COGS 1: Spring 2019
Section H, Week 9

Professor Boyle mboyle@ucsd.edu Friday, 2-4 pm CSB 130
Lauren lcurley@ucsd.edu Tuesday, 10-11 am CSB 225
Lexi D. adalenco@ucsd.edu Tuesday, 12:30-1:45 pm The Loft
Elena edreisba@ucsd.edu Thursday, 1-2 pm CSB 114
Adrian ajm033@ucsd.edu Wednesday, 5-6 pm CSB 114
Audrey aberardi@ucsd.edu Tuesday, 4-5 pm CSB 114
Devansh d4agarwa@ucsd.edu Monday, 4-5 pm CSB 114
Lori rol044@ucsd.edu Monday, 10-11 am CSB 114
Lexi F. adfrankl@ucsd.edu Thursday, 4-5 pm CSB 114
Important Information

- COGS 1 Website completely updated - all readings for the rest of the quarter, syllabus, etc.

- Week 9 Quiz: Take Home 😊
 - ONLINE: 5/31 (Opens Friday @ 4pm) - 6/2 (Closes Sunday @ 6pm), time is STILL LIMITED but you can take it whenever convenient.
 - Make sure to check TritonEd for exact times - give yourself lots of extra time to allow for internet/technical issues.

- EXTRA CREDIT QUIZ: June 3 @ 4PM - June 4 @ 10AM on Gut Instinct
Last Week’s Topics

- **Lecture 14 | Dr. Voytek: Introduction to Data Science**

Only **one** lecture for this week!

YAS! REJOICE! YAS!
Lecture 14 | Review Questions (1 of 2)

1. What is data science?
2. Why are models important in data science, according to Dr. Voytek?
3. What is cognitive science according to Dr. Voytek?
4. What is “cognition”? Do other animals have cognition? Provide examples.
5. What is the link between data science and cognitive science? How does this apply to Parkinson’s disease?
6. How does UBER make use of data? What predictions can be derived from data collected? How does that impact and inform their business model?

7. Compare and contrast the Brown Corpus with the Google Corpus. Why is “big data” so powerful?

8. What are n-grams?

9. What is the Semantic Web? What are the main orthogonal problems?
1. What is data science?

Utilizing Data to Elicit Truths

- **Ptolemaic Model of Solar System** - Incorrect (Geocentric) but predictive
- **Scientific Method** - Hypothesis driven, experimental technique, resulting in a conclusion.
- **Rigor and Intuition** - Not only computing math but also applying it in real life.
1. What is data science?
2. Why are models important in data science, according to Dr. Voytek?

Purpose of Modeling

- **Prediction** - Use previous data to forecast future events.
- **Classification** - Categorize multiple data points into meaningful sets.
- **Knowledge Discovery** - Uncover new and unknown facts from data.
- **Doing Useful Stuff** - Create better drugs, design a better product, arrive at accurate conclusions, etc.

All models are wrong but some are useful!
3. What is cognitive science according to Dr. Voytek?

Study of Intelligences

- **Human (Natural) Side** - Instances include changes in baby names over time (toxicity and popularity), verb regularization (tense forms) and **culturomics** (word usage).

- **Computer (Artificial) Side** - Parametrization of data to convert it into actionable business ideas (Uber).
4. What is “cognition”? Do other animals have cognition? Provide examples.

Multi Faceted, Observed in Various Organisms

- **Involves:**
 - Communication
 - Computation
 - Reasoning
 - Memory
 - Planning/Decision Making

- **Seen in (not just humans):**
 - Mammals, Primates
 - Crows
 - Octopuses
 - Slime Molds
5. What is the link between data science and cognitive science? How does this apply to Parkinson’s disease?
5. What is the link between data science and cognitive science? How does this apply to Parkinson’s disease?

Using Data to Treat Disorders

- Parkinson’s Disease:
 - Degeneration of Dopaminergic Neurons
 - Located in Substantia Nigra
 - Symptoms: Slow movement, walking/balance impaired

- Data science application:
 - Analyze abnormal beta oscillations
 - Conduct Deep Brain Stimulation to reduce some symptoms.
6. How does UBER make use of data? What predictions can be derived from data collected? How does that impact and inform their business model?

Spatiotemporal Dynamics

- **Aggregate user data:** Across time and distance to infer neighborhood type within cities.

- **Understand demand for taxi:** Correlate neighborhoods within and between cities for e.g. there exists greater correlation of taxi demand in financial districts of two different cities than the taxi demand in two different districts of the same city.
7. Compare and contrast the Brown Corpus with the Google Corpus. Why is “big data” so powerful?

Google Corpus
- Comprised of a trillion words
- All sequences up to five words long
- Incomplete sentences, spelling errors and grammatical errors.

Brown Corpus
- One million English words.
8. What are *n*-grams?

Definition
- Short sequences of consecutive words.

Usage
- Used for speech recognition and machine translation.
- Present in a huge database of probabilities of *n*-grams.

<table>
<thead>
<tr>
<th>Uni-Gram</th>
<th>This</th>
<th>Is</th>
<th>Big</th>
<th>Data</th>
<th>AI</th>
<th>Book</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi-Gram</td>
<td>This is</td>
<td>Is Big</td>
<td>Big Data</td>
<td>Data AI</td>
<td>AI Book</td>
<td></td>
</tr>
<tr>
<td>Tri-Gram</td>
<td>This is Big</td>
<td>Is Big Data</td>
<td>Big Data AI</td>
<td>Data AI Book</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9. What is the Semantic Web? What are the main orthogonal problems?

Orthogonal Problems

- Choose a representation language.
- Encode a model in the language.
- Perform inference on the model.

Semantic Web

- A convention for formal representation languages.
- Permits software services to interact with one another.
9. What is the Semantic Web? What are the main orthogonal problems?

Semantic Web versus Semantic Interpretation

The Semantic Web is a convention for formal representation languages that lets software services interact with each other “without needing artificial intelligence.”

A software service that enables us to make a hotel reservation is transformed into a Semantic Web service by agreeing to use one of several standards for representing dates, prices, and locations. The service can service interoperability. Semantic interpretation deals with imprecise, ambiguous natural languages, whereas service interoperability deals with making data precise enough that the programs operating on the data will function effectively. Unfortunately, the fact that the word “semantic” appears in both “Semantic Web” and “semantic interpretation” means that the two prob-