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Kojima, Masayasu, and Kenji Kangawa. Ghrelin: Structure and Function. Physiol Rev 85: 495-522, 2005;
doi:10.1152/physrev.00012.2004.—Small synthetic molecules called growth hormone secretagogues (GHSs)
stimulate the release of growth hormone (GH) from the pituitary. They act through the GHS-R, a G protein-
coupled receptor whose ligand has only been discovered recently. Using a reverse pharmacology paradigm with
a stable cell line expressing GHS-R, we purified an endogenous ligand for GHS-R from rat stomach and named
it “ghrelin,” after a word root (“ghre”) in Proto-Indo-European languages meaning “grow.” Ghrelin is a peptide
hormone in which the third amino acid, usually a serine but in some species a threonine, is modified by a fatty
acid; this modification is essential for ghrelin’s activity. The discovery of ghrelin indicates that the release of
GH from the pituitary might be regulated not only by hypothalamic GH-releasing hormone, but also by ghrelin
derived from the stomach. In addition, ghrelin stimulates appetite by acting on the hypothalamic arcuate
nucleus, a region known to control food intake. Ghrelin is orexigenic; it is secreted from the stomach and
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circulates in the bloodstream under fasting conditions, indicating that it transmits a hunger signal from the
periphery to the central nervous system. Taking into account all these activities, ghrelin plays important roles
for maintaining GH release and energy homeostasis in vertebrates.

I. INTRODUCTION

Growth hormone (GH), a multifunctional hormone
secreted from somatotrophs of the anterior pituitary, reg-
ulates overall body and cell growth, carbohydrate-protein-
lipid metabolism, and water-electrolyte balance (10, 34).
Production and release of GH are controlled tightly but
occasionally fall into imbalance; GH excess results in
acromegaly and gigantism, whereas its deficiency in chil-
dren results in impaired growth and short stature. GH is
controlled by many factors, in particular by two hypotha-
lamic neuropeptides; GH release is stimulated by hypo-
thalamic GH-releasing hormone (GHRH) and inhibited by
somatostatin (5, 165). Recently, however, a third indepen-
dent pathway regulating GH release has been identified
from studies of GH secretagogues (GHSs) (26, 66, 87, 126,
222). GHSs are synthetic compounds that are potent stim-
ulators of GH release, working through a G protein-cou-
pled receptor (GPCR), the GHS-receptor (GHS-R) (111,
138, 186). Because GHSs are a group of artificial com-
pounds and do not exist naturally, it was postulated that
there must exist an endogenous ligand that binds to
GHS-R and carries out similar functions to GHSs in situ
(198, 218, 220, 221).

In recent years, searches for novel ligands using or-
phan GPCR-expressing cells have resulted in the discov-
ery of several novel bioactive peptides, such as nocicep-
tin/orphanin FQ (157, 195), orexin/hypocretin (206), pro-
lactin-releasing peptide (105), apelin (237), metastin
(178), neuropeptide B (81, 232), and neuropeptide W (210,
232). Figure 1 describes this orphan-receptor strategy
used to identify endogenous ligands (44). First, a cell line
is established that stably expresses an orphan GPCR.
Then, a peptide extract is applied to the cell and a second
messenger response is measured. If a target orphan GPCR
is functionally expressed on the cell surface and the ex-
tract contains the endogenous ligand that can activate the
receptor, the second messenger response, as usually mon-
itored by the levels of cAMP or intracellular Ca2� concen-
tration, will increase or decrease. Under monitor of this
assay system, the endogenous ligand can be purified
through several chromatographic steps. In this way, or-
phan receptors represent important new tools for the
discovery of novel bioactive molecules and in drug devel-
opment (45, 112, 262).

Among the numerous orphan GPCR receptors await-
ing study several years ago, GHS-R attracted the attention
of many academic and industrial scientists, since its en-
dogenous ligand could potentially be used directly for
treatment of GH deficiency. Unlike other orphan GPCRs,

GHS-R was known to bind artificial ligands, such as
GHRP-6 or hexarelin, providing a convenient positive con-
trol for any screening assay (111, 186). Many groups tried
unsuccessfully to isolate the endogenous GHS-R ligand
from extracts of brain, pituitary, or hypothalamus, the
known sites of GHS-R expression (24, 93). Unexpectedly,
we succeeded in the purification and identification of the
endogenous ligand for the GHS-R from the stomach and
named it “ghrelin” (133, 135). Ghrelin is a GH-releasing
and appetite-stimulating peptide (139). Here we review
the purification, structure, distribution, and physiological
functions of ghrelin (Table 1).

FIG. 1. Orphan receptor strategy. A number of G protein-coupled
receptors (GPCRs) have been found in the genomes of mammals and
fishes and even in Caenorhabditis elegans. These GPCRs can be ex-
pressed in cultured cells and their activation is monitored using an assay
that measures second messenger changes. These assay systems can be
used to purify endogenous ligands of these GPCRs, and the ligand
structures are determined. After these steps, the physiological functions
of these ligands are examined. Thus the orphan receptor strategy is the
reverse of classical strategies in hormone research, in which physiolog-
ical functions of a putative ligand are used to develop assays to purify
them, after which they are used to identify their receptors.
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II. HISTORY OF GROWTH HORMONE

SECRETAGOGUE AND ITS RECEPTOR

In 1976, C. Y. Bowers and co-workers found that
some opioid peptide derivatives that did not exhibit any
opioid activity instead had weak GH-releasing activity,
and were referred to as GHSs (27, 61). The structure of
the first GHS was Tyr-D-Trp-Gly-Phe-Met-NH2, which in-
duced GH release by directly acting on the pituitary. This
synthetic peptide was a methionine enkephalin derivative,
in which the second Gly was replaced with a D-Trp, and
the COOH terminus had an amide structure. After the
discovery of ghrelin, it was revealed that bulky hydropho-
bic side-chain groups are important for its activity (161).
Thus the D-Trp in the aforementioned GHS was probably
a core structure mediating its binding to the GHS recep-
tor, which had not been yet identified at that time. The
GH-releasing activity of early GHSs was very weak and
was only observed in vitro. However, their discovery led
to the synthesis of many peptidyl derivatives, in a search
for more GHSs with more potent activity.

In 1984, a potent GHS, GHRP-6, was synthesized
based on conformational energy calculations in conjunc-
tion with peptide chemistry modifications and a biological
activity assay (28). A hexapeptide, GHRP-6, was shown to
be active both in vitro and in vivo, which suggested its
possible application for clinical use (9, 88, 158).

In 1993, the first nonpeptide GHS, L-692,429, was
synthesized by R. G. Smith and co-workers (43, 217). This
nonpeptide GHS suggested a possibility for the clinical
use of GHSs, and another nonpeptide GHS, L-163,191
(MK-0677), was practically applied for clinical studies,

since it retained sufficient activity even when orally ad-
ministered (183, 239).

During this period, researchers investigated the
mechanisms of GHS action. Whereas GH release from the
pituitary was known to be stimulated by hypothalamic
GHRH, exogenous GHSs were thought to induce GH re-
lease through a pathway different from that of GHRH (4,
25, 41, 42, 187). GHRH acts on the GHRH receptor to
increase intracellular cAMP, which serves as a second
messenger. On the other hand, GHSs were found to act on
a different receptor, increasing intracellular Ca2� concen-
tration via an inositol 1,4,5-trisphosphate (IP3) signal
transduction pathway (Fig. 2).

In 1996, the GHS-R was identified by expression
cloning using a strategy based on the findings that
GHSs stimulate phospholipase C, resulting in an in-
crease in IP3 and intracellular Ca2� (111). Xenopus

oocytes were injected with in vitro-transcribed cRNAs
derived from swine pituitary, supplemented simulta-
neously with various G� subunit mRNAs. MK0677-stim-
ulated Ca2� increase could be detected by biolumines-
cence of the jellyfish photoprotein aequorin, which was
expressed by the Xenopus oocytes. The identified
GHS-R is a typical GPCR. In situ hybridization analyses
showed that GHS-R is expressed in the pituitary, hypo-
thalamus, and hippocampus (24, 93, 111). This receptor
was for some time an example of an orphan GPCR; that
is, a GPCR with no known natural ligand. After identi-
fication of the GHS-R, a search for its endogenous
ligand was actively undertaken, using the orphan recep-
tor strategy (Fig. 1).

TABLE 1. Essential chronology of ghrelin research

Year Research Investigators Reference No.

1954 Discovery of X/A-like cell Davis 59
1976 First GHS Bowers et al. 27
1982 Discovery of GHRH Guillemin et al. 94

Rivier et al. 197
1992–1993 Cloning of GHRH receptor Mayo et al. 153

Gaylinn et al. 84
1984 Development of potent peptidyl GHS, HPRP-6 Bowers et al. 28
1993 First nonpeptidyl GHS Smith et al. 217
1996 Cloning of GHS receptor Howard et al. 111
1999 Discovery of ghrelin Kojima et al. 133
2000–2001 Orexigenic activity of ghrelin Tschop et al. 246

Nakazato et al. 173
Shintani et al. 211
Wren et al. 266
Kamegai et al. 122

2002 High plasma ghrelin in anorexia nervosa Ariyasu et al. 11
Otto et al. 179

2003 High plasma ghrelin in Prader-Willi syndrome Cummings et al. 49
2003 Hypothalamic circuit of ghrelin cell Cowley et al. 48
200X Discovery of ghrelin acyl-modifying enzyme?
200X Clinical use of ghrelin?

GHS, growth hormone secretagogue; GHRH, growth hormone-releasing hormone.
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III. PURIFICATION AND IDENTIFICATION

OF GHRELIN

A. Purification and Structure of Ghrelin

Because the ligands of most GPCRs are unknown,
assays for their activity generally have no positive con-
trols. GHS-R, however, was known to bind several artifi-
cial ligands, such as GHRP-6, hexarelin, or nonpeptide
GHS MK-0677, providing a convenient positive control for
constructing the assay system used to search for the
endogenous ligand (111, 186). A cultured cell line express-
ing the GHS-R was established and used to identify tissue
extracts that could stimulate the GHS-R, as monitored by

increases in intracellular Ca2� levels. After screening sev-
eral tissues, very strong activity was unexpectedly found
in stomach extracts (133).

Ghrelin was purified from the rat stomach through
four steps of chromatography: gel filtration, two ion-ex-
change HPLC steps, and a final reverse-phase HPLC (RP-
HPLC) procedure. The second ion-exchange HPLC
yielded two active peaks (P-I and P-II), from which ghre-
lin and des-Gln14-ghrelin were purified, respectively
(108). The active peaks were finally purified by RP-HPLC.
The name ghrelin is based on “ghre,” a word root in
Proto-Indo-European languages for “grow,” in reference
to its ability to stimulate GH release. Ghrelin is a 28-amino
acid peptide, in which the serine-3 (Ser3) is n-octanoy-
lated, and this modification is essential for ghrelin’s activ-
ity (Fig. 3). Ghrelin is the first known case of a peptide
hormone modified by a fatty acid. Rat and human ghrelins
differ in only two amino acid residues (133). There is no
structural homology between ghrelin and peptide GHSs
such as GHRP-6 or hexarelin.

In rat stomach, a second type of ghrelin peptide has
been purified and identified as des-Gln14-ghrelin (108).
Except for the deletion of Gln14, des-Gln14-ghrelin is
identical to ghrelin, even retaining the n-octanoic acid
modification. Des-Gln14-ghrelin has the same potency of
activities as that of ghrelin.

The deletion of Gln14 in des-Gln14-ghrelin arises due
to the usage of a CAG codon to encode Gln, which results
in its recognition as a splicing signal. Thus two types of
active ghrelin peptide are produced in rat stomach: ghre-
lin and des-Gln14-ghrelin. However, des-Gln14-ghrelin is
only present in low amounts in the stomach, indicating
that ghrelin is the major active form. In addition, n-de-
cenoyl (C10:1)-modified ghrelin exists in the stomach in
small amounts.

In the course of purifying human ghrelin from the
stomach, we also isolated several minor forms of the
peptide (109). These could be classified into four groups
by the type of acylation observed at Ser3: nonacylated,

FIG. 2. Regulation of growth hormone release from the pituitary. In
pituitary somatotroph cells, growth hormone (GH)-releasing hormone
(GHRH) stimulates GH release through binding to the GHRH receptor
and increasing cAMP levels. In contrast, GH secretagogues (GHSs)
stimulate GH release through the GHS receptor (GHS-R or ghrelin
receptor) to increase intracellular Ca2� ([Ca2�]i) levels. Because GHSs
are artificial molecules and do not exist in nature, an endogenous ligand
for the GHS-R was postulated but remained unknown until the discovery
of ghrelin.

FIG. 3. Structures of human and rat ghrelins. Both
human and rat ghrelins are 28-amino acid peptides, in
which Ser3 is modified by a fatty acid, primarily n-octanoic
acid. This modification is essential for ghrelin’s activity.
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octanoylated (C8:0), decanoylated (C10:0), and possibly
decenoylated (C10:1). All peptides found were either 27
or 28 amino acids in length, the former lacking the COOH-
terminal Arg28, and are derived from the same ghrelin
precursor through two alternative pathways. As was the
case in the rat, the major active form of human ghrelin is
a 28-amino acid peptide with octanoylated Ser3. Synthetic
octanoylated and decanoylated ghrelins stimulate the in-
crease of intracellular Ca2� in GHS-R-expressing cells and
stimulate GH release in rats to a similar degree.

B. Des-acyl Ghrelin

The nonacylated form of ghrelin, des-acyl ghrelin,
also exists at significant levels in both stomach and
blood (107). In blood, des-acyl ghrelin circulates in
amounts far greater than acylated ghrelin. It is often
observed that not only active, but also inactive, forms
of peptide hormones exist in our body. Because the
clearance rates of inactive forms of peptide hormones
are often reduced, their half-lives are often longer than
those of their respective active forms. For example, a
preform of adrenomedullin exists in the bloodstream
that retains a COOH-terminal Gly that is used for ami-
dation in active adrenomedullin (131).

Ghrelin in the plasma binds to high-density lipopro-
teins (HDLs) that contain a plasma esterase, paraoxonase,
and clusterin (21). Because a fatty acid is attached to the
Ser3 of ghrelin via an ester bond, paraoxonase, a potent
esterase, may be involved in deacylation of acyl-modified
ghrelin. Thus des-acyl ghrelin may represent either a pre-
form of acyl-modified ghrelin or the product of its deacy-
lation.

Des-acyl ghrelin does not replace radiolabeled ghre-
lin at the binding sites of acylated ghrelin in hypothalamus
and pituitary and shows no GH-releasing and other endo-
crine activities in rats. Moreover, des-acyl ghrelin does
not possess endocrine activities in human. Thus one ques-
tion is whether there is a specific receptor for des-acyl
ghrelin and whether des-acyl ghrelin has specific func-
tions distinct from those of acyl-modified ghrelin. Bal-
danzi et al. (15) have suggested the existence of another
ghrelin receptor in the cardiovascular system. They
showed that ghrelin and des-acyl ghrelin both recognize
common high-affinity binding sites on H9c2 cardiomyo-
cytes, which do not express the ghrelin receptor GHS-R.
Moreover, it has been reported that des-acyl ghrelin
shares with active acyl-modified ghrelin some nonendo-
crine actions, including the modulation of cell prolifera-
tion and, to a small extent, adipogenesis (35). Further
study is required to determine whether des-acyl ghrelin is
biologically active and binds to an as-yet-unidentified re-
ceptor.

C. Mammalian Ghrelins

In mammals, ghrelin homologs have been identified in
human (133), rhesus monkey (8), rat (133), mouse (233),
mongolian gerbil (GenBank accession no. AF442491),
cow (GenBank accession no. AB035702), pig (GenBank
accession no. AB035703), sheep (GenBank accession no.
AB060699), and dog (241) (Fig. 4). The amino acid se-
quences of mammalian ghrelins are well conserved; in
particular, the 10 amino acids in their NH2 termini are
identical. This structural conservation and the universal
requirement for acyl-modification of the third residue in-
dicate that this NH2-terminal region is of central impor-
tance to the activity of the peptide.

Bovine and ovine ghrelins are 27-amino acid peptides
that, like rat des-Gln14 ghrelin, lack the Gln14 residue. In
the genes encoding these ghrelins, there is only one AG
splice acceptor site between exons 2 and 3, resulting in
the production of only one mRNA that gives rise the
27-residue ghrelin.

FIG. 4. Sequence comparison of vertebrate ghrelins. Identical
amino acids in each species of mammal, bird, and fish are colored. The
asterisks indicate acyl-modified third amino acids. NH2-terminal cores
with acyl-modification sites are well conserved among all vertebrate
ghrelins.
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D. Ghrelin and Motilin Family

As described in section VA, the ghrelin receptor is
most homologous to the motilin receptor (74, 156). Ac-
cordingly, the amino acid sequence of ghrelin has homol-
ogy with that of motilin, another gastric peptide with
gastric contractile activity (14, 65). Alignment of the 28-
amino acid peptide ghrelin and the 19-amino acid motilin
reveal that they share eight identical amino acids. In fact,
after our discovery of ghrelin, Tomasetto et al. (240)
reported the identification of a gastric peptide, motilin-
related peptide (MTLRP). They had tried to isolate new
protein clones whose expression was restricted to the
gastric epithelium using differential screening. The amino
acid sequence of MTLRP turned out to be identical to that
of ghrelin-(1–18); however, the putative processing site of
MTLRP, Lys-Lys, is not used in ghrelin in gastric cells.
Moreover, the sequence data alone could not reveal any
potential acyl-modifications (47, 64, 78).

Interestingly, the region of homology between ghre-
lin and motilin lies not near the NH2 terminus, where
ghrelin’s acyl-modification occurs, but in their respective
central regions.

Ghrelin and motilin play similar roles in the stomach.
Both peptides stimulate gastric acid secretion and gastric
movement (149).

Thus ghrelin and motilin are structurally and func-
tionally considered to compose a peptide superfamily and
may have evolved from common ancestral gene (64, 78).

E. Gene and Precursor Structures of Ghrelin

Figure 5 describes the processing from the ghrelin
gene to the active ghrelin peptide. The human ghrelin
gene is localized on the chromosome 3p25–26. The human
ghrelin receptor gene has also been identified on chromo-
some 3, at position q26–27 (222).

The 5�-flanking region of the human ghrelin gene
contains a TATA box-like sequence (TATATAA; �585 to
�579), as well as putative binding sites for several tran-
scription factors, such as AP2, basic helix-loop-helix
(bHLH), PEA-3, Myb, NF-IL6, hepatocyte nuclear factor-5,
and NF-�B, and half-sites for estrogen and glucocorticoid
response elements (124, 130, 233). However, neither mu-
tation nor deletion of the TATA box-like element de-

FIG. 5. From the human ghrelin gene to an
active peptide. The human ghrelin gene comprises
five exons. The first exon encodes the 5�-untrans-
lated region and is very short. cDNA analyses of
human ghrelin have revealed that transcript A, an
alternative splicing product from exon 2 to exon 4,
is the main form of human ghrelin mRNA in vivo.
This mRNA is translated into a 117-amino acid
ghrelin precursor (preproghrelin). Protease cleav-
age and acyl-modification of the ghrelin precursor
result in the production of a 28-amino-acid-long
active acyl-modified ghrelin peptide. In rat, mouse,
and pig, another splicing variant encoding des-
Gln14-ghrelin is produced by alternative splicing at
the end of intron 2.
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creased the promoter activity, suggesting that this ele-
ment is not used. There was neither a typical GC nor a
CAAT box.

Studies of ghrelin promoter activity in TT cells, a
human thyroid medullary carcinoma cell line, revealed
the presence of activating sequences within �1509 to
�1110 and �349 to �193 in the 5�-flanking region of
ghrelin gene (124). Another report by Nakai et al. (172)
using TT cells showed that significant level of promoter
activity was observed in the 1107–1225 bp upstream re-
gion of the translation initiation site, and specific protein
binded to the promoter region of �1129 to �1100. Fur-
thermore, a study by Kishimoto et al. (130) using ECC10
cells, a human stomach-derived cell line, indicated that
�2000 to �605 in the 5�-flanking region of the ghrelin
gene contains an activating sequence (130). These results
suggest that ghrelin gene expression may be cell-type
specific.

In the 5�-flanking region of the ghrelin gene, several
E-box consensus sequences exist (124). Destruction or
site-directed mutagenesis of these sites decreased the
promoter activity in TT cells, implicating them in pro-
moter activation. Upstream stimulatory factors (USF),
members of the bHLH-LZ family of transcription factors,
bind to these E-box elements and may thus regulate hu-
man ghrelin gene expression.

Ghrelin promoter activity in ECC10 cells was stimu-
lated by glucagon and its second messenger cAMP (130).
These results suggest that in fasting conditions, a high
level of ghrelin production may be related to increased
glucagon.

The human ghrelin gene, like the mouse gene, com-
prises five exons (124, 233). The short first exon contains
only 20 bp, which encode part of the 5�-untranslated
region. There are two different transcriptional initiation
sites in the ghrelin gene; one occurs at �80 and the other
at �555 relative to the ATG initiation codon, resulting in
two distinct mRNA transcripts (transcript-A and tran-
script-B) (124).

The 28 amino acids of the functional ghrelin peptide
are encoded in exons 1 and 2. In the rat and mouse ghrelin
genes, the codon for Gln14 (CAG) is used as an alternative
splicing signal to generate two different ghrelin mRNAs
(108). One mRNA encodes the ghrelin precursor, and
another encodes a des-Gln14-ghrelin precursor. Des-Gln14-
ghrelin is identical to ghrelin, except for the deletion of
Gln14.

Complementary DNA analyses indicated that des-
Gln14-ghrelin cDNA also exists in human stomach (Gen-
Bank accession no. AB035700). However, the number of
human des-Gln14-ghrelin cDNA clones is low, and des-
Gln14-ghrelin peptides have not yet been isolated from
stomach tissue. Moreover, two cDNA clones from Homo

sapiens fetus library that code for human des-Gln14-ghre-
lin are deposited in the NCBI nucleotide data base

(AI338429 and BY149645). There are two types of porcine
ghrelin cDNA, which encode ghrelin and des-Gln14-ghre-
lin, that are present at an approximate ratio of 1:1 (Gen-
Bank accession nos. AB035703 and AB035704). In the
cow, only one ghrelin mRNA exists, and it encodes a
27-amino acid ghrelin.

Moreover, another splicing variant was expressed in
the mouse testis (234). This variant, a ghrelin gene-de-
rived transcript (GGDT), comprises the 68-bp 5�-unique
sequence and the exons 4 and 5 of mouse ghrelin gene.
GGDT encodes 12 amino acid residues, which is an unre-
lated sequence to the mouse ghrelin precursor, and the
COOH-terminal 42-amino acid sequence of mouse ghrelin
precursor. The 5�-unique sequence of GGDT is located
between exons 3 and 4 of the ghrelin gene, indicating that
GGDT is generated by alternative usage of the 68-bp exon
as the testis-specific first exon. Because GGDT does not
encode the ghrelin sequence, its function is not clear.

The amino acid sequences of mammalian ghrelin pre-
cursors are well conserved (Fig. 6). In these precursors,
the 28-amino acid active ghrelin sequence immediately
follows the signal peptide. The cleavage site for the signal
peptide is the same in all mammalian ghrelins. Although
propeptides are usually processed at dibasic amino acid
sites by prohormone convertases (208, 225), the COOH
terminus of the ghrelin peptide sequence is processed at
an uncommon Pro-Arg recognition site.

F. Putative Ghrelin Acyl-Modifying Enzyme

An enzyme that catalyzes the acyl-modification of
ghrelin has not yet been identified. The universal incor-
poration of n-octanoic acid in mammals, fish, birds, and
amphibians suggests that this putative enzyme is rather
specific in its choice of medium-chain fatty acid sub-
strates.

Our group has reported recently that ingestion of
either medium-chain fatty acids (MCFAs) or medium-
chain triacylglycerols (MCTs) specifically increases pro-
duction of acyl-modified ghrelin without changing the
total (acyl- and des-acyl-) ghrelin level. When mice in-
gested either MCFAs or MCTs, the acyl group attached to
nascent ghrelin molecules corresponded to that of the
ingested MCFAs or MCTs. Moreover, n-heptanoyl (C7:0)
ghrelin, an unnatural form of ghrelin, was produced in the
stomach of mice following ingestion of n-heptanoic acid
or glyceryl triheptanoate. These findings indicate that in-
gested fatty acids are directly utilized for acyl-modifica-
tion of ghrelin (Kojima, unpublished data).

A number of acyltransferases have previously been
identified in mammals; the only reported enzymes that
use MCFAs as substrates are carnitine octanoyltrans-
ferases, which function in the �-oxidation of fatty acids
(192, 193). Members of the serine acyltransferase family
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that transfer acyl groups to serine residues of target mol-
ecules have been identified, including two serine palmi-
toyltransferases functioning in the biosynthesis of sphin-
golipids in mammals (95) and a plant Ser O-acetyltrans-
ferase gene family in Arabidopsis thaliana (114). An acyl
transferase has also been purified from the gastric mu-
cosa of rat (127, 215). This enzyme is an integral rough
microsomal protein, catalyzing the transfer of acyl-CoA to
mucosal proteins. The putative ghrelin Ser O-acyltrans-
ferase may have structural homology with these acyl-
transferases. Further investigations characterizing the pu-
tative ghrelin Ser O-acyltransferase are required to eluci-
date the mechanism of the unique acyl modifcation seen
in ghrelin.

G. Ghrelin Derivatives

Chemical synthesis of ghrelin derivatives revealed
that bulky hydrophobic groups attached to the side chain
of the third amino acid residue are essential for maximum
activity of ghrelin (22, 150). Elongation by two carbons in
the acyl modification of ghrelin, the maximum response
was observed when ghrelin was modified by the n-oc-
tanoyl group. Substantial activity was retained when
ghrelin was modified by n-lauroyl or palmitoyl groups.

Modification of ghrelin Ser3 by an unsaturated or a
branched fatty acid, such as 3-octenoyl (C8:1) or 4-meth-
ylpentanoyl, respectively, also retained activity. More-
over, a ghrelin derivative in which the third amino acid
residue was replaced with an aromatic amino acid, Trp, still
retained weak activity. Interestingly, alignment of the amino
acid sequences of GHRP-6 and ghrelin revealed three-dimen-
sional structural similarity between Trp4 in the active core
of GHRP-6 and the acyl-modified Ser3 of ghrelin (151).

Short peptides derived from the first four residues
of ghrelin, Gly-Ser-Ser(n-octanoyl)-Phe-NH2, could ac-
tivate the ghrelin receptor, but the first three alone
could not, indicating that the four-residue peptide is the
minimum segment necessary for receptor activation
(22, 150, 151). One of the smallest molecules that re-
tains almost full ghrelin activity is Ape-Ser(Octyl)-Phe-Leu-
aminoethylamide (mol wt 618.9), in which Ape is 5-amino-
pentanoic acid (151).

The ester bond between the side chain of Ser3 and
n-octanoic acid is not essential for ghrelin’s activity (150).
Activity was retained in ghrelin derivatives in which the
ester bond between octanoic acid and the Ser3 side chain
was changed to a more chemically stable thioether
[Cys3(octyl)] or ether [Ser3(octyl)] bond, as well as in a
derivative containing 2,3-diaminopropionic acid in the

FIG. 6. Amino acid sequences of
mammalian ghrelin precursors. A se-
quence comparison between mammalian
ghrelin precursors is shown. Identical
amino acids are colored. The asterisk
shows the position of the acyl-modified
Ser3. Note that the amino acid sequences
of mammalian ghrelin precursors are well
conserved; in particular, the NH2-terminal
10 amino acids of all of these active ghre-
lin peptides, each of which contains an
acyl-modified serine in its active core, are
identical.
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third position, to which an n-octanoyl group was attached
through an amide bond.

H. Nonmammalian Ghrelin

1. Amphibian ghrelin

A) BULLFROG GHRELIN. Three molecular forms of ghrelin
have been identified in the bullfrog stomach (117) (Fig. 4).
They contain either 27 or 28 amino acids and possess 29%
sequence identity to human ghrelin. The difference in
amino acid length is not due to alternative splicing, but to
differential processing of the COOH-terminal Asn residue.
A unique third residue (Thr3) in bullfrog ghrelin differs
from the Ser3 in the mammalian ghrelins. Because serine
and threonine both possess hydroxyl groups on their side
chains, they can both be modified by fatty acids. Indeed,
the bullfrog Thr3 is modified by either n-octanoic or n-
decanoic acid.

Northern blot analysis demonstrated that bullfrog
ghrelin mRNA is predominantly expressed in the stom-
ach. Low levels of gene expression were observed in the
heart, lung, small intestine, gallbladder, pancreas, and
testis. Brain distribution of ghrelin was investigated in
detail in the frog Rana esculenta (83). In the brain, sparse
ghrelin-positive cells were detected in three nuclei of the
diencephalon: the suprachiasmatic nucleus and the pos-
terior tuberculum in the hypothalamus and the pos-
terodorsal aspect of the lateral nucleus in the thalamus. A
few ghrelin-immunoreactive neurons were also found in
the mesencephalon, in the pretoral gray and the an-
terodorsal tegmental nucleus. Ghrelin-containing fibers
are widely distributed in the frog brain. In particular,
diffuse networks of immunoreactive processes were ob-
served in various regions of the telencephalon, including
the medial pallium, the striatum, the nucleus of the diag-
onal band of Broca, the nucleus accumbens, and the
amygdala.

Bullfrog ghrelin stimulated the secretion of both GH
and prolactin in dispersed bullfrog pituitary cells with a
potency two to three orders of magnitude greater than
that of rat ghrelin (117). These results indicate that al-
though the ability of ghrelin to induce GH secretion is
evolutionary conserved, the structural differences be-
tween the different ghrelins result in species-specific re-
ceptor binding.

2. Bird ghrelin

A) CHICKEN GHRELIN. Chicken (Gallus gallus) ghrelin is
26 amino acids long and possesses 54% sequence identity
with human ghrelin (Fig. 4) (121). The serine residue at
position 3 (Ser3) is conserved between the chicken and
mammalian species, as is its acylation by either n-oc-
tanoic or n-decanoic acid. Chicken ghrelin mRNA is pre-

dominantly expressed in the stomach, where it is present
in the proventriculus but absent in the gizzard. RT-PCR
analysis revealed low levels of expression in the brain,
lung, and intestine. Administration of chicken ghrelin in-
creased plasma GH levels in both rats and chicks, with a
potency similar to that of rat or human ghrelin (3, 19, 121).
In addition, chicken ghrelin also increased plasma corti-
costerone levels in growing chicks at a lower dose than in
mammals (121).

Ghrelin stimulates feeding in rats; however, intrace-
rebroventricular injection of ghrelin strongly suppressed
feeding in neonatal chicks (82). This anorexic effect was
almost identical when chicken or rat ghrelin was admin-
istered. Intracerebroventricular injection of GHRP-2 (KP-
102), a synthetic GHS, also inhibited feeding (202). These
results indicate that food intake of neonatal chicks is
inhibited by GHS-R agonists. Why ghrelin suppresses
rather than stimulates food intake in neonatal chicks
remains to be elucidated.

B) OTHER AVIAN GHRELINS. Other avian ghrelins have been
identified in duck, goose, emu, and turkey (Fig. 4). The
precursors of all avian ghrelins except that in turkey
possess a pair of basic amino acids, Arg-Arg, for the
COOH-terminal processing site of the mature ghrelin pep-
tide. Turkey ghrelin has a Pro-Arg processing signal at this
location, similar to its mammalian homologs.

3. Fish ghrelins

Fish ghrelins have been identified either by purifying
peptides from stomachs or by cDNA cloning analyses in
rainbow trout (118), eel (119), tilapia (120, 182), and
goldfish (Fig. 4) (254). Fish ghrelins exist in multiple
forms that vary in amino acid length and their specific
acyl-modifications.

A) RAINBOW TROUT. Rainbow trout ghrelin was purified
and identified from the stomach (118) (Fig. 4). Four iso-
forms of ghrelin peptide were isolated: a 24-amino-acid-
long COOH-terminal amidated form (rt ghrelin 1)(GSSFL-
SPSQKPQVRQGKGKPPRV-amide); des-VRQ-rt ghrelin (rt
ghrelin 2), in which three amino acids (V13R14Q15) are
deleted; and two other forms that retain an additional
glycine residue at their COOH termini, rt ghrelin-Gly, and
des-VRQ-rt ghrelin-Gly. The third serine residue was mod-
ified by octanoic acid, decanoic acid, or unsaturated
forms of those fatty acids. In agreement with the isolated
peptides, two cDNAs of different lengths were isolated.
The rt ghrelin gene has five exons and four introns, and
two different mRNA molecules are produced by alterna-
tive splicing of the gene. A high level of ghrelin mRNA
expression was detected in the stomach, and moderate
levels were detected in the brain, hypothalamus, and in-
testinal tracts. Des-VRQ-rt ghrelin stimulated the release
of GH but not of prolactin and somatolactin in rainbow
trout in vivo and in vitro.
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B) EEL GHRELIN. Eel ghrelin was purified from stomach
extracts of a teleost fish, the Japanese eel (Anguilla ja-

ponica), and was found to contain an amide structure at
its COOH-terminal end (119) (Fig. 4). Two molecular
forms of ghrelin, each containing 21 amino acids, were
identified by cDNA and mass spectrometric analyses.
Northern blot and RT-PCR analyses revealed high gene
expression in the stomach. Additionally, RT-PCR analysis
revealed low levels of expression in the brain, intestines,
kidney, and head kidney. Eel ghrelin-21 at a dose of 0.1
nM stimulated the release of GH and prolactin (PRL) from
organ-cultured tilapia pituitary.

C) TILAPIA GHRELIN. Tilapia ghrelin was identified from
the stomach of a euryhaline tilapia, Oreochromis

mossambicus (120) (Fig. 4). The sequence of the 20-
amino acid tilapia ghrelin is GSSFLSPSQKPQNKVKSSRI.
The third serine residue is modified by n-decanoic acid.
The COOH-terminal end of the peptide possesses an
amide structure. RT-PCR analysis revealed high levels of
gene expression in the stomach and low levels in the
brain, kidney, and gill. Tilapia ghrelin stimulated GH and
PRL release from organ-cultured tilapia pituitary at a dose
of 10 nM.

D) GOLDFISH GHRELIN. Goldfish ghrelin was identified by
cDNA analyses using rapid amplification of cDNA ends
(RACE) and reverse transcription (RT)-polymerase chain
reaction (PCR) (254) (Fig. 4). The 490-bp cDNA encodes
a 103-amino acid preproghrelin comprising a 26-amino
acid signal region, a 19-amino acid mature peptide se-
quence, and a 55-amino acid COOH-terminal region. The
mature goldfish ghrelin peptide has two putative cleavage
sites and amidation signals (GRR), one after 12 amino
acids and the other after 19 residues. Structurally, the
goldfish ghrelin gene resembles that in the human, with
four exons and three short introns. Ghrelin mRNA expres-
sion was detected in the brain, pituitary, intestine, liver,
spleen, and gill by RT-PCR followed by Southern blot
analysis and in the intestine by Northern blot. Intracere-
broventricular injection of n-octanoylated goldfish ghre-
lin-(1–19) stimulated food intake in goldfish (253).

E) ZEBRAFISH GHRELIN. A BLAST search of the zebrafish
genomic database identified a zebrafish ghrelin with a
sequence of GTSFLSPTQKPQGRRPPRV (GenBank acces-
sion no. AL918922) (Fig. 4). The 19-amino acid zebrafish
ghrelin is most homologous to goldfish ghrelin, with
which it shares a COOH-terminal valine amide structure
and a putative cleavage site for amidation signals (GRR)
after 12 amino acids.

IV. DISTRIBUTION OF GHRELIN

A. Measurement of Ghrelin Concentration

The active form of ghrelin is acyl-modified; this mod-
ification is easily cleaved during sample extraction. More-

over, peptide samples are easily digested by many pro-
teases in cells. Thus, to measure ghrelin concentrations
correctly in plasma and tissues, we have to inhibit pro-
tease digestion of the ghrelin peptide and cleavage of its
acyl-modification.

To measure the plasma concentration of ghrelin, it is
necessary to use EDTA and aprotinin when collecting
blood samples (106, 107). After the samples are centri-
fuged, the plasma fraction should be collected and treated
with 1/10 volume of 1 N HCl. The treated plasma should
be kept in the freezer (�20 to �80°C). These samples are
stable for at least 6–12 mo.

To measure the tissue concentration of ghrelin, it is
sufficient to inactivate proteases by boiling the tissues in
water for 5–10 min (125, 226). This simple method is
sufficient to keep active ghrelin intact.

Two major forms of ghrelin are found in tissues and
plasma: n-octanoyl-modified and des-acyl ghrelin (107).
The normal ghrelin concentration of plasma samples in
humans is 10–20 fmol/ml for n-octanoyl ghrelin and 100–
150 fmol/ml for total ghrelin, including both acyl-modified
and des-acyl ghrelins. Plasma ghrelin concentration is
increased in fasting conditions and reduced after habitual
feeding (50, 247), suggesting that ghrelin may be as an
initiation signal for food intake or ghrelin secretion is
controlled by some nutritional factors in blood. Plasma
ghrelin levels were lower in obese subjects than the age-
matched lean controls (98, 209, 248). Moreover, plasma
ghrelin concentrations were significantly lower in Pima
Indians, who are prone to develop insulin resistance and
obesity, than in Caucasians (87 � 28 vs. 129 � 34 fmol/ml;
P � 0. 01) (248). However, it is unclear whether changes
in plasma ghrelin concentration can influence the charac-
teristics of obese people or Pima Indians.

B. Stomach and Gastrointestinal Organs

In all vertebrate species, ghrelin is mainly produced
in the stomach (11). In the stomach, ghrelin-containing
cells are more abundant in the fundus than in the pylorus
(54, 241, 268). In situ hybridization and immunohisto-
chemical analyses indicate that ghrelin-containing cells
are a distinct endocrine cell type found in the mucosal
layer of the stomach (Fig. 7) (54, 196).

Four types of endocrine cells have been identified in
the oxyntic mucosa with the following relative abundances:
ECL, D, enterochromaffin (EC), and X/A-like cells (32, 59,
91, 223). The rat oxyntic gland contains �60–70% ECL
cells, 20% X/A-like cells, 2–5% D cells, and 0–2% EC cells;
in the human, the corresponding percentages are 30, 20,
22, and 7%. The major products in the granules have been
identified as histamine and uroguanylin in ECL cells, so-
matostatin in D cells, and serotonin in EC cells. However,
the granule contents of X/A-like cells were unknown until
the discovery of ghrelin.
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The X/A-like cells contain round, compact, electron-
dense granules that are filled with ghrelin (Fig. 7) (54, 67,
268). These X/A-like cells account for �20% of the endo-

crine cell population in adult oxyntic glands. However,
the number of X/A-like cells in the fetal stomach is very
low and increases after birth (103). As a result, the ghrelin
concentration of fetal stomach is also very low and grad-
ually increases after birth until 5 wk of age.

The gastric X/A-like cells can be stained by an anti-
body that is specific to the NH2-terminal, acyl-modified
portion of ghrelin, indicating that ghrelin in the secretory
granules of X/A-like cells has already been acyl-modified.
Ghrelin concentration in rat stomach is 377.31 � 55.83
fmol/ml (n-octanoyl ghrelin) and 1,779.8 � 533.9 fmol/ml
(total ghrelin) (107).

Ghrelin-immunoreactive cells are also found in the
duodenum, jejunum, ileum, and colon (54, 107, 203). In
the intestine, ghrelin concentration gradually decreases
from the duodenum to the colon. As in the stomach, the
main molecular forms of intestinal ghrelin are n-octanoyl
ghrelin and des-acyl ghrelin (54).

The pancreas is a ghrelin-producing organ. Analyses
combining HPLC and ghrelin-RIA revealed that ghrelin
and des-acyl ghrelin both exist in the rat pancreas (57).
However, the cell type that produces ghrelin in the pan-
creatic islets remains controversial, whether it be the �
cells, � cells, the newly identified islet epsilon (�) cells, or
a unique novel islet cell type (57, 190, 259, 260).

The pancreatic ghrelin profile changes dramatically
during fetal development (38a, 262); pancreatic ghrelin-
expressing cells are numerous from midgestation to the
early postnatal period, comprising 10% of all endocrine
cells, and decrease in number after birth. Ghrelin mRNA
expression and total ghrelin concentration are markedly
elevated in the fetal pancreas, six to seven times greater
than in the fetal stomach. Thus the onset of islet ghrelin
expression precedes that of gastric ghrelin. Pancreatic
ghrelin expression is highest in the prenatal and neonatal
periods. In contrast, gastric ghrelin levels are low during
the prenatal period and increase after birth (103). More-
over, pancreatic ghrelin levels are not affected by fasting.

The homeodomain protein Nkx2.2 is essential for the
differentiation of islet � cells and � cells, and lack of
Nkx2.2 in mice results in replacement of pancreatic en-
docrine cells by cells that produce ghrelin (190). Normal
murine pancreas also contains a small number of this new
islet cell type, epsilon cells.

FIG. 7. Ghrelin cells in the stomach. A: ghrelin-immunoreactive
cells in the stomach are found from the neck to the base of the oxyntic
gland. Scale bar, 400 �m. This distribution pattern is typical for gastric
endocrine cells. B: high magnification of A. Scale bar, 40 �m. C and D:
representative immunoelectron photographs of a ghrelin-producing cell
in the oxyntic gland. C: this ovoid cell has many round, compact,
electron-dense granules in its cytoplasm. Scale bar, 2 �m. D: high
magnification of C. Scale bar, 500 nm. Granules in the cytoplasm are
labeled with immunogold staining for ghrelin. [Adapted from Kojima et
al. (133) and Date et al. (54).]
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C. Brain and Pituitary

Since the ghrelin receptor GHS-R is mainly expressed
in the hypothalamus and pituitary, its endogenous ligand
has been thought to exist mainly in the hypothalamic
regions (93, 111). This is supported by the finding that
another GH-releasing peptide, GHRH, is produced in the
hypothalamus and is secreted into the hypophysial portal
system to stimulate GH release from the pituitary soma-
totrophs. However, the ghrelin content of the brain is
found to be very low (107, 133).

Ghrelin has been found in the hypothalamic arcuate
nucleus, an important region for controlling appetite (133,
148). In addition, a recent study has reported the presence
of ghrelin in previously uncharacterized hypothalamic
neurons adjacent to the third ventricle between the dor-
sal, ventral, paraventricular, and arcuate hypothalamic
nuclei (48). These ghrelin-containing neurons send effer-
ent fibers to neurons that contain neuropeptide Y (NPY)
and agouti-related protein (AgRP) and may stimulate the
release of these orexigenic peptides. These localization
patterns of ghrelin suggest a role in controlling food in-
take. In fact, injection of ghrelin into the cerebral ventri-
cles of rats potently stimulates food intake.

GH-releasing somatotrophs in the pituitary gland are
the target cells of ghrelin. In an in vivo assay, ghrelin
stimulated primary pituitary cells and increased their in-
tracellular Ca2� concentration, indicating that the GHS-R
is expressed in pituitary cells (24, 93, 155). Also, ghrelin
has been found in the pituitary gland itself (137, 140),
where it may influence the release of GH in an autocrine
or paracrine manner. The expression level of ghrelin in
the pituitary is high after birth and declines with puberty.
Pituitary tumors, such as adenomas, corticotroph tumors,
and gonadotroph tumors contain ghrelin peptides.

D. Other Tissues

Ghrelin mRNA is expressed in the kidney, especially
in the glomeruli (89, 162). Moreover, peptide extracts
from mouse kidney contain both n-octanoyl and des-acyl
ghrelin peptides in significant amounts. The plasma ghre-
lin concentration was significantly correlated with the
serum creatinine level and was increased 2.8-fold in pa-
tients with end-stage renal disease compared with those
in patients with normal renal function (271). This result
suggests that the kidney is an important site for clearance
and/or degradation of ghrelin.

Ghrelin-immunoreactive cells were detectable in cy-
totrophoblast cells in first-trimester human placenta but
were undetectable in third-trimester placenta (92). Ghre-
lin-containing cells were also detected in syncytiotropho-
blast cells of the human placenta and in the cytoplasm of
labyrinth trophoblasts of the rat placenta. Placental ghre-

lin mRNA was undetectable during early pregnancy, with
a sharp peak of expression at day 16 that decreases in the
later stages of gestation.

Ghrelin immunoreactive cells have been identified in
interstitial Leydig cells and in Sertoli cells (18, 238). How-
ever, ghrelin levels in Sertoli cells are very low. Moreover,
the ghrelin receptor has been detected in germ cells,
mainly in pachytene spermatocytes, as well as in somatic
Sertoli and Leydig cells (85).

E. Ghrelin-Producing Cells

Several cultured cell lines express ghrelin. Ghrelin is
produced in TT cells, a human thyroid medullary carci-
noma cell line (123). TT cells express ghrelin mRNA, and
both conditioned medium and cellular extracts of TT cells
contain ghrelin peptides. As in the stomach, cellular ex-
tracts of TT cells contain both n-octanoyl ghrelin and
des-acyl ghrelin. Other cultured cells that express ghrelin
include the kidney-derived cell line NRK-49F (162), gas-
tric carcinoid ECC10 cells (130), and the cardiomyocyte
cell line HL-1 (115).

Corebetta et al. (46) reported a patient with a malig-
nant neuroendocrine pancreatic tumor with ghrelin im-
munoreactivity and a high circulating ghrelin level. A
patient with a metastasizing gastric neuroendocrine tu-
mor was also reported to have extremely high circulating
levels of ghrelin (249). In the latter case, the patient
developed diabetes mellitus and hypothyroidism. How-
ever, it is not clear whether high ghrelin level had the
pathophysiological role in these symptoms. In both cases,
GH and IGF-I levels were within the normal range, and the
patients had no clinical features of acromegaly.

V. GHRELIN RECEPTOR

A. The Ghrelin Receptor Family

Ghrelin receptor, or GHS-R, is a typical GPCR with
seven transmembrane domains (7-TM) (111, 155, 218).
Two distinct ghrelin receptor cDNAs have been isolated
(111). The first, GHS-R type 1a, encodes a 7-TM GPCR
with binding and functional properties consistent with its
role as ghrelin’s receptor. This type 1a receptor has fea-
tures characteristic of a typical GPCR, including con-
served cysteine residues in the first two extracellular
loops, several potential sites for posttranslational modifi-
cations (N-linked glycosylation and phosphorylation), and
an aromatic triplet sequence (E/DRY) located immedi-
ately after TM-3 in the second intracellular loop.

Another GHS-R cDNA, type 1b, is produced by an
alternative splicing mechanism (111). The GHS-R gene
consists of two exons; the first exon encodes TM-1 to
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TM-5, and the second exon encodes TM-6 to TM-7. Type
1b is derived from only the first exon and encodes only
five of the seven predicted TM domains. The type 1b
receptor is thus a COOH-terminal truncated form of the
type 1a receptor and is pharmacologically inactive.

The GHS-R has several homologs, whose endogenous
ligands are gastrointestinal peptides or neuropeptides.
Figure 8 shows a dendrogram alignment of the ghrelin
receptor superfamily. This superfamily contains receptors
for ghrelin, motilin, neuromedin U (80, 110, 113, 132), and
neurotensin (257). All of these peptides are found in
gastrointestinal organs and regulate gastrointestinal
movement and other functions. This family also contains
an orphan receptor, GPR39, whose ligand is also likely to
be a gastrointestinal peptide (156).

The ghrelin receptor is most homologous to the mo-
tilin receptor; the human forms share 52% identical amino
acids (74, 116, 219). Moreover, their ligands, ghrelin and
motilin peptides, have similar amino acid sequences. Pre-
liminary studies have shown that motilin can stimulate
the ghrelin receptor, albeit at a low level. In contrast,
ghrelin does not activate motilin receptor (53).

The ghrelin receptor is well conserved across all
vertebrate species examined, including a number of mam-
mals, chicken, and pufferfish (Fugu) (180, 218, 219). This
strict conservation suggests that ghrelin and its receptor
serve important physiological functions.

It is suggested that a novel unidentified subtype of
ghrelin receptor exists. Ghrelin binding activity is demon-
strated in 3T3-L1 cells by radiolabeled ghrelin, although
RT-PCR detected no signal for the ghrelin receptor (273).
Moreover, both ghrelin and des-acyl ghrelin bind to H9c2
cardiomyocytes, which do not express the ghrelin recep-
tor (15). However, BLAST searches of the human genome
using ghrelin receptor (GHS-R) cDNA as a search se-
quence have not revealed any ghrelin receptor homologs.
Further study is required to search for an as-yet-uniden-
tified ghrelin receptor subtype.

One case of familial short stature associated with a
missense mutation in the ghrelin receptor has been re-

ported. This mutation changed a single amino acid, result-
ing in a charge change at a highly conserved extracellular
position. This mutated ghrelin receptor shows severely
impaired ghrelin binding (181).

B. Ghrelin Receptor Activation and Downstream

Signal Transduction Pathways

Two endogenous GH-releasing peptides have been
identified, ghrelin and GHRH. GHRH acts on the GHRH
receptor to activate adenylate cyclase and increase intra-
cellular cAMP, which serves as a second messenger to
activate protein kinase A. This indicates that the GHRH
receptor is coupled to a Gs subunit. On the other hand,
ghrelin acts on the GHS-R and activates phospholipase C
to generate IP3 and diacylglycerol, resulting in an increase
of intracellular Ca2�, indicating that the ghrelin receptor
is coupled to a Gq subunit.

The signal transduction pathway following ghrelin
receptor activation was investigated using HepG2, a hep-
atoma cell line that responds to ghrelin (166). Ghrelin
upregulates several activities that are also potentiated by
insulin, including tyrosine phosphorylation of insulin re-
ceptor substrate-1 (IRS-1), association of the adaptor-
molecule growth factor receptor-bound protein 2 with
IRS-1 and stimulates mitogen-activated protein kinase ac-
tivity. However, unlike insulin, ghrelin inhibits Akt kinase
and partially reverses the downregulating effect of insulin
on phosphoenolpyruvate carboxykinase (PEPCK) mRNA
expression, a rate-limiting enzyme of gluconeogenesis.

C. Ghrelin Receptor Distribution

Ghrelin receptor mRNA is prominently expressed in
the arcuate (ARC) and ventromedial nuclei (VMN) and in
the hippocampus (93, 111, 173). The ghrelin receptor is
highly sensitive to GH; its expression is increased in
GH-deficient dw/dw dwarf rats, and treatment of these
rats with GH decreases ghrelin receptor expression (24).
GHS-R mRNA is also detected in multiple hypothalamic
nuclei and in the pituitary, as well as the dentate gyrus,
CA2, and CA3 regions of the hippocampus, the substantia
nigra, the ventral tegmental area, and the dorsal and
median raphe nuclei.

RT-PCR analyses demonstrated ghrelin receptor
mRNA expression in many peripheral organs, including
heart, lung, liver, kidney, pancreas, stomach, small and
large intestines, adipose tissue, and immune cells (89, 93,
102, 134), indicating that ghrelin has multiple functions in
these tissues (30).

The existence of ghrelin and its receptor in the hip-
pocampus (24, 93), a region that is associated with learn-
ing and memory, suggest the role of ghrelin in memrory
formation. Infact, intracerebroventricular injectionofghre-

FIG. 8. Dendrogram alignment of ghrelin receptor (GHS-R) and
other GPCRs. The ghrelin receptor is part of a GPCR superfamily that
contains the motilin, neuromedin U and neurotensin receptors, and is
most homologous to the motilin receptor. Because their endogenous
ligands, ghrelin and motilin, have partly homologous amino acid se-
quences, the ghrelin and motilin systems may have evolved from a
common ancestral system. This superfamily also contains an orphan
receptor, GPR39, whose endogenous ligand is expected to be a peptide.
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lin induced c-Fos expression in the hippocampal C1, CA2,
and C3 regions, indicating that the ghrelin receptor is
active in that region (173). The involvement of ghrelin in
memory was investigated using open-field, plus-maze, and
step-down tests of inhibitory avoidance (33). Ghrelin ad-
ministration increased freezing in the open field and de-
creased the number of entries into open spaces and the
time spent on the open arms in the plus-maze, indicating
that ghrelin has an anxiogenic effect. Moreover, ghrelin
increased in a dose-dependent manner the latency time in
the step-down test, suggesting that it increases memory
retention.

VI. PHYSIOLOGICAL FUNCTIONS OF GHRELIN

A. GH-Releasing Activity

Ghrelin is a multifaceted peptide hormone (see Table
2). Ghrelin acts on the GHS-R, increasing intracellular
Ca2� concentration via IP3 to stimulate GH release. In
terms of both the area under the curve and mean peak GH
levels, the GH-releasing activity of ghrelin is similar to
that of GHRH when injected intravenously into rats (12, 133,
184, 230). However, the maximal stimulation effected by
ghrelin is two to three times greater than that of GHRH (12).

Ghrelin stimulates GH release both in vitro and in
vivo in a dose-dependent manner (Fig. 9) (12, 13, 55, 133,
184, 230). Intravenous injection of ghrelin induces potent
GH release both in rats and in humans. When anesthetized
rats were injected intravenously with ghrelin, an increase
in plasma GH concentration was observed [basal level:
12.0 � 5.4 ng/ml; after ghrelin injection: 129.7 � 11.3 (SE)
ng/ml] (133). GH release peaks at �5–15 min after ghrelin
injection and returns to basal levels 1 h later. A single
intracerebroventricular administration of ghrelin also in-
creased rat plasma GH concentration in a dose-dependent

manner, with a minimum dose of only 10 pmol (55). Thus
intracerebroventricular injection appears to be a more
potent route of delivery than intravenous administration.
Ghrelin has also been shown to induce GH release in
nonmammalian vertebrates, including chicken (19, 121),
fish (118–120, 254), and frog (117). Together, these in vivo
assays confirmed that ghrelin is a potent GH-releasing
peptide. In addition, high doses of ghrelin in humans
increase ACTH, prolactin, and cortisol levels (13, 230).

Ghrelin stimulates GH release from primary pituitary
cells, which indicates that ghrelin can act directly on the
pituitary (133). However, the involvement of the hypothal-
amus in ghrelin-mediated stimulation of GH release has
been strongly suggested. Patients with organic lesions in
the hypothalamic region showed insufficiency of GH re-
lease even when stimulated by ghrelin (188). Moreover,
when using primary pituitary cells, the ghrelin treatment
only increased GH release by two to three times above the
basal level (117, 133), which is lower than the level of
induction seen when ghrelin is administered to rats in

TABLE 2. Effects of ghrelin

Hormone secretion
Growth hormone release 1
ACTH release (weak) 1
Cortisol release (weak) 1
Prolactin release (weak) 1
Insulin release 1 ? 2

Anabolic effects
Appetite 1
Adipocity 1
Blood glucose 1

Gastric function
Gastric acid secretion 1
Gastric movement 1
Turnover of gastric and intestinal mucosa 1

Cardiovascular function
Cardiac output 1
Blood pressure 2

1, Stimulate; 2, decrease.

FIG. 9. Effects of ghrelin on pituitary hormone secretion in vitro
and in vivo. A: effects of a high dose (10�6 M) of ghrelin on hormone
secretion from rat primary pituitary cells in vitro. B: time courses of
plasma hormone concentrations after intravenous injection of ghrelin
into male rats in vivo. ACTH, adrenocorticotropin; FSH, follicle-stimu-
lating hormone; LH, lutenizing hormone; PRL, prolactin; TSH, thyroid-
stimulating hormone. [Adapted from Kojima et al. (133).]
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vivo. These facts suggest that other factors are involved in
vivo in order for this maximal level of GH release to be
achieved by ghrelin administration. One possibility is
transmission via the vagus nerve. When the vagus nerve is
cut, the induction of GH release after ghrelin injection is
dramatically decreased (56, 261), indicating that the vagus
nerve is needed for the maximal stimulatory effects of
ghrelin. Another possibility is the lack of GHRH in pri-
mary pituitary cells. Coadministration of ghrelin and
GHRH had a synergistic effect on GH secretion; that is,
coadministration results in more GH release than does
either GHRH or ghrelin alone (13, 101). Synergistic effect
on GH release was also observed by coadministration of
GHSs, synthetic ghrelin agonists, and GHRH (25, 41, 42).
This finding implies that GHRH is necessary for GH re-
lease to be maximally effective in inducing GH release.

B. Appetite Regulation

1. Hypothalamic appetite regulation

Feeding is a basic behavior that is necessary for life.
Long-term lack of food results in death. It is well accepted
that appetite is controlled by the brain and that feeding
behavior is regulated by complex mechanisms in the cen-
tral nervous system, in particular the hypothalamus (70,
207, 256). Removal of the lateral hypothalamus causes
hypophagia (decreased feeding), leading to death due to
severe weight loss. On the other hand, removal of the
ventromedial hypothalamus causes hyperphagia (in-
creased feeding); treated animals increase both feeding
amount and frequency, leading to weight gain and severe
obesity. Thus feeding is regulated by a balance of stimu-
lating and inhibiting forces in the hypothalamus.

Recent identification of appetite-regulating humoral
factors reveals regulatory mechanisms not only in the
central nervous system, but also mediated by factors
secreted from peripheral tissues (174, 216, 250, 267). Lep-
tin, produced in adipose tissues, is an appetite-suppress-
ing factor that transmits satiety signals to the brain (79).
Hunger signals from peripheral tissues, however, had re-
mained unidentified until the recent discovery of ghrelin.

2. Ghrelin neurons in the hypothalamic appetite

regulatory region

Immunohistochemical analyses indicate that ghrelin-
containing neurons are found in the arcuate nucleus of
the hypothalamus, a region involved in appetite regulation
(133, 148). This localization suggests a role of ghrelin in
controlling food intake. Moreover, a recent report has
indicated that ghrelin is also expressed in previously un-
characterized hypothalamic neurons that are adjacent to
the third ventricle between the dorsal, ventral, paraven-
tricular (PVN), and arcuate (ARC) hypothalamic nuclei

(48). In the ARC, these ghrelin-containing neurons send
efferent fibers onto NPY- and AgRP-expressing neurons to
stimulate the release of these orexigenic peptides and
onto POMC neurons to suppress the release of this an-
orexigenic peptide (Fig. 10). Neural network of ghrelin in
the PVN is more complex. In the PVN, ghrelin neurons
also send efferent fibers onto NPY neurons, which in turn
suppress GABA release, resulting in the stimulation of
corticotrophin-releasing hormone (CRH)-expressing neu-
rons, leading to ACTH and cortisol release (Fig. 10).

3. Ghrelin is a potent appetite stimulant

When ghrelin is injected into the cerebral ventricles
of rats, their food intake is potently stimulated (122, 173,
211, 246, 266). Among all discovered orexigenic peptide,
ghrelin has been found to be the most powerful. Chronic
intracerebroventricular injection of ghrelin increases cu-
mulative food intake and decreases energy expenditure,
resulting in body weight gain. Ghrelin-treated mice also
increase their fat mass, both absolutely and as a percent-
age of total body weight.

Not only intracerebroventricular injection, but also
intravenous and subcutaneous injection of ghrelin have
been shown to increase food intake (173, 246, 265). Ghre-
lin is produced primarily in gastrointestinal organs in

FIG. 10. Hypothalamic neural networks involving appetite-regulat-
ing peptides. Ghrelin-producing neurons in the arcuate nucleus (ARC)
presynaptically induce neuropeptide Y (NPY) neurons to release NPY, a
potent orexigenic neuropeptide, thus stimulating food intake. These
ghrelin-producing neurons in the ARC also increase the rate of secretion
of GABA, which may postsynaptically modulate the release of POMC, an
anorexigenic neuropeptide. In the paraventricular nucleus (PVN), ghre-
lin stimulates NPY release, which in turn suppresses GABA release,
resulting in the simulation of corticotropin releasing hormone (CRH)-
expressing neurons, leading to ACTH and cortisol release.
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response to hunger and starvation, and circulates in the
blood, serving as a peripheral signal telling the central
nervous system to stimulate feeding.

4. Mechanism of appetite stimulation by ghrelin

The hypothalamic ARC is the main site of ghrelin’s
activity in the central nervous system. The ARC is also a
target of leptin, an appetite-suppressing hormone pro-
duced in adipose tissues, and NPY and AgRP, which are
both appetite-stimulating peptides (76, 163). NPY and
AgRP are produced in the same population of neurons in
the ARC, and their appetite-stimulating effects are inhib-
ited directly by leptin. At least part of the orexigenic
effect of ghrelin is mediated by upregulating the genes
encoding these potent appetite stimulants (Fig. 10).

As suggested by the distribution of ghrelin-containing
neurons in the hypothalamus (Fig. 10), intracerebroven-
tricular injection of ghrelin induces Fos expression in
NPY-expressing neurons and increases the amount of
NPY mRNA in the ARC (122, 173, 211). Moreover, intra-
cerebroventricular ghrelin injection increases the AgRP
mRNA level in the hypothalamus. The appetite-stimulat-
ing effects of ghrelin are blocked by an antagonist of NPY
receptor 1. Intracerebroventricular injection of an AgRP
inhibitor, anti-NPY IgG, or anti-AgRP IgG inhibits the
appetite-stimulating effects of ghrelin. Intravenous injec-
tion of ghrelin also stimulates NPY/AgRP neurons in the
hypothalamus. Immunohistochemical analysis indicated
that ghrelin neuron fibers directly contact NPY/AgRP neu-
rons (48). These results indicate that ghrelin exerts its
feeding activity by stimulating NPY/AgRP neurons in the
hypothalamus to promote the production and secretion of
NPY and AgRP peptides. Studies with knockout mice of
NPY, AgRP, or both confirm these results. Although dele-
tion of either NPY or AgRP caused a modest or no effect
on the orexigenic action of ghrelin, the double knockout
mice lacked the action of ghrelin completely (40). Ghrelin,
thus, is functionally a natural antagonist to leptin.

Recently, AMP-activated protein kinase (AMPK) has
been shown to be involved in hypothalamic appetite reg-
ulation (159). Injection of 5-amino-4-imidazole carboxa-
mide riboside, an activator of AMPK, significantly in-
creases food intake. Administration of ghrelin in vivo
increases AMPK activity in the hypothalamus (6). In con-
trast, injection of leptin decreases hypothalamic AMPK
activity.

5. Vagus nerve and appetite regulation by ghrelin

Peripherally injected ghrelin stimulates hypotha-
lamic neurons (104, 201, 258) and stimulates food intake
(56, 265). In general, peptides injected peripherally do not
pass the blood-brain barrier. Indeed, the rate at which
peripheral ghrelin passes the barrier has shown to be very

low. Thus peripheral ghrelin must activate the appropri-
ate hypothalamic regions via an indirect pathway.

The detection of ghrelin receptors on vagal afferent
neurons in the rat nodose ganglion suggests that ghrelin
signals from the stomach are transmitted to the brain via
the vagus nerve (56, 204, 272). Moreover, the observation
that intracerebroventricular administration of ghrelin in-
duces c-Fos in the dorsomotor nucleus of the vagus and
stimulates gastric acid secretion indicates that ghrelin
activates the vagus system (58).

In contrast, vagotomy inhibits the ability of ghrelin to
stimulate food intake and GH release (7, 56). A similar
effect was also observed when capsaicin, a specific affer-
ent neurotoxin, was applied to vagus nerve terminals to
induce sensory denervation. However, the basal level of
ghrelin concentration is not affected after vagotomy. On
the other hand, fasting-induced elevation of plasma ghre-
lin is completely abolished by subdiaphragmatic vagot-
omy or atropine treatment (261).

6. Ghrelin and orexin

Orexin, an orexigenic hypothalamic neuropeptide, is
involved in the regulation of food intake and arousal (39,
206). Its intracerebroventricular injection stimulates food
intake, and its expression correlates negatively with
blood glucose, leptin, and food intake levels (199, 205,
214). Ghrelin stimulates isolated orexin neurons, whereas
glucose and leptin inhibit them (269). Intracerebroventric-
ular injection of ghrelin induces Fos expression in orexin-
producing cells (242). The appetite-stimulating activity of
ghrelin is reduced in orexin-null mice. Pretreatment with
anti-orexin IgG, but not with anti-MCH IgG, attenuates
ghrelin-induced feeding. Moreover, coinjection of ghrelin
with NPY-Y1 antagonist and anti-orexin IgG was shown to
suppress food intake by 87% compared with injection of
ghrelin alone. These results indicate that feeding behavior
is regulated in part by cooperative activity between ghre-
lin and orexin.

7. Meals and ghrelin

Plasma ghrelin levels increase immediately before
each meal and fall to minimum levels within 1 h after
eating (50, 247). The clear preprandial rise and postpran-
dial fall in plasma ghrelin levels support the hypothesis
that ghrelin is an initiation signal for meal consumption.

The preprandial increase in ghrelin levels was ob-
served in humans that initiated meals voluntarily without
any time- and food-related cues (49a). Indeed, ghrelin
levels and hunger scores have shown to be positively
correlated. Furthermore, the postprandial suppression of
plasma ghrelin level is proportional to the ingested caloric
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load (31), further reinforcing the hypothesis that ghrelin is
a hunger signal.

8. Ghrelin gene expression and appetite

Ghrelin gene expression in the stomach is increased
by fasting and decreased by administration of leptin and
interleukin (IL)-1� (14, 129, 243). Ghrelin produces a pos-
itive energy balance by promoting food intake and de-
creasing energy expenditure and blocks IL-1�-induced
anorexia. This fact suggests a possible clinical use of
ghrelin for pathological anorexia that occurs as a side
effect of some drugs and surgical operations and as a
symptom of cancer and AIDS.

9. Gastric bypass

To treat severe obesity, gastric bypass operations are
often performed (75, 77). The purpose of this procedure is
to reduce the space for food in the gastric cavity and
hence reduce total caloric intake. In the United States, a
total of 40,000 people are estimated to have been treated
with a gastric bypass in 2000, and 75,000 in 2001. How-
ever, the exact mechanism of action of this operation is
unknown.

Recent research has revealed that ghrelin may con-
tribute to the body weight reduction that occurs following
gastric bypass. Patients receiving such a procedure were
examined for ghrelin content after successful weight loss
(51, 86, 146). Total ghrelin secretion was found to be
reduced by up to 77% compared with normal-weight con-
trol groups and by up to 72% compared with matched
obese groups (51). Furthermore, the normal meal-related
fluctuations and diurnal rhythm of ghrelin level were ab-
sent in these patients. Thus the mean plasma ghrelin
concentration decreased significantly after gastric bypass
surgery, which may have been responsible for their lack
of hyperphagia and contributed to their weight loss.

The mechanism for decreasing plasma ghrelin level
in gastric bypass patients is not known. One hypothesis is
that direct contact between gastric mucosa and food is
important for the production and secretion of ghrelin (1).

C. Gastrointestinal Functions

Intravenous administration of ghrelin dose-depen-
dently increases gastric acid secretion and stimulates gas-
tric motility (68, 149). The maximum response to ghrelin
in terms of gastric acid secretion is almost as high as that
elicited by subcutaneous treatment with histamine (3 mg/
kg). These responses to ghrelin were abolished by pre-
treatment with either atropine or bilateral cervical vagot-
omy, but not by a histamine H2-receptor antagonist.
Intracerebroventricular administration of ghrelin also in-

creases gastric acid secretion in a dose-dependent man-
ner (58).

Intracerebroventricular administration of ghrelin
was shown to induce c-fos expression in the nucleus of
the solitary tract and the dorsomotor nucleus of the vagus
nerve (58), indicating that ghrelin’s ability to stimulate
gastric acid secretion is mediated through activation of
the vagus nerve.

D. Cardiovascular Functions

Evidence for a cardiovascular function of ghrelin has
been found: expression of mRNA encoding both ghrelin
and its receptor has been observed in the heart and aortas
(89, 169), and intravenous injection of ghrelin into human
volunteers induces a decrease in blood pressure (169). In
addition, a radiolabeled ghrelin, [125I-His9]ghrelin, was
shown to bind to heart and to peripheral vascular tissue
(128). The signal attributed to this radiolabeled molecule
is augmented in atherosclerotic regions, suggesting that
ghrelin receptor expression is upregulated in such areas
and implicating ghrelin in the development of atheroscle-
rosis.

An intravenous bolus of human ghrelin decreased
mean arterial pressure without changing the heart rate
(169, 170). Ghrelin also increased the cardiac index and
stroke volume indices. Rats with chronic heart failure
(CHF) that were treated with ghrelin showed higher car-
diac output, stroke volume, and left ventricular dP/dt-

[max] compared with afflicted, but placebo-treated con-
trols (167). Furthermore, ghrelin increased the diastolic
thickness of the noninfarcted posterior wall, inhibited left
ventricle enlargement, and increased left ventricular frac-
tional shortening in these CHF rats (171). Ghrelin, thus,
improves left ventricle dysfunction and attenuates the
development of left ventricular remodeling and cardiac
cachexia (168).

The decrease in mean arterial pressure induced by
ghrelin seems not to occur through its direct action on the
circulatory system, but through its action on the nucleus
of the solitary tract (147, 152). Microinjection of ghrelin
into this nucleus significantly decreased the mean arterial
pressure and heart rate. This injection also suppressed
sympathetic activity.

It has been reported that ghrelin inhibits apoptosis of
primary adult and H9c2 cardiomyocytes and endothelial
cells in vitro (15, 185). These effects are regulated through
activation of extracellular signal-regulated kinase-1/2 and
Akt serine kinases. Des-acyl ghrelin is similarly active,
even though it does not bind to and activate the ghrelin
receptor. Moreover, H9c2 cardiomyocytes do not express
the ghrelin receptor, indicating that another unidentified
ghrelin receptor-related receptor may be involved.
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E. Ghrelin and Insulin Secretion

The identification of the pancreatic ghrelin-expressing
cells is a matter of controversy, as described in the section
on ghrelin distribution. The role of ghrelin in insulin secre-
tion is likewise under debate. Ghrelin has been shown to
inhibit insulin secretion in some experiments and stimulate
insulin release in others (2, 29, 57, 144, 194).

These discrepancies may be due to species differ-
ences and/or experimental design. Plasma ghrelin and
insulin levels are affected by blood glucose level; high
glucose suppresses ghrelin secretion and stimulates insu-
lin secretion. Thus the glucose level in experiments may
be important. Date et al. (57) reported that ghrelin stim-
ulates insulin release in the presence of high levels of
glucose (8.3 mM) that could release insulin from cultured
islet cells. In contrast, ghrelin had no effect on insulin
release in the context of a basal level of glucose (2.8 mM).

Hepatic and renal gluconeogenesis is crucially impor-
tant in maintaining glucose homeostasis. The rate-lim-
itinig enzyme of gluconeogenesis, PEPCK, is downregu-
lated by insulin at the transcriptional level (166). With the
use of a rat hepatoma cell line, H4-II-E cells, ghrelin
reversed the downregulating effect of insulin on PEPCK
mRNA levels. Because the ghrelin receptor mRNA is de-
tected in liver and kidney tissues by RT-PCR method (89),
ghrelin may be concerned in the regulation of gluconeo-
genesis in vivo.

F. Life Without Ghrelin

1. Total gastrectomy

The stomach is the major source of circulating ghre-
lin (11). Total gastrectomy, as is performed in the treat-
ment of gastric cancer or sever gastric ulcers, was shown
to decrease the plasma concentrations of ghrelin to �30–
50% of those of pregastrectomy when measured at 30 min
after the operation (109, 145, 146). This concentration
gradually increased to �70% of the level before the oper-
ation. These results indicate that gastric ghrelin produc-
tion accounts for �50–70% of circulating ghrelin but that
this percentage is subject to compensatory production
possibly by the intestines and pancreas.

It has been suggested that gastric factor(s) may con-
trol bone formation (244), since total gastrectomy some-
times induces osteopenia (145). Synthetic ghrelin ago-
nists, GHSs, have been shown to directly stimulate osteo-
cyte growth (229). Thus ghrelin may be involved in the
gastric regulation of bone formation.

2. Ghrelin knockout mouse

A ghrelin knockout mouse was produced, and its
phenotype was examined (227, 263, 264). Ghrelin knock-

out mice showed normal size, growth rate, food intake,
body composition, reproduction, and gross behavior,
without any pathological changes. Because survival is
more acutely threatened by starvation than obesity, it may
be no surprise that an orexigenic-peptide-null mouse
showed no change in food intake and body weight.

However, the ghrelin-null mouse showed a significant
reduction in respiratory quotient and a trend for lower
body fat mass when the mouse was fed with a high-fat diet
(263, 264). These results indicate that ghrelin is not a
critically required orexigenic factor but may function in
nutrient sensing and switching of metabolic substrates.

3. GHS-R knockout mouse

Mice lacking GHS-R (Ghsr-null mice) do not show the
typical increases in GH release and food intake upon
ghrelin administration, indicating that GHS-R is indeed
the primary biologically relevant ghrelin receptor (228).
Growth and development of Ghsr-null mice are normal,
and their appetite and body composition are not different
from those of their wild-type littermates. Thus ghrelin and
its receptor are not critical for growth and appetite regu-
lation.

However, serum insulin-like growth factor I (IGF-I)
levels and body weights of Ghsr-null mice are modestly
decreased compared with those of their wild-type litter-
mates. These results suggest that ghrelin sets the IGF-I
level for the maintenance of an anabolic state.

4. Anti-GHS-R transgenic rat

A transgenic rat expressing an antisense GHS-R
mRNA in the hypothalamus to block the signal pathway of
ghrelin was expected to show the same phenotype as the
ghrelin-null mouse, but in fact their phenotypes are
clearly different. The transgenic rat has a lower body
weight and less adipose tissue compared with wild-type
rats and consumes less food (212). The difference in
phenotypes between the ghrelin-null mouse and the anti-
GHS-R mRNA-expressing transgenic rats may be due to
the presence of a compensatory mechanism existing in
the former, but has not been fully addressed.

VII. REGULATION OF GHRELIN SECRETION

AND ASSOCIATED DISEASES

A. Regulation of Ghrelin Secretion

The most important factor for the regulation of ghre-
lin secretion is feeding. Plasma ghrelin concentration is
increased when fasting and decreased after food intake
(50, 247). It is not clear what factors are involved in the
regulation of ghrelin secretion. Blood glucose level may
be critical: oral or intravenous administration of glucose
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decreases plasma ghrelin concentration (154, 209). Be-
cause gastric distension by water intake does not
change ghrelin concentration, mechanical distension of
the stomach alone clearly does not induce ghrelin re-
lease. Plasma ghrelin concentration is sensitive, how-
ever, to the makeup of a meal; it is decreased by a
high-fat meal (72, 90).

Plasma ghrelin concentration showed a nocturnal
increase (71, 270). Ghrelin levels increased during sleep,
and this increase was blunted in obese subjects or by
sleep deprivation.

Plasma ghrelin concentration is low in obese people
and high in lean people (23, 51, 98, 99, 200, 209, 248).
Related to this fact, plasma ghrelin level is highly in-
creased in anorexia nervosa patients and returns to nor-
mal levels upon weight gain and recovery from the dis-
ease (11, 52, 179, 224, 236). Ghrelin concentration is also
increased in bulimia nervosa patients (235). Patients with
gastric bypass lose their weight, and their ghrelin levels
decrease (51, 86, 146). Changes in ghrelin concentration
associated with food intake are diminished in these pa-
tients, confirming that the stomach is the main site of
ghrelin production. Plasma ghrelin concentration also de-
creases in patients with short bowel syndrome (143),
probably due to the loss of ghrelin-producing tissues.

Exogenous treatment with somatostatin and its ana-
logs, such as octreotide, as well as infusion of urocortin-1,
a potent anorexigenic peptide, suppress plasma ghrelin
concentration (17, 60, 100, 177, 231). However, adminis-
tration of leptin does not modify ghrelin levels (36).

Exogenous GH decreases stomach ghrelin mRNA ex-
pression and plasma ghrelin concentration, but does not
affect stomach ghrelin stores (191). These results suggest
that pituitary GH exhibits a feedback regulation on stom-
ach ghrelin production. Moreover, relatedness between
ghrelin and GH pulsatility has been demonstrated, sug-
gesting either that ghrelin participates in the pulsatile GH
release or that the two hormones are simultanously co-
regulated (141).

B. Polymorphisms in the Ghrelin Gene and Obesity

The relationship between genomic variants of the ghre-
lin gene and obesity has been suggested. In humans, two
polymorphisms have been reported: Arg51Gln and
Leu72Met (160, 189, 251, 252). For both polymorphisms,
allelic frequencies are similar between obese patients and
controls. However, it has been reported that obese patients
with the Met72 allele became obese earlier than patients
homozygous for the wild-type Leu72 allele, suggesting that
the polymorphism may affect ghrelin’s activity.

The Arg51Gln mutation results in a change in the
COOH-terminal processing site of the ghrelin peptide
within its precursor protein from Pro-Arg to Pro-Gln,

resulting in the failure of the normal cleavage necessary
to produce the 28-amino acid ghrelin. A 94-amino-acid-
long pro-ghrelin peptide may still be produced, although
its biological activity has not been assessed. Interestingly,
Ukkola et al. (252) reported that in 96 nonobese female
controls [mean BMI 23.0 � 1.4 (kg/m2) of the Swedish
Obese Subjects cohort], the Arg51Gln mutation was iden-
tified in six (all heterozygotes) obese subjects (6.3%) but
not among controls (P � 0.05) (252). However, it is not
clear that this mutation in fact changes the activity or
biological properties of ghrelin.

C. Feeding Disorders

Anorexia nervosa (AN) is a syndrome often seen in
young women characterized by a combination of
weight loss, amenorrhea, and behavioral changes.
Some of these changes are reversible with weight gain.
Plasma ghrelin levels in AN patients are high and return
to control levels after weight gain by renutrition (11, 52,
179, 224, 236). AN patients often show markedly ele-
vated GH levels, which may be due to high circulating
levels of ghrelin. Moreover, high ghrelin increases
ACTH, prolactin, and cortisol levels in humans (13,
230), which may explain the amenorrhea and behav-
ioral changes observed in AN patients.

Prader-Willi syndrome (PWS) is a complex genetic
disorder characterized by mild mental retardation, hy-
perphagia, short stature, muscular hypotonia, and distinc-
tive behavioral features (176). Excessive appetite in PWS
causes progressive severe obesity, which in turn leads to
an increase of cardiovascular morbidity and mortality.
The PWS genotype is characterized by a loss of one or
more paternal genes in region q11–13 on chromosome 15
(176). It has been suggested that this genetic alteration
leads to dysfunction of several hypothalamic areas, in-
cluding appetite regulatory regions. Moreover, GH defi-
ciency is common in PWS.

High plasma ghrelin concentration is observed in
PWS patients (49, 63). The mean plasma concentration of
ghrelin was higher by three- to fourfold in PWS than in a
reference population. Thus ghrelin may be responsible, at
least in part, for the hyperphagia seen in PWS. It is un-
clear, however, what underlies the increased ghrelin lev-
els in these patients. Imprinting of paternal genes in re-
gion q11–13 on chromosome 15 may induce the produc-
tion of excessive amounts of transcription factors that
increase ghrelin expression or, alternatively, a loss of a
transcription inhibitory factor that normally suppresses
ghrelin expression. Elucidation of the precise mechanism
by which ghrelin gene expression is regulated may reveal
the genetic cause of hyperphagia in PWS.
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VIII. CLINICAL APPLICATION OF GHRELIN

The diverse functions of ghrelin raise the possibility
of its clinical application (73, 255) (Table 3).

Because of its potent GH-releasing activity and spec-
ificity, ghrelin may be applied to the diagnosis and treat-
ment of GH deficiency (16, 62, 239). To diagnose GH
deficiency, the most common GH stimulus used is insulin-
induced hypoglycemia, in which blood glucose levels de-
crease to �40 mg/dl. This test can evaluate both GH and
ACTH release in patients with pituitary disease. However,
the hypoglycemic action of insulin may sometimes cause
side effects. At present, intravenous injection of ghrelin
into humans does not show any side effects, suggesting
that ghrelin may be useful for diagnosing GH deficiency.

Adult and child GH deficiency may be benefitted by
ghrelin treatment. The GH-releasing activity of ghrelin is
comparable to that of GHRH (12, 133, 184, 230). In addi-
tion, coadministration of ghrelin and GHRH has a syner-
gistic effect on GH secretion, and their combined admin-
istration is the most potent inducer of GH release yet
identified (101). At small doses of 0.08 or 0.2 �g/kg ghre-
lin, the combined administration of ghrelin and GHRH
significantly stimulated GH release in a synergistic man-
ner. This synergy was observed even at a high dose of 1.0
�g/kg ghrelin, although the comparison was not statisti-
cally significant.

At present, ghrelin is only a peripheral orexigenic
signal that is effective upon its intravenous injection (69,
250). Thus blocking or neutralizing ghrelin’s action may
be a reasonable approach to reversing a chronic obese
state. However, appetite is regulated by numerous factors
that may interact with and compensate for each other
(20); thus a ghrelin antagonist might only have a limited
effect on obesity. Indeed, ghrelin-null mice showed no
obvious abnormalities in feeding behavior (227).

In contrast, ghrelin may be useful as an orexigenic
agent for the treatment of eating disorders such as AN
(164). Injection of ghrelin can stimulate appetite and im-
prove the nutritional state of these patients. However,
plasma ghrelin concentration in AN patients is very high.
This result indicates that sensitivity to ghrelin is severely
disturbed in these individuals.

Ghrelin stimulates gastric motility (68, 149), which
makes it a candidate for the treatment of postoperative
gastric ileus. Ghrelin administration has been shown to
have a strong prokinetic effect, accelerating gastric emp-
tying and the small intestinal transit of liquid meals and
reversing delayed gastric evacuation, thus counteracting
gastric ileus (245).

Central and intraperitoneal administrations of ghre-
lin reduced ethanol-induced gastric ulcers in a dose-de-
pendent manner (136, 213). This effect is prevented by
NG-nitro-L-arginine methyl ester (L-NAME), an inhibitor of
nitric oxide synthesis, and by capsaicin, indicating that
the gastroprotective effect of ghrelin is mediated by nitric
oxide and requires capsaicin-sensitive sensory nerve ac-
tivity.

Ghrelin has positive cardiovascular effects, as indi-
cated by the presence of its receptor in blood vessels and
the cardiac ventricles. In vitro, ghrelin inhibits apoptosis
of cardiomyocytes and endothelial cells (15). In humans,
infusion of ghrelin decreases systemic vascular resistance
and increases cardiac output in patients with heart fail-
ure. Administration of ghrelin improves cardiac structure
and function, and attenuates the development of cardiac
cachexia in rats with heart failure (37, 38, 168). These
results suggest that ghrelin has cardiovascular protective
effects and regulates energy metabolism through GH-de-
pendent and -independent mechanisms. Thus ghrelin may
be a new therapeutic agent for the treatment of severe
chronic heart failure.

Other potential clinical applications of ghrelin are in
osteoporosis, aging, and catabolic states including those
seen in postoperative patients and in AIDS- and cancer-
associated wasting syndromes (96, 97, 175). For example,
in human immunodeficiency virus (HIV)-lipodystrophy
patients GH and ghrelin levels are both reduced (142).
Reduced ghrelin level may be in part cause to decrease
GH level. Ghrelin therefore may be useful to treat HIV-
lipodystrophy by its GH releasing activity as well as its
anabolic effect.

IX. EPILOGUE

The discovery of ghrelin occurred against a backdrop
of a long history of peptide research. A small opioid
peptide derivative with weak GH-releasing activity
opened a wide new field in endocrinology and metabo-
lism. The story of ghrelin, from the initial development of

TABLE 3. Possible clinical applications of ghrelin

GH deficiency
Diagnosis of pituitary function
Child and adult GH deficiency

Eating disorder
Anorexia nervosa
Bulimia nervosa
Prader-Willi syndrome

Gastrointestinal disease
Cardiovascular disease

Heart failure
Dilated cardiomyopathy

Osteoporosis
Aging
Catabolic state or chronic wasting syndrome

Cachexia (cancer, cardiac chachexia)
AIDS
Postoperative patients

GH, growth hormone.
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an artificial GHS to the identification of the endogenous
ligand, is a typical example of the general paradigm of
reverse pharmacology. This story also makes us reevalu-
ate the importance of purification of natural substances.
By scanning genomic databases, we can identify amino
acid sequences; however, natural substances sometimes
escape our notice. Ghrelin is such a case.

About 25 years ago, the intitial report of a GHS
introduced a new regulatory pathway for GH release to
accompany the known GHRH pathway. Since then, many
potent GHSs have been developed, and the structure of
the GHS-R has been identified. However, despite intensive
research, the identity of the endogenous ligand of the
GHS-R had remained elusive until the discovery of ghre-
lin. This finding has launched a whole new field of re-
search in GH and appetite regulation. Growing evidence
supports the notion that GH release from the pituitary is
controlled not only by GHRH from the hypothalamus, but
also by ghrelin from the stomach and hypothalamus. In
addition, ghrelin is a peripheral fasting signal and stimu-
lates food intake, in contrast to the functions of leptin, a
peripheral satiety signal from adipose tissues.

The structure of ghrelin, and the tissue in which it is
produced, is unprecedented in the fields of bioactive pep-
tides and endocrinology. Ghrelin is the first case of a
bioactive peptide that is modified by a fatty acid, possess-
ing primarily an n-octanoyl modification that is essential
for its activity. Ghrelin exists not only in mammalian
species, but also in nonmammals such as frog, chicken,
and fish. Ghrelin, thus, may be an essential hormone for
maintaining GH release and energy homeostasis in verte-
brates. Moreover, the acyl-modified structure of ghrelin
reveals an unknown pathway for pro-peptide processing.

There remain many interesting questions regarding
ghrelin-related biology. These include the identification of
the pathways regulating ghrelin’s production and release
from the stomach, the enzyme that catalyzes its acyl-
modification, as well as the continuing search for its
physiological actions. Further research will answer these
questions and elucidate the biochemical and physiologi-
cal characteristics of this unique hormone.
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