and whether leptin binding causes formation of the crossover complex within a single dimer or between a pair of dimers. Thus, crystal structures of both ObR and its complex with leptin are greatly needed to elucidate the full mechanism of leptin signaling.

RESULTS

Characterization of Leptin and 9F8 Fab Binding to LBD and ObR

It has previously been shown that 9F8 mAb can displace leptin from the full-length extracellular domain of ObR (Fazeli et al., 2006). However, the mechanism of displacement was unclear and it was not known if 9F8 Fab binds within the isolated LBD. Therefore, we designed a number of experiments to further characterize 9F8 and leptin binding to LBD and ObR. First, we used a competitive binding assay to confirm that 9F8 mAb can efficiently displace leptin from the full-length extracellular domain of ObR (Fazeli et al., 2006). Leptin was efficiently displaced from ObR by 9F8; IC50 values were calculated to be approximately 0.76 nM for leptin and 1.0 nM for 9F8 Fab (Figure 1A).
of interesting features. First, 9F8 is glycosylated at Asn-22 of the light chain, close to the complementarity determining regions (CDRs). In the uncomplexed structure good density is observed for some of the sugar moiety, due to its involvement in crystal lattice contacts, and thus one fucose residue and two N-acetylglucosamine sugars could be modeled (Figure 2A). In the LBD-9F8 Fab structure (see below) this region was devoid of crystal contacts and a single N-acetylglucosamine sugar residue was modeled in one copy of the light chain only (chain F). Despite its proximity to the CDRs, the glycosylation is not required for binding to ObR (Fazeli et al., 2006). Second, 9F8 contains a deep cavity within the surface of the CDRs, at the interface between the heavy and light chains (Figure 2B), the importance of which, with respect to receptor binding, is discussed below.

Structure of the LBD-9F8 Fab Complex

The asymmetric unit of the crystal (Figure 2C) contains two copies of the LBD-9F8 Fab complex (Figure 2D), which interact through a major interface between the LBD molecules. The LBD molecules are arranged in a cross-shaped complex (Figure 2C; Figure S1A available online), which is reminiscent of the erythropoietin (EPO) receptor ligand-independent dimer (PDB: 1ERN) (Ljivah et al., 1999; Figure S1A). However, the buried surface area of the LBD interface is only 700 Å² and involves minimal direct interactions, which is consistent with the observation that LBD does not dimerize in solution. Therefore, we conclude that the interface is most likely to be a crystal packing interaction, but cannot rule out a low-affinity interaction through this site in the full-length, membrane-bound receptor.

LBD is a β sheet rich protein composed of two subdomains, both of which adopt a fibronectin type III fold (Figures 2E and 3). The overall electron density for the LBD molecules is very good, but several loop regions, 39 residues in total, could not be satisfactorily modeled due to poor electron density (Figure S1B). Three disulphide bonds are observed within the N-terminal subdomain, between residues 436–447, 473–528, and 488–498 (Figure S1C). The two cysteine residues located within the C-terminal subdomain (Cys-604 and Cys-613) do not interact with one another. Cys-604 is exposed on the surface of the protein and is cysteinylation, which is most likely a consequence of using cysteine as a reducing agent while refolding LBD (Figure S1C). Three disulphide bonds are observed within the N-terminal subdomain, between residues 436–447, 473–528, and 488–498 (Figure S1C). The two cysteine residues located within the C-terminal subdomain (Cys-604 and Cys-613) do not interact with one another. Cys-604 is exposed on the surface of the protein and is cysteinylation, which is most likely a consequence of using cysteine as a reducing agent while refolding LBD (Figure S1C). Interestingly, the cysteinylation is involved in a major crystal lattice contact between LBD and the Fab heavy chain from a neighboring complex. Mutation of the two free cysteine residues (C604A/C613A) improved the yield of purified LBD 6-fold with no loss in affinity for leptin (data not shown). However, the mutant failed to crystallize in complex with 9F8 Fab, demonstrating that the cysteinylation was integral for lattice formation in this particular
crystal form. The C-terminal domain of LBD also contains the highly conserved WSXWS motif, which forms the basis of a π-cation stack involving Arg-573, Trp-583, Arg-612, and Lys-614 (Figure S1C). A global alignment using the program DALI (Holm et al., 2008) indicated that LBD is most structurally similar to the EPO receptor (PDB: 1EBP) (Livnah et al., 1996).

LBD-9F8 Fab Interaction
The LBD-9F8 Fab interface has a total buried surface area of 1,500 Å². All of the direct polar contacts, a total of eight hydrogen bonds and three salt bridges (Table 1), are formed between LBD and the Fab heavy chain (CDRs: H1, H2, and H3) and light chain (CDRs: L2 and L3) of 9F8 Fab (Table 1). The interacting surfaces of LBD and 9F8 Fab display opposite electrostatic potentials: the LBD surface carries a net positive charge, contrasting with the negatively charged CDRs of 9F8 Fab. The electrostatic component of the interface is reflected by the formation of three salt bridges between the proteins (see Figure 4A and Table 1). The interacting surfaces of LBD and 9F8 Fab also display a high degree of shape complementarity (Figure 4B). Most striking is the insertion of Ile-482 of LBD into the deep cavity on the surface of 9F8 (Figure 4C). Ile-482 is positioned less than 4 Å from six residues that line the cavity (Trp-54 and His-103 from the heavy chain; His-53, Trp-94, Tyr-96, and Leu-98 from the light chain), demonstrating the highly specific nature of this interaction. The degree of shape complementarity was quantified using the program SC (Lawrence and Colman, 1993). The Sc score of the LBD-9F8 Fab interface was 0.75 ± 0.0 (average of the two interfaces in the AU), which is well above the range of most antibody-antigen interfaces (Sc = 0.64–0.68), and most similar to highly conserved protein/protein-inhibitor complexes (Sc = 0.71–0.76) (Lawrence and Colman, 1993).

Conformational Changes in 9F8 Fab upon LBD Binding
The availability of refined crystal structures of 9F8 in both complexed and uncomplexed states (Table 2) allows a global alignment of these two forms of the Fab fragment. This results in an rmsd of 0.99 ± 0.09 Å (average of two Fab molecules in the LBD-9F8 Fab structure). This deviation primarily results from a major structural rearrangement within the elbow region of each Fab chain. It has been reported that an increase in the Fab elbow angle (flexion) can be induced by antigen binding, resulting from the variable regions of the heavy and light chain moving independently to one another (Teplyakov et al., 2011). However in the present case, a lateral rotation (approximately 8°) occurs in the elbow region, which does not affect the flexion angle. Furthermore, superposition of just the variable regions of the complexed and uncomplexed Fab molecules results in an rmsd of only 0.51 ± 0.00 Å (average of two Fab molecules in the LBD-9F8 Fab structure), demonstrating that the variable regions do not move in relation to one another. Therefore we conclude that the distortion in the elbow region of 9F8 Fab is not induced by LBD binding, and is most likely a result of crystal packing constraints.

Superposition of the variable domains permits an assessment of the specific changes induced by LBD binding. Only minor conformational changes (less than 1 Å) are seen in most of the CDRs, including side chain atoms, with the exception of CDR H3 (Figure 4D). CDR H3 is involved in 6 of the 11 polar contacts in the interface (Table 1) and undergoes a maximum shift of 2.5 Å upon LBD binding (Figure 4D). Within this loop, His-103 undergoes a rotamer change allowing it to interact with Glu-484 of LBD; Glu-104, which is disordered in uncomplexed 9F8, becomes highly ordered and interacts with His-467, Ser-469, and Ser-470 of LBD. The movement of CDR H3 also creates a small pocket, which accommodates Ser-470 of LBD (Figure 4C). A movement of 0.8 Å is also observed in CDR L3 upon complexation, which is induced by a rotamer shift in His-93 (Figure 4D). In its new position His-93 forms 35 van der Waals contacts with residues from the reoriented CDR H3 (His-100, His-103, Glu-104 and Thr-105), stabilizing its LBD-interacting conformation. Asn-95 from CDR L3 also undergoes a rotamer change, relieving a potential steric clash with Pro-481, and allowing it to form three van der Waals contacts with this residue. The reconfiguration of CDRs L3 and H3 also causes a 2.7 Å contraction of the surface cavity of 9F8 Fab, into which Ile-482 of LBD inserts (Figures 4C and 4D).
Evidence against the Involvement of LBD in Disulphide Dimerization of ObR

It has been suggested that cysteine residues within LBD mediate ligand-independent dimerization of ObR on the cell surface (Zabbeau et al., 2005). LBD contains two unpaired cysteine residues: Cys-613 is totally buried in the core of the protein, whereas Cys-604 is located in a solvent exposed position on the surface of LBD. Thus, Cys-604 initially appeared to be a good candidate to be involved in disulphide dimerization of ObR. However, alignment of LBD with the structure of the full gp130 ectodomain (PDB: 3L5H) (Xu et al., 2010) revealed that Gly-339 from the downstream FNIII domain of gp130 is positioned only 4.3 Å away from Cys-604 of LBD (Figure 5). Primary structure alignment of these receptors shows that Gly-339 from gp130 aligns perfectly with Cys-674 of ObR. Therefore, it is most likely that an intramolecular disulphide bond forms between Cys-604 and Cys-674 of ObR, indicating cysteine residues within LBD are not responsible for dimerization of ObR. Hence, other conserved cysteine residues within the FNIII domains of ObR (Haniu et al., 1998) may be involved in receptor dimerization, and warrant further investigation.

A Model for Leptin Binding to LBD

We generated a rigid body docking model of the leptin-LBD complex using the GRAMM-X server (Tovchigrechko and Vakser, 2006). Two loops (J-K and L-M loops) within the C-terminal subdomain of LBD have fragmented electron density, presumably due to conformational flexibility, and are omitted from the final structure. However, indicative loops were modeled in order to reconstruct the molecular surface for docking experiments (Figure S2). We modeled the J-K loop in both LBD molecules from the asymmetric unit, but no consensus could be reached for its orientation between the two chains. In fact, the
best fit achieved in the two LBD molecules indicated two different conformations of the loop, particularly in the region around Phe-563 (Figures 6A and 6B; Figure S2): in one molecule (chain A) Phe-563 appears to be located in a solvent exposed position; in the other molecule (chain B) Phe-563 is largely buried in the core of the protein. Defining this observation as two distinct orientations of the J-K loop is speculative, and it is more likely that a large number of conformations exist under physiological conditions. However these two putative configurations provided a good basis for docking simulations, and allowed us to investigate the importance of this loop in leptin binding.

Docking experiments were also undertaken to investigate the existence of the putative leptin binding site I. However, interpretation of these results was more difficult than the site II simulations for a number of reasons: the putative interaction is low affinity (Sandowski et al., 2002); only a small amount of mutagenesis data is available for the proposed interface (Peelman et al., 2004); and the surface of LBD predicted to be involved in the site I interface overlaps with that involved in site II interactions. Therefore, we were unable to reach any conclusions about the existence of the putative binding site I through docking experiments.

In the docking experiment directed toward leptin binding site II, one of the highest scoring output models (Figure 6C) showed remarkable similarity to both the GCSF/GCSFR receptor (PDB: 2D9Q) (Tamada et al., 2006) and IL-6/gp130 (PDB: 1P9M) (Boulanger et al., 2003) complexes. The rmsd between the complexes is approximately 3 Å in both cases, which is similar to the rmsd when the individual proteins are superimposed. The predicted area of the leptin/LBD interface is approximately 1,500 Å², which also compares closely with that of GCSF/GCSFR (1,400 Å²) and IL-6/gp130 (1,700 Å²). Most significantly, this model correlates with results from mutagenesis studies (Isersenrant et al., 2005; Niv-Spector et al., 2005b; Peelman et al., 2004) as described below.

The hydrophobic E-F loop of LBD contains six residues (Phe-500, Ile-503, Phe-504, Leu-505, Leu-506, Ser-507) (Figure 6B) which, when mutated to alanine, dramatically reduce leptin binding affinity and signal transduction (Isersenrant et al., 2005; Niv-Spector et al., 2005b). Interestingly, two of these residues (Phe-500 and Ile-503) have their side chains almost totally buried in the core of the protein, and do not interact with leptin. Leu-505 and Leu-506 align with the hydrophobic cavity between helices 1 and 3 of leptin, a region previously identified as important for receptor binding (Isersenrant et al., 2005), forming van der Waals interactions with Leu-13 and Leu-86 (Figure 6D). This network of van der Waals interactions also involves residues belonging to the SSLY motif of LBD. Leu-471 and Tyr-472 form extensive van der Waals interactions also involves with that involved in site II interactions. Therefore, we were unable to reach any conclusions about the existence of the putative binding site I through docking experiments.

The Flexible J-K Loop of LBD Mediates Contacts with Leptin

Contacts between the C-terminal subdomain of LBD and leptin appear to be predominantly mediated by the flexible J-K loop. In both docking models (based on LBD chains A and B) Phe-563, Pro-564, Glu-565, and Asn-566 from the J-K loop are positioned parallel to helix 1 of leptin. Mutation of Glu-565 and...
Asn-566 causes a reduction in the level of signal transduction (30% and 50%, respectively) (Iserentant et al., 2005), and mutation of Phe-563 causes an 18-fold decrease in binding affinity (Niv-Spector et al., 2005b). We discussed previously that the J-K loop of LBD was modeled in two different conformations (Figure 6A; Figure S2). In LBD chain A Phe-563 was modeled in a solvent exposed position: in this docking model Phe-563 forms extensive van der Waals contacts with polar residues from leptin (Thr-16, Thr-19, Arg-20, and Asp-23), but it lacks a specific hydrophobic or aromatic binding partner. In LBD chain B Phe-563 was modeled in a buried position, and does not interact with leptin. Therefore our docking model agrees with published mutagenesis data, which suggests leptin interacts with the J-K loop (Iserentant et al., 2005; Niv-Spector et al., 2005b). However, it is unclear whether Phe-563 forms direct contacts with leptin or instead stabilizes the correct orientation of the J-K loop to allow leptin binding.

The Leptin and 9F8 Fab Binding Sites Are Predicted to Partially Overlap

We used the leptin-LBD model to investigate the mechanism by which 9F8 Fab neutralizes leptin signaling. Superposition of the LBD-leptin model onto the LBD-9F8 Fab structure indicates a small but significant overlap between the observed 9F8 Fab and the predicted leptin-binding sites (Figure 6E). The common overlap region consists of approximately 80 Å² of the LBD surface that would be buried in both interfaces: this relates to only about 10% of the total surface of LBD that is buried in either J-K loop of LBD was modeled in two different conformations (Figure 6A; Figure S2). In LBD chain A Phe-563 was modeled in a solvent exposed position: in this docking model Phe-563 forms extensive van der Waals contacts with polar residues from leptin (Thr-16, Thr-19, Arg-20, and Asp-23), but it lacks a specific hydrophobic or aromatic binding partner. In LBD chain B Phe-563 was modeled in a buried position, and does not interact with leptin. Therefore our docking model agrees with published mutagenesis data, which suggests leptin interacts with the J-K loop (Iserentant et al., 2005; Niv-Spector et al., 2005b). However, it is unclear whether Phe-563 forms direct contacts with leptin or instead stabilizes the correct orientation of the J-K loop to allow leptin binding.

The Leptin and 9F8 Fab Binding Sites Are Predicted to Partially Overlap

We used the leptin-LBD model to investigate the mechanism by which 9F8 Fab neutralizes leptin signaling. Superposition of the LBD-leptin model onto the LBD-9F8 Fab structure indicates a small but significant overlap between the observed 9F8 Fab and the predicted leptin-binding sites (Figure 6E). The common overlap region consists of approximately 80 Å² of the LBD surface that would be buried in both interfaces: this relates to only about 10% of the total surface of LBD that is buried in either
the 9F8 Fab (800 Å²) or predicted leptin (750 Å²) interfaces. The overlap region involves six LBD residues (Arg-468, Ser-469, Ser-470, Leu-471, Pro-502, and Phe-504). All of these residues form direct contacts (less than 4 Å) with 9F8 Fab (Table 1) and five are predicted to form direct interactions with leptin (Arg-468, Ser-470, Leu-471, Pro-502, and Phe-504). In addition to the surface overlap, a sterically forbidden overlap of main chain atoms by approximately 5 Å is predicted to occur between leptin and the 9F8 Fab light chain if they were to bind LBD simultaneously (Figure 6E).

See also Figure S2.

DISCUSSION

We have crystallized 9F8 Fab in its uncomplexed state and used Fab-mediated crystallization to solve the structure of the LBD-9F8 Fab complex. The structures have allowed us to characterize the changes induced in 9F8 by LBD binding. Our findings also provide valuable insight into the mechanism of leptin binding to LBD and the mechanism of 9F8 antagonism of leptin signaling.

To date, crystallization of the isolated LBD or a leptin-LBD complex has proved difficult. Although there are numerous possible reasons for this, a major contributing factor is likely to be the presence of several flexible loops within LBD, which limit the surface area amenable to crystal contact formation. Fab-mediated crystallization is a powerful technique used to improve the crystallization properties of challenging proteins by stabilizing dynamic regions, increasing the hydrophilic surface area available for crystal lattice formation, and masking unfavorable regions of the protein surface (Koide, 2009). Here, it was successfully employed to crystallize LBD, and in future the use of nonneutralizing antibodies, that bind either leptin or LBD, may facilitate crystallization of the leptin-LBD complex.

The structures of 9F8 Fab in both its uncomplexed and receptor-bound forms give valuable insight into its mechanism of antigen recognition. Electrostatic interactions, shape complementarity and conformational rearrangement all play an important role in antigen binding. Receptor binding induces minor changes in the Fab structure, which are limited to mainly small rearrangements in individual CDRs, the degree of which is consistent with other antibody-antigen complexes (Davies and Cohen, 1996). Interestingly CDR H3, which is involved in over half of the polar contacts in the interface, undergoes a larger (2.5 Å) movement upon receptor binding. Rearrangement of CDR H3 is coupled to a rotamer shift in His-93 (CDR L3), which appears to stabilize CDR H3 in its receptor binding conformation. The rearrangements in CDRs H3 and L3 also result in a 2.7 Å contraction of the 9F8 surface cavity into which Ile-482
of LBD tightly fits. Therefore antigen binding involves a limited induced fit mechanism, which is likely to contribute to the high degree of shape complementarity observed in the interface.

In order to characterize the leptin-binding site of LBD, we generated a model of the leptin-LBD complex using the crystal structures of both leptin (PDB: 1AX8) (Zhang et al., 1997) and LBD. Several groups have reported models of the leptin-LBD complex based on homology models of LBD (Hirokke et al., 2000; Iserentant et al., 2005; Sandowski et al., 2002). The overall arrangement of the leptin-LBD complex in our model appears similar to these previously published homology models, but many of the specific interactions reported differ significantly. In particular, our model predicts an important role for Tyr-472 of LBD in leptin binding, which has not been identified from previous homology models. Interestingly, our model predicts that the main site of leptin binding within the C-terminal subdomain of LBD is likely to be the J-K loop, which the crystal structure of LBD revealed to be highly flexible. This provides strong evidence that leptin binding involves an induced fit mechanism.

We analyzed the corresponding regions from uncomplexed cytokine receptor structures to determine if flexible loops are a common feature of cytokine binding. Currently the only structures available for class-I cytokine receptors in their monomeric, uncomplexed states are: the IL-6x receptor (PDB: 1N26) (Varghese et al., 2002); gp130 (PDB: 1BOU and 3L5H) (Bravo et al., 1998; Xu et al., 2010); and GHR (PDB: 2AEW) (Brown et al., 2005). GHR is the only receptor to show significant flexibility in its equivalent of the J-K loop (Brown et al., 2005). Superposition of the uncomplexed structure with that of the growth hormone-bound receptor (PDB: 1A22) (Clackson et al., 1998) shows that the loop becomes ordered upon ligand binding. Therefore, an induced fit mechanism of ligand binding may be of wider significance within the cytokine receptor family.

We used analytical gel filtration and competitive binding assays to demonstrate that leptin and 9F8 Fab cannot simultaneously bind to LBD. Molecular modeling of the leptin-LBD complex revealed that the 9F8 Fab and leptin binding sites partially overlap. Thus, in respect to the isolated LBD, the antagonist action of 9F8 Fab is most likely to result from direct competition between 9F8 Fab and leptin binding. In vivo, inhibition of ObR dimerization or higher order clustering may represent a secondary mechanism of antagonism, particularly with regard to the full antibody; allosteric inhibition of ObR has recently been demonstrated using camelid antibodies directed against its membrane proximal FNIII domains (Zabeau et al., 2012). Superposition of the LBD-9F8 Fab complex onto the structure of the GCSF and IL-6 signaling complexes demonstrates that 9F8 Fab would neither disrupt formation of the crossover complex, nor prevent binding of an additional receptor to leptin’s putative binding site I region. However, because the exact arrangement of the ObR signaling complex is unknown, a secondary mechanism of 9F8 antagonist in vivo cannot be discounted.

The observation that 9F8 Fab blocks leptin binding through only a 10% overlap in their epitopes is a surprising finding, which has implications for the assignment of functional sites in target proteins solely on the basis of antibody modulation of function. It also suggests that when creating therapeutic neutralizing antibodies a much wider range of potential peptide epitopes should be considered than those restricted to the major functional sites. What implications does our study have for the design of novel leptin-modulating therapeutics? First, we have shown that 9F8 binds within the isolated LBD, with a similar affinity to leptin, and that their binding is mutually exclusive. Second, we have crystallized 9F8 Fab in both its uncomplexed and receptor-bound forms, and characterized the changes in 9F8 induced by LBD binding. Therefore, 9F8 mAb is a good template for structure-based design of a potent leptin antagonist with strong therapeutic potential. Finally, because we predict that the epitopes of leptin and 9F8 Fab overlap by only 10%, 9F8 Fab represents a useful tool to mediate cocrysallization of LBD with potential peptide or small molecule drug candidates.

In summary, we have crystallized 9F8 Fab both in its uncomplexed state and in complex with LBD, and characterized the changes induced in 9F8 Fab caused by receptor binding. We constructed and characterized a putative model of the leptin-LBD complex, and proposed an induced fit mechanism for leptin binding. We also used the leptin-LBD model to propose that 9F8 Fab antagonizes leptin binding through a partial overlap in their binding sites. To our knowledge, this is the first report of a crystal structure for any part of the obesity receptor and will facilitate the design of therapeutics to modulate leptin signaling.

EXPERIMENTAL PROCEDURES

LBD Production and Analysis

LBD (residues 428–635 of human ObR) was expressed, refolded and purified essentially as described previously (Sandowski et al., 2002). Competitive binding assays were performed in ELISA format: ObR and LBD were captured using nonneutralizing antibodies and detected using biotinylated leptin or 9F8. Full details are provided in the Supplemental Experimental Procedures.

9F8 Fab Production

The identification and characterization of 9F8 mAb has been described previously (Fazeli et al., 2006). 9F8 mAb was expressed in the monoclonal hybridoma cell line and was purified by protein A affinity chromatography (Pierce). Fab fragments were prepared by digestion of the purified mAb with immobilized papain (Pierce) at 37°C for 5 hr. Fab fragments were isolated by negative purification on a protein A column, and further purified by gel filtration.

Crystalization and Structure Solution of 9F8 Fab

Crystals of 9F8 Fab were grown by hanging-drop vapor diffusion against crystallization buffer (0.2 M ammonium sulfate, 0.1 M sodium acetate [pH 4.6], 25% PEG-4000) at a protein concentration of 10 mg/ml. Crystals grew to maximum size in 2–3 weeks at 8°C. Crystals were cryoprotected in crystalization buffer containing 20% glycerol for 1 min, before freezing in a dry nitrogen stream at 100 K. Diffraction data were collected in-house using a Micromax 007 source and MAR345 detector. Data were indexed using MOSFLM (Leslie, 2006) and scaled using SCALA (Evans, 1993). Data processing was performed using the CCP4 program package (Potterton et al., 2003); full statistics are shown in Table 2. The structure was solved by molecular replacement using PHASER (McCoy et al., 2005), using chains A and D of the pdb deposition 1C1G (Bentley et al., 1990) as models for the heavy and light chains, respectively. Refinement was performed by the maximum likelihood method using REFMAC (Murshudov et al., 1997), with manual rebuilding using COOT (Emsley and Cowtan, 2004).

Crystalization and Structure Solution of the LBD-9F8 Fab Complex

LBD and 9F8 Fab were mixed in a 1:1 stoichiometric ratio, incubated overnight at 4°C and purified by gel filtration. Crystals were grown by hanging-drop vapor diffusion against crystallization buffer (100 mM sodium acetate pH 4.6, 150 mM unbuffered sodium acetate, 5% PEG–4000), at a protein concentration of 7.5 mg/ml. Crystals grew to maximum size in 2–3 weeks at 8°C. Crystals were cryoprotected in crystallization buffer containing 30% ethylene glycol for 1 min, before freezing in a dry nitrogen stream at 100 K.
Diffraction data were collected on beamline I02 at Diamond Synchrotron (Oxfordshire, UK). Data were indexed using MOSFLM (Leslie, 2006) and scaled using SCALA (Evans, 1993). Data processing was performed using the CCP4 program package (Potterson et al., 2003); full statistics are shown in Table 2. The structure was phased using PHASER (McCoy et al., 2005), by molecular replacement with the structure of 9F8 Fab. The amino acid sequence of LDL was fitted using ARP-WARP (Cohen et al., 2008). Refinement was performed by the maximum likelihood method using REFMAC (Murshudov et al., 1997), with manual rebuilding using COOT (Emsley and Cowtan, 2004). The final models were validated using MOLPROBITY (Davis et al., 2007), and further details are provided in the Supplemental Experimental Procedures section.

Protein-Protein Docking Experiments
Docking was performed using the GRAMM-X protein-protein docking server (Tovchigrechko and Vakser, 2006). The J-K and L-M loops of LDL had fragmented electron density, and thus they are omitted from the final structure. However, indicative loops were modeled in order to reconstruct the molecular surface for docking experiments (Figure S2). Different conformations of the J-K loop were modeled in LDL chains A and B, and are discussed in the text. Docking simulations were conducted using both LDL molecules.

In order to limit the search area to the putative binding sites of both LDL and leptin (PDB: 1AX8) (Zhang et al., 1997) a small number of key residues were specified to be involved in the interface. Three LDL residues (Phe-504, Leu-505, and Leu-506) and two leptin residues (Arg-20 and Gin-75) were selected based on: data from mutagenesis studies, their central location within the putative binding sites, and their solvent exposed position on the protein surface. The final models were subjected to 20 cycles of energy minimization, using the GROMOS96 implementation of the Swiss-pdb viewer (Guex and Peitsch, 1997), to resolve a number of small stereochemical clashes. Docking models are provided in Supplemental Data File 1 online.

ACCESSION NUMBERS
Atomic coordinates and structure factors of 9F8 Fab and the LDL-9F8 Fab complex have been deposited in the Protein Data Bank, http://www.pdb.org (PDB code 3VG0 and 3V6O, respectively).

SUPPLEMENTAL INFORMATION
Supplemental Information includes Supplemental Experimental Procedures and two figures and can be found with this article online at doi:10.1016/j.str.2012.01.019.

ACKNOWLEDGMENTS
Z.W., C.J.S., and R.J.R. have a granted patent in the US and Europe on the use of the 9F8 antibody for the treatment of autoimmune disease, and R.J.R., P.J.A., and B.C. have a patent application on the use of the 9F8 epitopes in the development of therapeutic antibodies. However, neither of these is currently being exploited commercially. We thank Diamond Light Source for access to beamline I02 (BAG MX300) that contributed to the results presented here. We thank Svetlana Sedelnikova for assistance with analytical gel filtration. Monoclonal antibody Fab Fragments were prepared by the Antibody Resource Centre (Sheffield, UK). B.C. was in receipt of an Medical Research Council PhD studentship. G.R.H. was in receipt of a Biotechnology and Biological Sciences Research Council PhD studentship. G.R.H. and M.M. crystallized 9F8 Fab. G.R.H solved the structure of 9F8 Fab. B.C. cloned, expressed and purified LDL and leptin, and crystallized the LDL-9F8 Fab complex; B.C. and G.R.H. solved the LDL-9F8 Fab structure; B.C., Z.W., and C.J.S. carried out functional studies; Z.W. and C.J.S. provided new reagents; P.J.A. and R.J.R. directed the research; B.C., P.J.A., and R.J.R. wrote the paper.

Received: October 31, 2011
Revised: January 13, 2012
Accepted: January 22, 2012
Published: March 6, 2012

REFERENCES

lular domain of the leptin receptor and determination of the stoichiometry of leptin binding. J. Biol. Chem. 272, 18304–18310.
Structure
LBD-9F8 Fab Complex

