Research Shows Cocaine And Heroin Are Less Addictive Than Oreos

“Research Shows Oreos Are Just As Addictive As Drugs,” says the headline above a recent Connecticut College press release. “…in Lab Rats,” it adds, and I’ll get to that part later. But first note that the study’s findings could just as truthfully be summarized this way: “Drugs Are No More Addictive Than Oreos.” The specific drugs included in the study were cocaine and morphine, which is what heroin becomes immediately after injection. So the headline also could have been: “Research Shows That Heroin and Cocaine Are No More Addictive Than Oreos.” Putting it that way would have raised some interesting questions about the purportedly irresistible power of these drugs, which supposedly justifies using force to stop people from consuming them. But the researchers are not interested in casting doubt on the empirical basis for the War on Drugs; instead they are trying to build an empirical basis for the War on Fat:

“Our research supports the theory that high-fat/high-sugar foods stimulate the brain in the same way that drugs do,” [neuroscientist Joseph] Schroeder said. “It may explain why some people can’t resist these foods despite the fact that they know they are bad for them.”...

“My research interests stemmed from a curiosity for studying human behavior and our motivations when it comes to food,” said [neuroscience major] Jamie Honohan. “We chose Oreos not only because they are America’s favorite cookie, and highly palatable to rats, but also because products containing high amounts of fat and sugar are heavily marketed in communities with lower socioeconomic statuses.”...

“Even though we associate significant health hazards in taking drugs like cocaine and morphine, high-fat/high-sugar foods may present even more of a danger because of their accessibility and affordability,” she said.

According to Schroeder, “some people can’t resist these foods.” It would be more accurate to say that some people don’t resist these foods, perhaps because they do not have exactly the same values, tastes, and preferences as Schroeder and Honohan. Instead of considering that possibility, Schroeder simply assumes that people who eat things “they know…are bad for them” cannot help themselves. His explanation for this unproven premise is that “high-fat/high-sugar foods stimulate the brain in the same way that drugs do.” But if the neurological effects of Oreos make them impossible to resist, how is it that most people manage to resist them, consuming them in moderation or not at all?

And who are the “some people” who can’t manage that feat? Honohan’s remarks cast light on that question. She is worried about people “with lower socioeconomic statuses.” They are the ones who are expected to behave like the rats in the study, which is why it may be necessary for the government to make the foods they like less accessible and less affordable, presumably through regulation and taxation. Schroeder and Honohan refrain from recommending such policies within the confines of the press release, but it is not hard to see where they are going with this.

So what exactly did the rats do? They favored the side of a maze where they were given Oreos to the same extent that they favored that side of the maze when they were given an injection of cocaine or morphine there. Furthermore, when the researchers “used immunohistochemistry to measure the expression of a protein called c-Fos, a marker of neuronal activation, in the nucleus accumbens, or the brain’s ‘pleasure center,’” they found that “the Oreos activated significantly
more neurons than cocaine or morphine.” Given the latter finding, perhaps we should credit Connecticut College’s publicity department with restraint for not announcing that Oreos are in fact more addictive than cocaine or heroin. Or to put it another way: Cocaine and heroin are less addictive than Oreos. Which makes you wonder why people go to prison for selling the drugs but not for selling the cookies, especially since Oreos and similar foods “may present even more of a danger.”

The idea that people can take or leave cocaine or heroin in the same way they can take or leave Oreos seems inconsistent with research that supposedly shows how powerfully reinforcing these substances are. Studies published between 1969 and 1985, for instance, found that rats and rhesus monkeys “will prefer cocaine to food” and “will self-administer cocaine until death or near-death,” as Stanton Peele and Richard DeGrandpre note in a 1998 Addiction Research article. But the animals in these studies were isolated from other animals, deprived of interesting stimuli, and tethered to catheters providing “an unlimited, direct flow of high concentrations of cocaine at all times at little or no cost” (in terms of effort). Research conducted in more naturalistic settings finds that monkeys and rats are much more apt to consume cocaine and morphine in moderation. Laboratory animals’ tendency to consume drugs to excess when they are bored and lonely has pretty clear parallels in human behavior. But unlike rats and monkeys, humans are capable of reason and foresight (even if they do not always exercise those faculties) as well as emotions such as guilt and regret. They also have considerable control over their own environments. If the reinforcing power of drugs is not the only factor in addiction among rats and monkeys, it surely is not a complete explanation for why some people get hooked on these substances while most do not.

Likewise with Oreos. It would be easy to mock Schroeder and Honohan’s discovery that cookies are addictive, especially since they started out knowing that Oreos are “highly palatable to rats” and then concluded, based on the maze experiment and biochemical analysis, that Oreos are highly palatable to rats. But the study inadvertently highlights an important truth: Anything that provides pleasure (or relieves stress) can be the focus of an addiction, the strength of which depends not on the inherent power of the stimulus but on the individual’s relationship with it, which in turn depends on various factors, including his personality, circumstances, values, tastes, and preferences. As Peele and other critics of neurological reductionism have been pointing out for many years, the reality of addiction lies not in patterns of brain activity but in the lived experience of the addict. Locating addiction in the unmediated effect that certain stimuli have on “the brain’s pleasure center” cuts the addict out of the picture. His desires and choices do not matter, because he is under the control of irresistible impulses caused by exposure to stimuli too powerful for him to deal with on his own. And this is where the fallacious moral justification for forcible intervention, whether aimed at drug abuse or obesity, comes from: He cannot help himself, so we must help him, whether he likes it or not.