Lecture Notes: Equivalent Circuit

I. Model only one ion \(\rightarrow K^+ \)

Set up

- Lipid bilayer membrane
- \(K^+ \) channel
- \(K^+ \) concentration gradient
 - Outside: Extracellular \([K^+] \rightarrow 20 \text{ mM} \)
 - Inside: Intracellular \([K^+] \rightarrow 400 \text{ mM} \)

I consider what happens to a \(K^+ \) ion
- The probability of it getting through the channel

\(K^+ \) ion flows through channel \(\rightarrow \) the electrical potential is "pushing" \(K^+ \) through the channel

- A channel can be electrically modeled as a resistor (how easy or difficult to go
through the Channel = resistance.)

- **RESISTANCE**
 - it is measured electrically in ohms (Ω)
 - a resistor is represented by $\frac{1}{R}$ (symbol)
 - units: siemens (S)
 - **CONDUCTANCE** (g) = $\frac{1}{R}$

- **BATTERY** is the potential across the membrane
 - units are in Volts (V)
 - a battery symbol is: $\frac{1}{V}$

I consider what happens to a K^+ ion

- the probability of it getting through the channel

K^+ ion flows through channel: the electrical potential is "pushing" K^+ through the channel

- a channel can be electrically modeled as a resistor (how easy or difficult to go
difference in charge → creates a voltage across memb.

a potential to "do work"
separation of charge

The lipid bilayer is represented as a capacitor ← it stores charge

capacitor (F) Farads

\[
\text{current} - \text{you need to have a change in charge (Q)}
\text{to have a current (I)}
\]

\[\Delta Q \alpha I\]

outside

inside

```
```
Important relationships

1. $V \propto I$ (the higher the voltage, the higher the current)

2. If there is very high resistance

 \rightarrow How much current will flow?

 \checkmark Not very much

Ohm's Law: $V = IR$

In terms of conductance (g): $V = \frac{I}{g}$$

Recall: $g = \frac{1}{R}$ or $R = \frac{1}{g}$
voltage across the membrane \((V_m)\)

\[V_m = \frac{I_{ion}}{g_{ion}} + E_{ion} \]

Solve for Current

\[I_{ion} = g_{ion} (V_m - E_{ion}) \]

- The resistor equation
- The current = the conductance * the driving force
What is the relationship between:

a) voltage & capacitance

b) charge & current

Recall:

The relationship between voltage & charge is proportional (v) (q)

Q ∝ V

→ for example:

- Larger plates
 - This will store more charge
 - e.g. larger cell or larger patch of membrane of surface area

- Smaller plates
Compare the distance between the plates.

The larger the distance, the less charge can be stored.

\[Q = CV \] \rightarrow \text{Fundamental capacitor equation}

Currents are changes in charge over time.

\[\Delta Q = C \cdot \Delta V \] \rightarrow \text{A change of charge will change voltage}

Small change in charge
now consider it as a rate:

\[\frac{\Delta Q}{\Delta t} = C \times \frac{\Delta V}{\Delta t} \]

the change in charge with time = C time change of voltage with time

\[\text{the change in charge with time} \]

recall: \(\frac{\Delta Q}{\Delta t} \) is current! (I)

so,

\[I = C \times \frac{\Delta V}{\Delta t} \]

this is the capacitor equation

for very small time increments:

\[I = C \times \frac{dv}{dt} \]
In summary:

Capacitor eq.:

\[I = \frac{dV}{dt} \]

Resistor eq.:

\[I_{ion} = g_{ion} (V_m - E_{ion}) \]