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Insights Into the Role of the
Microbiome in Obesity
and Type 2 Diabetes
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The worldwide prevalence of obesity and type 2 diabetes mellitus (T2DM)
continues to rise at an alarming pace. Recently the potential role of the gut
microbiome in these metabolic disorders has been identified. Obesity is
associated with changes in the composition of the intestinal microbiota, and
the obese microbiome seems to be more efficient in harvesting energy from the
diet. Lean male donor fecal microbiota transplantation (FMT) in males with
metabolic syndrome resulted in a significant improvement in insulin sensitivity in
conjunction with an increased intestinal microbial diversity, including a distinct
increase in butyrate-producing bacterial strains. Such differences in gut micro-
biota composition might function as early diagnostic markers for the development
of T2DM in high-risk patients. Products of intestinal microbes such as butyrate
may induce beneficial metabolic effects through enhancement of mitochondrial
activity, prevention of metabolic endotoxemia, and activation of intestinal
gluconeogenesis via different routes of gene expression and hormone regulation.
Future research should focus on whether bacterial products (like butyrate) have
the same effects as the intestinal bacteria that produce it, in order to ultimately
pave the way for more successful interventions for obesity and T2DM. The rapid
development of the currently available techniques, including use of fecal
transplantations, has already shown promising results, so there is hope for novel
therapies based on the microbiota in the future.

The rising prevalence of type 2 diabetes mellitus (T2DM) continues to be a growing
concern worldwide. From 1980 to 2008 the number of people diagnosed with di-
abetes, of which 90% type 2, has increased from 153 (123—-182) million to 347 (314
382) million (1). The proportional increase in prevalence of obesity (between 1980
and 2008, this has nearly doubled to more than half a billion people in the world)
shows weight gain and changes in dietary habits to be the main contributing factors
to this alarming trend. The resulting metabolic disorders like dyslipidemia and in-
sulin resistance, both part of the metabolic syndrome, are a major risk factor for
associated diseases such as cardiovascular pathology, nonalcoholic fatty liver dis-
ease, and different types of cancer (2,3). The main cause for the obesity and diabetes
epidemic has been attributed to economic and lifestyle changes in the last decades,
including the decrease in physical activity combined with a growing availability of
food high in calories. However, it appears to be extremely difficult for people to
voluntarily change their lifestyle drastically in order to lose weight. In this respect,
evidence of a powerful regulating biological system resisting these cognitive signals
in order to maintain body weight in a relatively strict range is substantial and
growing (4). For this reason, obesity is now considered a disease, rather than a
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willful choice, which calls for further in-
sight into the pathophysiological path-
ways, as this could lead to sorely needed
novel therapeutic targets.

A recently discovered partaker in this
process is the intestinal microbiome (2).
The microbiome refers to the >10"*
bacteria that reside in the human intes-
tine, comprising a bulk of genetic mate-
rial larger than the human genome (5).
Recently our knowledge of the micro-
biome in relation to the function of the
human (small) intestine (Fig. 1) (6) has
increased immensely due to the develop-
ment of new analytical methods such as
high-throughput metagenomic sequenc-
ing (7). This has enabled researchers to
identify possible effects of the micro-
biome on human metabolism, including
its potential role in metabolic disorders
like obesity and T2DM. In this review,
we aim to provide deeper insight of rele-
vance to clinicians by discussing several
topics in a “bench to bedside” approach
within this emerging field.

DIAGNOSTIC VALUE OF

INTESTINAL MICROBIOTA IN T2DM

Although bacteria are usually considered
as pathogens, an essential symbiotic
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interaction between the human host
and intestinal bacteria is the forging and
maintenance of the immune system in
the gut. The first recognition came from
findings in germ-free (GF) mice of defects
in the development and function of their
immune system (8). Another crucial inter-
action of gut microbiota is their endoge-
nous metabolic function that enables the
digestion of food components such as
plant polysaccharides, which are other-
wise nondegradable (9). In this respect,
it is interesting that studies in mice as
well as humans have shown that gut mi-
crobiota differ in composition between
obese and lean subjects (10,11). In a
leptin-deficient ob/ob mouse model Ley
et al. (10) found a difference in the ratio
of Bacteroidetes and Firmicutes, the two
dominant intestinal bacterial phyla. Com-
pared with their lean counterparts, obese
mice showed a decrease in Bacteroidetes
and a corresponding increase in Firmicutes
(10). When Ley et al. (10) compared gut
microbiota of obese humans to lean con-
trols, they found similar differences in
this ratio (12). Other studies in mice have
corroborated these results (13—16). How-
ever, other human studies have found
contradicting data (17-19), and it is
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Figure 1—Differential functions of small and large intestine in relation to microbial density (6). In
the proximal part of the small intestine (where only few intestinal bacterial strains reside),
important metabolic functions take place such as uptake of dietary glucose, lipids, and proteins.
More distally in the colon (where the majority of intestinal bacterial strains reside), water is
absorbed from feces and SCFAs are produced via fermentation.

considered that part of this controversy
results from both the variations in diet
composition around the globe as well as
different methods used to determine mi-
crobiota composition.

The involvement of the microbiome
in energy balance was further demon-
strated in a study where it was found
that GF mice were leaner compared
with conventionally raised counter-
parts, despite a higher food intake. Ad-
ditionally, when transferring intestinal
bacteria from normal mice to GF coun-
terparts, an increase in body fat of 60%
was observed within 10-14 days, even
though food consumption was de-
creased (20). These results have led to
the belief that the obese microbiome is
more efficient at yielding energy from
the diet (11,17). This was supported by
findings that the total body fat of GF
mice colonized with “obese microbiota”
increased significantly compared with
those colonized with “lean microbiota”
(11). The technique used in these stud-
ies in mice is known as fecal microbiota
transplantation (FMT). In humans, FMT
can be regarded as a working tool to
dissect association from causality for a
number of diseases (21). The first clinical
use was the successful treatment of pa-
tients with pseudomembraneous colitis,
an unremitting infection with Clostrid-
ium difficile usually following the use
of antibiotics (22). Since then, FMT has
been found effective in other chronic
gastrointestinal infections and inflam-
matory bowel diseases, its therapeutic
potential being attributed to a restoring
ability of the gut microbial balance by
replacing pathogens with more benefi-
cial bacterial strains (21,23). Consider-
ing the promising results of the effects
of FMT on metabolism in mice, a current
interest in the clinical use of FMT for
humans is focusing on metabolic and
cardiovascular disorders. We recently
performed a double-blind randomized
controlled trial in insulin-resistant males
with metabolic syndrome, who received
either autologous or allogenic feces in-
fusion from lean donors (24). Beneficial
metabolic effects were observed in the
group receiving the lean donor trans-
plantation, including a significantly im-
proved peripheral (muscle) insulin
sensitivity. This was accompanied by a
significantly increased intestinal micro-
bial diversity, along with a distinct in-
crease in levels of butyrate-producing
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bacteria, such as Roseburia in the feces
and Eubacterium halii in the small intes-
tine. Interestingly, not all lean donors
exerted the same beneficial effects in
the obese host. Based on the small sam-
ple size, however, one should take into
account that the reported effect might
be due to a variation around a mean
(meaning no clear effect of lean donor
FMT when larger numbers of individuals
are studied). On the other hand, these
findings might indicate the presence of
“super fecal donors,” a concept that is
currently being studied at our depart-
ments. The results from this relatively
small cohort of patients with metabolic
syndrome on the relation between micro-
bial diversity and amount of butyrate-
producing bacteria are in line with similar
findings in two large metagenome-wide
association studies (25,26), a type of
study where clinical data are combined
with metagenomic analysis. Both Karlsson
et al. (25) and Qin et al. (26) indepen-
dently found a decrease of butyrate-
producing bacteria, namely Roseburia
and Faecalibacterium prauznitzii, in the
gut microbiota of patients with T2DM
compared with healthy subjects. More-
over, we showed that increases in fecal
concentrations of Lactobacillus gasseri
and Streptococcus mutans (both inhab-
itants of the proximal intestine) as well
as Escherichia coli were found to be pre-
dictive of the development of insulin
resistance in postmenopausal obese
Caucasian females in Sweden (see Table
1). It should be noted, however, that
these correlations are not very strong
and have not been reproduced in other
cohorts; moreover, it is not known at
this time whether these found changes
in intestinal microbiota composition are
secondary to altered gastrointestinal
motility and small intestinal bacterial
overgrowth often seen in T2DM. Never-
theless, such intestinal bacterial strains
might function as early diagnostic
markers in the clinic for better identifi-
cation of those obese subjects that
are prone to develop T2DM (26). To
strengthen the predictive potential of
particular patterns of microbial diversity
and composition as well as pathogenic
alterations of the microbiota composi-
tion, further research both in prospective
cohorts and therapeutic phase /Il inter-
vention trials with specific bacterial
strains are urgently needed. In this re-
spect, it is promising that an increasing
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Table 1—Intestinal bacterial species associated with and/or predictive of insulin
resistance/T2DM development as future potential clinical diagnostic markers of

T2DM

Increase in T2DM

Decrease in T2DM

Intestinal bacterial phyla
Firmicutes
Bacteroidetes

Intestinal bacterial species
Roseburia
Eubacterium halii
Faecalibacterium prauznitzii
Lactobacillus gasseri
Streptococcus mutans
E. coli

Increase in T2DM

X
Decrease in T2DM
X
X
X

number of companies are starting to ap-
pear that focus on the development of
intestinal microbiome diagnostics and
therapeutics (27,28).

PRODUCTS OF INTESTINAL BACTERIA
IN T2DM PATHOPHYSIOLOGY

Butyrate and acetate and propionate are
short-chain fatty acids (SCFAs) fermented
by the intestinal bacteria from dietary fi-
ber that play an important role in energy
metabolism (Fig. 2) (29). These SCFAs are
absorbed in the intestine, where particu-
larly butyrate provides energy for the
colonic epithelial cells, whereas the
remaining SCFAs enter the (portal) ve-
nous system. Data from animal studies
have suggested that propionate affects
hepatic lipogenesis and gluconeogenesis,
whereas peripherally acetate functions as
substrate for cholesterol synthesis (17).
The colonic mucosa primarily relies on
the luminal presence of butyrate as en-
ergy source, and a lack of these SCFAs has
been proposed to play an important part
in the pathogenesis of intestinal disease
and inflammatory bowel diseases (30).
More specific, low concentrations of
SCFAs have been found in ulcerative co-
litis patients (31) and treatment with
SCFA enemas, especially butyrate, has
been shown to reduce inflammation in
this patient group (32). Interestingly,
oral administration of sodium butyrate
was found to be safe and well tolerated
in humans with Crohn disease and ulcer-
ative colitis (33,34); these studies
showed a systemic anti-inflammatory
effect and improved clinical improve-
ment. In mice, oral butyrate has been
demonstrated to improve insulin sensi-
tivity and increase energy expenditure
by enhancing mitochondrial function
(35). Whether these beneficial effects
apply to humans as well is currently

being studied in our department. The
underlying mechanisms of the potential
positive influence of butyrate on me-
tabolism are not clear. However, there
is data on inhibiting effects of butyrate
on histone deacetylases in mammalian
cultured cells, which regulate gene ex-
pression by deacetylating histone pro-
teins and transcription factors (36). This
may contribute to increased expression
of PGC-1a, a transcription coactivator
associated with increased fatty acid oxi-
dation and mitochondrial activity (35).
Butyrate, being an SCFA, is oxidized in
the mitochondria of colonocytes into
acetyl-CoA and via the tricarboxylic acid
cycle contributes to ATP production. Im-
portant catalyzing enzymes in this process
have been shown to be downregulated in
GF mice, resulting in a significantly de-
creased level of ATP in GF colonocytes.
This indicates a potential stimulating role
of the intestinal microbiota, particularly
butyrate-producing microbes, in the ex-
pression of these enzymes and conse-
quently mitochondrial function and
energy metabolism (37). Another way in
which SCFAs might influence the host’s
energy balance is by acting as specific sig-
naling products. SCFAs bind to G protein—
coupled receptors, namely GPR41 and
GPR43, which are expressed in entero-
endocrine cells in the intestinal epithe-
lium (3,38). This leads to secretion of
certain peptide hormones, like PYY,
which are basolaterally released into
the systemic circulation, enabling a
form of communication between gut mi-
lieu and host. Conventional Gpr41_/_
mice and GF Gpr417/7 mice colonized
with members of the human gut micro-
biota stayed significantly leaner than their
wild-type counterparts, whereas no differ-
ences were seen between wild type and
GF Gpr417/7 mice. The latter indicates a
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Figure 2—Role of gut microbiota—produced SCFAs in human glucose metabolism in obese
subjects. Fermentation of dietary fibers by intestinal bacteria generates SCFAs, including buty-
rate, that have both metabolic and epigenetic effects. Obese insulin-resistant subjects are
characterized by altered SCFA production compared with lean subjects. We hypothesize that
in these subjects, this adversely affects satiety, hepatic glucose, and lipid production as well as

inflammatory tone.

regulating role of GPR41 in energy ho-
meostasis in relation to the intestinal mi-
crobiota and their metabolic products.
Furthermore, Gpr417/7 deficiency was
associated with a decrease in the gut-
derived hormone PYY, resulting in a de-
creased extraction of energy from the
diet associated with an increase in intes-
tinal transit time (39).

Another function of butyrate, which
may contribute to its possible beneficial
role in the host’s metabolism, is main-
taining intestinal integrity. This contrib-
utes to the prevention of endotoxemia, a
process resulting from translocation of
endotoxic compounds (lipopolysaccha-
rides [LPS]), of gram-negative intestinal
bacteria. In the last decade, it has become
evident that insulin resistance and T2DM
are characterized by low-grade inflamma-
tion (40). In this respect, LPS trigger a low-
grade inflammatory response, and the

process of endotoxemia can therefore re-
sult in the development of insulin resis-
tance and other metabolic disorders
(41,42). Butyrate also seems to play a
part in the recent discovery of the intes-
tine’s ability to produce glucose itself.
Glucose released by intestinal gluconeo-
genesis (IGN) is detected by a portal vein
glucose sensor that signals to the brain
through the peripheral nervous system,
thus positively influencing glucose me-
tabolism and intake of food (43). De
Vadder et al. (44) confirmed in rats the
beneficial effects of SCFAs and IGN on
glucose metabolism and subsequently
showed that butyrate is involved by ac-
tivating gene expression of IGN in mice.
However, these findings still need vali-
dation in humans, and we are currently
executing a study in which we have
treated subjects with metabolic syn-
drome for 4 weeks with oral butyrate
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to study its effects on insulin sensitivity
and microbiota composition.

INNOVATIVE STRATEGIES FOR
NOVEL THERAPEUTICS IN T2DM

Interestingly, in animal models, buty-
rate has also been shown to both affect
intestinal serotonin levels (45) and in-
crease serotonin transporters (SERTS)
in the hypothalamus (46). Furthermore,
butyrate directly affects sympathetic
tone and intestinal transit times (47) as
well as physical activity (48). In line, it is
known that serotonin itself can regulate
intestinal permeability (49) besides being
an important signaling neurotransmitter
in the gut and brain involved in regula-
tion of body weight and food intake by
enhancing satiety (50). A reduction in ce-
rebral SERTs, essential regulators of sero-
tonergic transmission, is associated with
obesity (51). In a human study, when
healthy lean subjects received a hyper-
caloric snacking diet for 6 weeks, a signif-
icant 30% decrease of hypothalamic SERT
binding was seen (52).

In this respect, it is interesting to note
that studies have suggested a regulating
influence of intestinal bacteria on sero-
tonin (53,54). For example, bariatric sur-
gery (Roux-en-Y gastric bypass [RYGB])
has been shown to significantly affect
serotonin metabolism in both animals
(51,55) and humans (56). Moreover,
RYGB is regarded as a last resort but
very successful treatment for morbidly
obese patients, because next to inducing
weight loss up to 50% of the original
weight, it also decreases the risk of
T2DM and cardiovascular pathology
(57,58). RYGB has even been shown to
resolve insulin resistance faster than the
actual weight loss, underscoring a poten-
tial weight-independent effect on me-
tabolism (41,58). As RYGB can alter the
composition of the gut microbiota in
both mice (59) and humans (60,61),
this might be one of the contributing
factors. When diabetic mice were colo-
nized with feces of post-RYGB mice, they
lost weight and showed improvement in
glucose and lipid metabolism with spe-
cific changes in butyrate-producing bac-
teria (59). These findings suggest that
the change in butyrate-producing micro-
biota after RYGB may play an important
role in satiety as well as regulation of
glucose and lipid metabolism.

It is thus becoming increasingly evi-
dent that the composition of gut
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microbiota plays a role in the regulation
of glucose and lipid metabolism. Specif-
ically, there seems to be an association
between butyrate-producing bacteria
and beneficial effects on metabolism in
both mice and humans (24,35). Further-
more, an alteration in the composition
of the gut microbiota may be involved in
the development of obesity and T2DM.
Further studies are however needed to
establish the causality of this and as to
whether increasing intestinal SCFAs, in-
cluding butyrate, has the same meta-
bolic influence as SCFA-producing
bacteria on human metabolism, includ-
ing insulin sensitivity and inflammatory
tone. Thus, in order to validate the hy-
pothesis of butyrate-producing bacteria
as role players and their products as sig-
naling molecules in human glucose and
lipid metabolism, double-blinded ran-
domized controlled trials using either
SCFA supplementation (given either
orally or rectally) or FMT derived from
different donors (e.g., on different diets)
are needed. Priorities for further studies
also include therapeutic intervention
trials with specific types of single bacte-
rial strains in order to elucidate particu-
lar beneficial patterns in gut microbiota
composition.

Other areas of therapeutic interest
in this respect are nondigestible but
fermentable fibers, such as inulin, fructo-
oligosaccharides, galacto-oligosaccharides,
and lactulose. Food artificially enriched
with these fibers has been termed a
prebiotic when it is able to shift the
composition of gut microbiota by stim-
ulating the growth or activity of ben-
eficial species (23). In this respect,
carbohydrate-fermenting bacteria such
as Bifidobacteria and Lactobacilli in-
crease upon prebiotic treatment in dif-
ferent age-groups (62). The effects
of prebiotics have been ascribed to an
immune-mediated mechanism. As pre-
viously mentioned, high-fat dietary
feeding is associated with endotoxemia,
which in turn is linked to a reduced
abundance of Bifidobacteria with a con-
comitant increase in gram-negative
(LPS-containing) bacteria. In line, when
prebiotic-containing oligofructose (OFS)
were fed to mice on a high-fat diet, this
restored levels of their Bifidobacteria
and consequently reduced endotoxemia
and improved glucose tolerance (63).

Another line of therapeutic approach
is probiotics, which encompass food

supplements enriched with strains of
live bacteria, including species of Bifido-
bacteria and Lactobacilli, that are able
to alter the gut microbiota beneficially
for the host (28,64). In mice, antidia-
betic effects have been shown following
administration of probiotics containing
certain Lactobacillus strains (65) with a
concomitant reduction in endotoxemia
(66). Due to the placebo effect of these
products, proper double-blinded ran-
domized controlled trials with accepted
hard end points are needed in humans
to address the potentially beneficial
metabolic effects of probiotic strains in
relation to the composition of the intes-
tinal microbiota.

Although public health has benefited
substantially from the discovery of anti-
biotics, its rapid increase in use is start-
ing to raise health concerns. Next to the
obvious issue of antibiotic resistance, its
worldwide use might potentially be as-
sociated with the obesity epidemic (67).
Although oral antibiotic treatment ef-
fectively eradicates pathogenic bacte-
ria, the beneficial intestinal microbial
community is also affected with possible
dire metabolic consequences. Long-
term intravenous vancomycin (aimed
at gram-positive bacteria) in adult pa-
tients was linked to an increased risk
of developing obesity (68), whereas
amoxicillin (aimed at gram-negative
and anaerobic bacteria) had only minor
effects. In line, short-term oral adminis-
tration of vancomycin (but not amoxicil-
lin) significantly impaired peripheral
insulin sensitivity via altered bile acid
dehydroxylation in males with meta-
bolic syndrome, which was associated
with a changed gut microbiota compo-
sition (69). Moreover, even short-term
courses of oral antibiotics were shown
to have profound (irreversible) effects
on intestinal microbial diversity and
composition (70). The recent data link-
ing use of antibiotics in early infancy to
distinct long-term effects on intestinal
microbiota diversity and the risk of
childhood overweight (71) are even
more alarming but not surprising. In
the last 50 years, the use of subthera-
peutic antibiotic therapy in farm animals
has become widely used as it increases
growth and therefore food production.
In mice, treatment with subtherapeutic
doses of antibiotics alters the composi-
tion of the intestinal microbiota and
therefore affects metabolic pathways,
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particularly concerning SCFA metabo-
lism (72). These findings emphasize the
causal relationship between metabo-
lism and the gut microbiome, and a
more cautionary use of antibiotics
seems to be more justified than ever.

However, the simplest solution to re-
storing pathological disturbances in the
composition of the gut microbiota may
be a change in dietary habits. Diet has
been shown to strongly affect the com-
position of the microbiome (73). When
obese humans were put either on a fat-
restricted or carbohydrate-restricted
low-calorie diet, an increase in the abun-
dance of Bacteroidetes and a decrease
in Firmicutes was reported (12). In an-
other study, diet-induced weight loss
versus weight-stabilization interven-
tions in obese humans increased intes-
tinal microbial gene richness and was
associated with a reduced systemic
inflammation (74). These data corrobo-
rate with another controlled diet inter-
vention study in 98 human subjects
showing that certain dominant gut mi-
crobial communities, or “enterotypes,”
correlated with specific kinds of diets
(73). For example, Bacteroides was asso-
ciated with a protein-rich diet, whereas
Prevotella correlated with a fiber-rich
diet; moreover, gut microbiota compo-
sition could be altered within 24 h
whereas enterotype remained stable
during the 10 days of the study. Based
on this rapid and dramatic plasticity
of intestinal microbiota composition,
there is a specific need to determine
intestinal microbiota composition
in a standardized way (e.g., sequencing
several fecal samples per person
over a specific time point while taking
dietary intake and medication use into
account).

CONCLUSIONS

The determination of the intestinal mi-
crobiome in obesity and T2DM has led
to an exponential increase of scientific re-
search in this area. In this review, we tried
to cover several topics in order to provide
clinically relevant insight. A multitude of
studies has revealed various potential
mechanisms, ranging from endocrine
and metabolic pathways to mechanisms
on a cellular and genetic level. Our un-
derstanding of environmental factors af-
fecting the microbiome, such as our diet,
repetitive infections, and the use of anti-
biotics, is improving and will hopefully
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contribute to finding a solution for the
global obesity epidemic.
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