Presented By: Beena Murthy & Arlene Ngor

'Metabolic Syndrome' in the brain

Deficiency in omega-3 Fatty acid exacerbates dysfunctions In insulin receptor signaling and cognition.

Authors: Rahul Agrawal and Fernando Gomez-Pinilla

Overview and Objectives

• Introduction

- Metabolic dysfunction affects brain function.
- Methods
 - Results
 - Discussion
 - Conclusion

- This is shown in this paper using the effects of metabolic syndrome in rats induced by a high fructose diet.
- Unhealthy dietary habits (such as high fructose intake) can be partially counteracted by omega 3 fatty acid dietary supplementation.
- High sugar consumptions impair cognitive functions (memory) and disrupts insulin signaling by engaging molecules associated with energy metabolism and synaptic plasticity.
- Omega 3 Fatty Acid returns body to metabolic homeostasis.

Introduction

Metabolic Syndrome (MetS)

- **Metabolic syndrome** is a disorder of energy utilization and storage.
- It increases morbidity (disease) and decreases life expectancy.
- Characterized by increased insulin resistance, <u>hyperinsulinemia</u>, <u>hypertension</u> and <u>hypertriglyceridemia</u>.
- Caused by high fructose intake
- It is diagnosed by a co-occurrence of three out of five of the following medical conditions: abdominal obesity, elevated blood pressure, elevated fasting plasma glucose, high triglycerides, and low high-density cholesterol (HDL) levels.

Hyperinsulinemia: high insulin levels Hypertension: High blood pressure Hypertriglyceridemia: high triglyceride levels in blood

Introduction

Fructose

- **Fructose** is a simple sugar, or monosaccharide
- Fructose + Glucose = Sucrose
- High dietary fructose consumption contributes to an **increase in insulin resistance index**, **insulin** and **triglyceride levels**.
- High fructose diet leads to hepatic oxidative damage, altered lipid metabolism in rats.

Omega 3 Fatty Acids

Docosahexaenoic acid (**DHA**) - This paper studies the ability of DHA to counteract MetS.

- A primary structural component of the human brain, cerebral cortex, skin, and retina.
- Supports learning and memory in Alzheimer's disease and brain injury.
- Important for brain development and plasticity.
- It can be synthesized from alpha-linolenic acid or obtained directly from maternal milk or fish oil.

α-Linolenic acid (ALA)- found in seeds (chia, flaxseed), nuts (walnuts), and many common vegetable oils.

Introduction

Introduction

Terminology

Omega 3 vs Omega 6 FA

• *n***-6 fatty acids** have a double bond at the sixth carbon from the end of the carbon chain.

• Arachidonic Acid (AA)

• *n***-3 fatty acids** have a double bond at the third carbon atom from the end of the carbon chain.

- Eicosapentaenoic acid (EPA)
- Docosahexaenoic acid (DHA)
- Alpha-linolenic acid (LNA)
- Peroxidation of membrane bound n-6 AA generates 4-HNE
- Fructose intake disrupts the plasma membrane by increasing 4-HNE
 - 4-HNE is 4-hydroxynonenol that is produced by lipid peroxidation in cells

Peroxidation: oxidative degradation of lipids. It is the process in which free radicals "steal" electrons from the lipids in cell membranes, resulting in cell damage.

Methods

Experimental Design

• Used adult male Sprague- Dawley rats

- Kept in a polyacrylic cage with standard room temp (22-24C) and 12 hr light and dark cycle.
- Acclimatized on standard rat chow for 1 week.
- Trained on the Barnes Maze Test for 5 days, two trials per day to learn the task.
- Randomly assigned to diet groups of 6 rats each.
- To test memory retention, 2 trials were given after 6 weeks of diet experimentation.

n-3 diet	n-3 def	
n-3 diet/Fru	n-3 def/Fru	

Diet Composition

- Two custom diets: one n-3 and one n-3 def.
- Both had same basal macronutrients, vitamins, minerals, and basal fats (hydrogenated coconut and safflower oils).
- n-3 added through flaxseed oil (0.5%) LNA and docosahexaenoic acid capsule oil (1.2%) DHA.
- The fructose solution (15%) was substituted as drinking water for n-3 diet/Fru and n-3 def/Fru

Methods

Barnes Maze Task

- A circular surface with 18 circular holes around its circumference.
- Visual cues (colored shapes or patterns), are placed around the table in plain sight of the animal.
- The rats were trained to locate a dark escape chamber hidden under one of the holes.
- Start: place rat under cylinder cover at middle of maze for 10 sec.
- End: after rat enters escape chamber or 5 minutes passed.

Methods

Biochemical Analysis

- Blood collected from rat tail after overnight fasting for serum samples
- Measured glucose, insulin, and triglyceride levels.
- Homeostasis model assessment ratio (HOMA-R) was then calculated. This is an index of insulin resistance
 - HOMA-R = fasting glucose x fasting insulin / 22.5

Fatty Acid Analysis

- Total Lipids were then extracted from the brain tissues of the rats.
- The lipids were analyzed on a chromatograph
- A chromatograph separates liquids, in this case the lipids, out of the ground tissue.

Methods

- Immunoblotting uses antibodies to identify target proteins in a protein mixture.
- They involve identification of protein target via antigen-antibody specific reactions.
- Proteins are first separated by gelelectrophoresis by charge and transferred onto membranes (blotting).
- The membrane is overlaid with a primary antibody for a specific target.

- Used for hippocampal tissue
 - 1- the tissue was dissolved in lysis buffer
 - 2- The liquid was centrifuged and the supernatant was collected
 - 3- protein concentration of the supernatant was checked
 - **4-** Protein samples were run through a polyacrylamide gel where they were separated by charge through gel electrophoresis.
 - **5-** Then the gel was electrotransferred to a PVDF- polyvinylidene difluoride- membrane (non-reactive).
 - 6- non-fat milk blocks non specific binding sites
 - 7- Then membranes incubated with primary antibodies

Methods

- Antibodies
 - Anti- Actin
 - -Anti- LKB1
 - Anti pAMPK
 - -Anti-p-synapsin
 - -Anti- synpasin
 - -Anti- 4HNE
 - -Anti- IR
 - -Anti- CREB
 - -anti Sir2
 - -Anti- Synaptophysin
 - Anti AMPK
 - Anti- pAkt
 - -Anti-Akt

Methods

Immunoprecipitation

- Used to determine the expression of Insulin Receptor
- Precipitates a protein antigen out of solution.
- This process can be used to detect a particular protein from a sample of many proteins.

Diagram 1: Illustration of Immunoprecipitation process.

Statistical Analysis

- Analyzed by ANOVA- analysis by the difference in group means
- Analyzed by Newman-Keuls to determine statistical difference among group means.
- The Newman–Keuls method is a stepwise multiple comparisons procedure used to identify sample means that are significantly different from each other
- P value <0.05 is statistically significant

Overview

• Fructose and n-3 fatty acid dietary experiments

- body weight, caloric intake, food, and water consumption
- cognitive function
- metabolic markers

- insulin resistance
- insulin receptor signaling
- energy metabolism
- synaptic plasticity
- lipid peroxidation

Body weight, caloric intake, food and water consumption

- No significant differences observed in body weight, food intake, and water intake among any of the control and variable groups
- Slight preference towards fructose drinking in comparison to food intake

Table 1. Body weight, caloric intake, food and water consumption in groups subjected to *n*-3 and *n*-3 deficient diets with or without fructose water

	B <mark>ody weight (g)</mark>	Food intake (g day ⁻¹)	Water intake (ml day ⁻¹)	Caloric intake (kcal day ⁻¹)
n-3 diet	508.2 ± 13.51	26.18 ± 1.28	$\textbf{30.77} \pm \textbf{1.49}$	109.6 ± 4.14
<i>n</i> -3 def	492.5 ± 5.43	25.72 ± 0.605	$\textbf{33.18} \pm \textbf{2.07}$	102.8 ± 2.17
<i>n</i> -3 def/Fru	512.8 ± 9.72	$22.0~\pm~1.52$	45.72 ± 8.21	110.2 ± 7.14
<i>n</i> -3 diet/Fru	522.5 ± 24.44	22.58 ± 0.993	$\textbf{41.91} \pm \textbf{4.90}$	117.4 ± 2.17

Values are expressed as mean \pm SEM.

Cognitive functions

- Spatial learning in the Barnes Maze test
- Prior to experimental diet exposure, all groups observed
 - Decrease in latency time to find the escape hole
 - Similar latency time
 - Thus, all rats were in the same cognitive condition prior to experimental diets

Latency time: time interval between stimulation and response; can be thought of as time delay between cause and effect

Cognitive functions

- Memory retention in the Barnes Maze test
- After experimental diet exposure, all groups observed
 - \circ N-3 FA deficient diet → \uparrow latency times → memory impairment
 - \circ N-3 FA deficient + fructose diet → \uparrow latency times → memory impairment
 - N-3 FA + fructose diet → improved memory impairment
 - Thus, dietary n-3 deficiency influences vulnerability for fructose induced changes

Metabolic Markers

Metabolic markers for metabolic dysfunction: fasting blood glucose, insulin, & triglyceride levels

Table 2. Blood glucose, insulin and triglyceride levels in groups subjected to *n*-3 and *n*-3 deficient diets with or without fructose water

	Glucose level (mg dl ⁻¹)	Insulin level (ng ml ⁻¹)	Triglyceride level (mg dl ⁻¹)
n-3 diet	81.17 ± 3.02	1.46 ± 0.24	91.17 ± 10.69
<i>n</i> -3 def	77.17 ± 4.26	$1.56~\pm~0.30$	$142.0 \pm 10.60 \#$
<i>n</i> -3 def/Fru	106.0 \pm 6.55##	3.28 \pm 0.21##	218.8 ± 23.04##
<i>n</i> -3 diet/Fru	99.83 ± 3.13	$2.54 \pm 0.16^{*}$	166.2 ± 17.65*

Values are expressed as mean \pm SEM. #P < 0.05, ##P < 0.01: significant difference from *n*-3 diet; *P < 0.05: significant difference from *n*-3 def/Fru; ANOVA (one-way) followed by Newman–Keuls test.

Metabolic marker: measurable metabolic change that characterizes a state of health or disease

Metabolic Markers

- Induced changes from dietary n-3 FA and fructose in metabolic markers:
 - N-3 FA deficiency diet → \uparrow Triglyceride levels
 - \circ N-3 FA deficiency + fructose diet → \uparrow ↑ Triglyceride levels
 - \circ N-3 FA deficiency + fructose diet → \uparrow Glucose levels
 - N-3 FA deficiency + fructose diet → \uparrow Insulin levels
 - N-3 FA + fructose diet → ↑ Insulin and triglyceride levels (alleviated fructose induced changes)

Insulin resistance

- N-3 FA deficiency diet \rightarrow no change in insulin resistance index
- Effects of dietary n-3 FA on fructose induced insulin resistance
 - N-3 FA deficiency + fructose diet → \uparrow insulin resistance index
 - N-3 FA + fructose diet $\rightarrow \uparrow$ insulin resistance index (alleviated fructose induced changes)

Insulin Resistance Index: the measure of the condition in which cells fail to response to normal actions of insulin hormone

Association between metabolic changes and cognitive behavior

Correlated with triglyceride and insulin resistance levels with memory

Association between metabolic changes and cognitive behavior

Positive correlation between triglyceride levels and insulin resistance index

Association between metabolic changes and cognitive behavior

 Positive correlation between fructose induced memory deficits and triglyceride

Association between metabolic changes and cognitive behavior

 Latency time varied in proportion to insulin resistance → memory relies on levels of insulin resistance index

Insulin receptor signaling

 Assess levels of insulin receptor tyrosine phosphorylation and Akt phosphorylation according to the experimental diets

Insulin receptor signaling

N-3 FA deficiency + fructose diet → ↓ pTyrIR
N-3 FA + fructose diet → ↑ pTyrIR

pTyrIR: tyrosine phosphorylation of insulin receptor

Insulin receptor signaling

Negative correlation between insulin resistance index and pTyrIR levels

 increased insulin resistance disrupts insulin receptor signaling

Insulin receptor signaling

- N-3 FA deficiency diet $\rightarrow \downarrow$ pAkt
- N-3 FA deficiency + fructose diet $\rightarrow \downarrow \downarrow$ pAkt
- N-3 FA + fructose diet → ↑ pAkt (alleviates fructose induced change)

Energy metabolism

↑ ADP → ↑AMP → AMPK activation
 LKB1 activation → AMPK activation

AMPK: AMP-activated protein kinase LKB1: kinase upstream of AMPK

Energy metabolism

• N-3 FA deficient diet $\rightarrow \downarrow pLKB1$

pLKB1: phosphorylated LKB1

Energy metabolism

Positive correlation between pLKB1 and DHA

pLKB1: phosphorylated LKB1 DHA: docosahexaenoic acid, n-3 fatty acid
Results

Energy metabolism

Negative correlation between pLKB1 and arachidonic acid (AA)

С

pLKB1: phosphorylated LKB1 AA: arachidonic acid, n-6 fatty acid

Results

Energy metabolism

- N-3 FA deficiency diet $\rightarrow \downarrow$ pAMPK $\rightarrow \downarrow$ energy metabolism
- N-3 FA + fructose diet $\rightarrow \uparrow$ pAMPK

Consuming less ATP

Fatty acid synthesis

Glycogen synthesis

Protein synthesis

• N-3 FA diet $\rightarrow \uparrow$ pAMPK

pAMPK: phosphorylated AMPK

Energy metabolism

- N-3 FA deficiency + fructose diet $\rightarrow \downarrow$ Sir2
- N-3 FA diet $\rightarrow \uparrow$ Sir2

SIRT1: mammalian homolog of yeast Sir2

 cAMP-response element binding (CREB) protein plays a role in synaptic plasticity and cognitive functions

Synaptic plasticity: ability of synapses to strengthen or weaken over time, in response to increases or decreases in their activity CREB: cellular transcription factor that binds to cAMP response elements

- N-3 FA deficiency diet $\rightarrow \uparrow pCREB$
- N-3 FA deficiency + fructose diet $\rightarrow \uparrow \uparrow$ pCREB
- N-3 FA + fructose diet $\rightarrow \uparrow pCREB$
 - Thus, n-3 FA can counter-regulate fructose induced alterations in synaptic plasticity via CREB

Synaptic plasticity: ability of synapses to strengthen or weaken over time, in response to increases or decreases in their activity CREB: cellular transcription factor that binds to cAMP response elements

- Positive correlation between Sir2 and CREB
 - Thus, Sir2 involved in hippocampal plasticity and cognitive function

Sir2: yeast protein that plays a role in stress and is responsible for lifespan–extending effects of calorie restriction CREB: cellular transcription factor that binds to cAMP response elements

- Synapsin I: synaptic marker that regulates neurotransmitter release at the synapse
- Synaptophysin: marker for synaptic growth

- N-3 FA deficiency diet $\rightarrow \downarrow$ pSynapsin I
- N-3 FA deficiency + fructose diet $\rightarrow \downarrow$ pSynapsin I

- N-3 FA deficiency diet $\rightarrow \downarrow$ Synaptophysin
- N-3 FA deficiency + fructose diet $\rightarrow \downarrow$ Synaptophysin

4-HNE/actin levels

Lipid peroxidation

- Lipid peroxidation: oxidative degradation of lipids in which free radicals attacks, or stealing of, electrons from lipids resulting in cell damage
- N-3 FA deficient + fructose diet $\rightarrow \uparrow\uparrow$ 4-HNE
- N-3 FA diet $\rightarrow \uparrow$ 4-HNE
- Thus, n-3 FA deficient diets make the brain more vulnerable to fructose induced free radical attacks

FA composition in the brain

 Gas chromatography: separating compounds by their vapor pressures without decomposition occurring

FA composition in the brain

- Profiled fatty acids in the brain observed during these experimental diets
 N-3 FA deficient (+ fructose) diet → no change in saturated or monounsaturated FA levels
 - Except in:
 - FA (22:6n-3) where DHA levels decreased
 - FA (22:5n-6) where DPA levels increased
 - FA (20:4n-6) where AA levels decreased
 - Exposure to n-3 FA diet reversed n-3 FA deficiency and fructose
- Increased ratio of n-6 FA to n-3 FA during n-3 deficiency and/or fructose
- Ratio of N-6 FA to n-3 FA can be counter-regulated by dietary n-3 FA

Results

FA composition in the brain

Table 3. Fatty acid composition in groups subjected to n-3 and n-3 deficient diets with or without fructose water

Fatty acids	n-3 diet	<i>n</i> -3 def	<i>n</i> -3 def/Fru	n-3 diet/Fru
14:0	0.338 ± 0.019	0.299 ± 0.039	0.311 ± 0.004	0.391 ± 0.018
16:0	20.27 ± 0.274	20.57 ± 0.552	20.55 ± 0.377	21.00 ± 0.298
18:0	18.72 ± 0.150	19.32 ± 0.239	18.84 ± 0.199	18.81 ± 0.295
18:1	15.10 ± 0.214	14.34 ± 0.351	14.55 ± 0.208	14.84 ± 0.225
18:2 <i>n-</i> 6 (LA)	0.353 ± 0.020	0.310 ± 0.063	0.250 ± 0.012	0.340 ± 0.016
20:0	0.254 ± 0.012	0.246 ± 0.018	0.236 ± 0.017	0.238 ± 0.013
20:1	1.028 ± 0.020	0.963 ± 0.076	0.997 ± 0.045	0.953 ± 0.020
20:4n-6 (AA)	7.017 ± 0.228	8.149 ± 0.107 ##	8.265 ± 0.149 ##	6.821 ± 0.136**
22:0	0.290 ± 0.023	0.265 ± 0.017	0.285 ± 0.022	0.264 ± 0.010
22:5n-6 (DPA)	0.212 ± 0.010	0.968 ± 0.032##	0.912 ± 0.036##	0.222 ± 0.014**
22:6n-3 (DHA)	13.48 ± 0.388	11.44 ± 0.199##	11.77 ± 0.375##	13.52 ± 0.089**
24:0	0.652 ± 0.048	0.578 ± 0.035	0.679 ± 0.040	0.629 ± 0.023
24:1 <i>n-</i> 9	1.254 ± 0.078	1.167 ± 0.088	1.260 ± 0.064	1.212 ± 0.044
n-6/n-3	0.562 ± 0.010	0.824 \pm 0.017##	0.803 \pm 0.020##	$0.546 \pm 0.011^{**}$

Values are expressed as mean \pm SEM. ##P < 0.01: significant difference from n-3 diet; **P < 0.01: significant difference from n-3 def/Fru; ANOVA (one-way) followed by Newman–Keuls test. LA, linoleic acid; AA, arachidonic acid; DPA, docosapentaenoic acid; DHA, docosahexaenoic acid.

Metabolic dysfunction and cognitive performance

- N-3 FA deficiency compromises metabolic homeostasis and thus affects cognitive abilities
- N-3 FA deficient diet $\rightarrow \downarrow$ spatial memory
- N-3 FA deficient + fructose diet $\rightarrow \downarrow \downarrow$ spatial memory

Metabolic dysfunction and cognitive performance

- Obesity not a major contributor to altered memory function
 N-3 FA deficiency + ↑ fructose → hyperinsulinaemia, hyperglycaemia, ↑ triglyercide levels
- Metabolic dysfunction leading to insulin resistance can affect memory performance through regulation of insulin signaling system

Insulin signaling in brain and metabolic dysfunction

- N-3 FA deficient $\rightarrow \downarrow pTyIR$
- N-3 FA deficient $\rightarrow \downarrow pAkt$

N-3 FA maintains proper insulin signaling in the brain
N-3 FA diets cope with challenges imposed by fructose

Metabolic disturbances on neuronal signaling

- Metabolic dysfunction potentiates pathways that can lead to disruption of membrane homeostasis which can ultimately negatively affect neuronal function
 - Alterations in insulin receptor signaling via Akt pathway
- Fructose intake disrupts plasma membrane with lipid peroxidation occurring
 - Dysfunction of membrane proteins

Metabolic disturbances on neuronal signaling

- N-6 and N-3 FA are essential nutrients that cannot be synthesized by the body
 - They exist in plants in forms like linoleic acid, which can be metabolized into arachidonic acid, eicosapentaenoic acid, and DHA
- Proper maintence of n-6 to n-3 FA ratio for synaptic plasticity, growth, and repair
- $\circ~$ N-3 FA + fructose \rightarrow maintained normal range

Dietary influences on energy homeostasis

- AMPK levels high in n-3 rats implies that n-3 conserves energy in ATP levels in hippocampus.
- NAD is activated by AMPK
- Fructose intake decreases
 Sir2 levels, but n-3 normalizes
 these levels

- n-3 deficiency with or without fructose decreased LKB1 Phosphorylation
- DHA increased
 Phosphorylation while AA
 decreased Phosphorylation.
- This implies that n-6 is harmful and n-3 is good.

Implications for synaptic plasticity

- AMPK regulates cAMP-response element binding (CREB) proteins
- CREB proteins play a major role in synaptic plasticity and cognitive functions
- CREB is correlated with Sir2, synapsin 1 and synaptophysin which are all related to synaptic plasticity.
- n-3 deficiency decreases Phosphorylation of CREB, synpasin 1 and synaptophysin.

Health Implications

- n-3 deficiency increases vulnerability to effects of fructose
- Causes disrupted IR signaling, cognitive functions like memory impairment, and homeostasis.
- n-3 improves neuronal function by supporting synaptic membrane fluidity, regulating gene expression and cell signalling.
- n-3 deficiency during brain maturation results in elevated anxiety behavior in adulthood.

Conclusion

Conclusion

EAT YOUR OMEGA 3 FATTY ACIDS!

Especially if your diet includes lots of sugar!

But also even if it does not!

*Disclaimer- do not eat OMEGA 6 FATTY ACIDS

