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1

Task Learning Through Imitation and Human-Robot
Interaction

1.1 Abstract

Human skill and task teaching is a complex process that relies on multiple means
of interaction and learning on the part of the teacher and of the learner. In robotics,
however, task teaching has largely been addressed by using a single modality. We
present a framework that uses an action-embedded representation to unify interac-
tion and imitation in human-robot domains, thereby providing a natural means for
robots to interact with and learn from humans. The representation links perception
and action in a unique architecture that represents the robot’s skills. The action
component allows the use of implicit communication and endows the robot with
the ability to convey its intentions through its actions on the environment. The per-
ceptual component enables the robot to create a mapping between its observations
and its actions and capabilities, allowing it to imitate a task learned from experi-
ences of interacting with humans. This chapter describes a system that implements
these capabilities and presents validation experiments performed with a Pioneer
2DX mobile robot learning various tasks.

1.2 Introduction

Human-robot interaction is a rapidly growing area of robotics. Environments that
feature the interaction of humans and robots present a number of challenges in-
volving robot learning (imitative) and interactive capabilities. The two problems
are tightly related since, on the one hand, social interaction is often an important
aspect of imitation learning and, on the other, imitative behavior enhances a robot’s
social and interactive capabilities. In this work we present a framework that unifies
these issues, providing a natural means for robots to interact with people and to
learn from interactive experiences.

We focus on two major challenges. The first is the design of robot social capabil-
ities that allow for engagement in various types of interactions. Examples include
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1.3 Action-Based Representations 3

robot teachers [1], workers, team members [2], museum tour-guides [3], toys [4],
and emotional companions [5, 6]. Designing control architectures for such robots
presents various, often domain-specific, challenges.

The second challenge we address is endowing robots with the ability to learn
through social interaction with humans or other robots, in order to improve their
performance and expand their capabilities. Learning by imitation [7, 8, 9] provides
a most natural approach to this problem; methods using gestures [10], natural lan-
guage [11], and animal “clicker training” [12] have also been successfully applied.

We present an approach that unifies the above two challenges, interaction and
learning in human-robot environments, by unifying perception and action in the
form of action-based interaction. Our approach uses an architecture that is based
on a set of behaviors or skills consisting of active and perceptual components. The
perceptual component of a behavior gives the robot the capability of creating a
mapping between its observations and its own actions, enabling it to learn to per-
form a particular task from the experiences it had while interacting with humans.
The active component of a robot behavior allows the use of implicit communica-
tion based on action whose outcomes are invariant of the specific body performing
them. A robot can thus convey its intentions by suggesting them through actions,
rather than communicating them through conventional signs, sounds, gestures, or
symbols with previously agreed-upon meanings. We employ these actions as a vo-
cabulary that a robot uses to induce a human to assist it for parts of tasks that it is
not able to perform on its own.

To illustrate our approach, we present experiments in which a human acts both
as a collaborator and as a demonstrator for a mobile robot. The different aspects of
the interaction demonstrate the robot’s learning and social abilities.

1.3 Action-Based Representations

Perception and action are the essential means of interaction with the environment.
A robot’s capabilities are dependent on its available actions, and are thus an es-
sential component of its design. The underlying control architecture we use is
behavior-based [13, 14]. Behaviors are time-extended sequences of actions (e.g.,
go-home, avoid-obstacles) that achieve or maintain certain goals and are different
than low-granularity single actions (e.g., turn-left-by-10-degrees).

Within our architecture, behaviors are built from two components, one related
to perception (Abstract behavior), the other to action (Primitive behavior) (Fig-
ure 1.1). Abstract behaviors are explicit specifications of the activation conditions
(preconditions) and effects (postconditions). Primitive behaviors perform the work
that achieves the effects specified by those conditions. Specifically, an abstract be-
havior takes sensory information from the environment and, when its preconditions
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Fig. 1.1. Structure of the inputs/outputs of an abstract and primitive behavior.

are met, activates the corresponding primitive behavior(s) which achieve the effects
specified in its postconditions.

Using these types of behaviors, the architecture provides a natural way of rep-
resenting robot tasks as hierarchical behavior networks [15] (Figure 1.2), and has
the flexibility required for robust function in dynamically changing environments.
This architecture is capable of computations required by more traditional symbolic
architectures, but also uses behaviors continuously grounded in perception.
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Fig. 1.2. Example of a behavior network

Abstract behaviors embed representations of goals in the form of abstracted en-
vironmental states. This is a key feature critical for learning from experience. To
learn a task, the robot must create a mapping between its perception (observations)
and its own behaviors that achieve the observed effects. This process is enabled by
abstract behaviors, the perceptual component of a behavior, which activate each
time the robot’s observations match the goal(s) of a primitive behavior. This corre-
lation enables the robot to identify its own behaviors that are relevant for the task
being learned.

Primitive behaviors execute the robot’s actions and achieve its goals. They are
also used for communication and interaction. Acting in the environment is a form
of implicit communication. By using evocative actions, people and other animals
convey emotions, desires, interests, and intentions. Action-based communication
has the advantage that it need not be restricted to robots or agents with a humanoid
body or face: structural similarities between interacting agents are not required
for successful interaction. Even if there is no direct mapping between the physi-
cal characteristics of the robot and its user, the robot can still use communication
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through action to convey certain types of messages, drawing on human common
sense [16].

1.4 Communication by Acting - a Means for Robot-Human Interaction

Consider a prelinguistic child who wants an out-of-reach toy. The child will try to
bring a grown-up to the toy and will then point and reach, indicating his desires.
Similarly, a dog will run back and forth to induce its owner to come to a place
where it has found something it desires. The ability of the child and the dog to
demonstrate their desires and intentions by calling a helper and mock-executing
actions is an expressive and natural way to communicate a problem and need for
help. The human capacity to understand these intentions is also natural and inher-
ent. We apply the same strategy in enabling robots to communicate their desires
and intentions to people.

The action-based communication approach we propose is general and can be
applied on a variety tasks and physical bodies/platforms. The robot performs its
task independently, but if it fails in a cognizant fashion, it searches for a human and
attempts to induce him to follow it to the place where the failure occurred, and then
demonstrates its intentions in hopes of obtaining help. Attracting a human to help is
achieved through movement, using back-and-forth, cyclic actions. After capturing
the human’s attention, the robot leads the human helper to the site of the task and
attempts to resume its work from the point where it failed. To communicate the
nature of the problem, the robot repeatedly tries to execute the failed behavior in
front of its helper. This is a general strategy that can be employed for a wide variety
of failures but, notably, not for all. Executing the previously failed behavior will
likely fail again, effectively expressing the robot’s problem to the human observer.

1.4.1 Experimentsin Communication by Acting

We implemented and tested our concepts on a Pioneer 2-DX maobile robot, equipped
with two sonar rings (8 front and 8 rear), a SICK laser range-finder, a pan-tilt-zoom
color camera, a gripper, and on-board computation on a PC104 stack. The robot
had a behavior set that allowed it to track cylindrical colored targets (Track (Col-
orOfTarget, GoalAngle, GoalDistance)), to pick up PickUp(ColorOfObject),
and to drop small colored objects Drop. These behaviors were implemented in
AYLLU [17].

In the validation experiments, we asked a person that had not worked with the
robot before to be near-by during task execution and to expect to be engaged in an
interaction. There is no initial assumption that people will be helpful or motivated
to assist the robot. The robot is able to deal with unhelpful or misleading humans
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by monitoring their presence along with its progress in the task. The following
main categories of interactions emerged from the experiments:

e uninterested: the human was not interested, did not react to, or did not un-
derstand the robot’s need for help. As a result, the robot searched for another
helper.

e interested but unhelpful: the human was interested and followed the robot for
a while, but then abandoned it. As above, the robot searched for another helper.

e helpful: the human was interested, followed the robot to the location of the

problem, and assisted the robot. In these cases, the robot was able to finish the
task.
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Fig. 1.3. The human-robot interaction experiments setup

We purposefully constrained the environment used in the experiments to encour-
age human-robot interaction, as follows:

e Traversing blocked gates. the robot’s task was to pass through a gate formed
by two closely placed colored targets (Figure 1.3(a)), but its path was blocked
by a large box. The robot expressed its intentions by executing the Track be-
havior, making its way around one of the targets. Trying to reach the desired
distance and angle to the target while being hindered by box resulted in its clear
manifestation of the direction it wanted to pursue, blocked by the obstacle.

e Moving inaccessible located objects: the robot’s task was to pick up a small
object which was made inaccessible by being placed in a narrow space between
two large boxes (Figure 1.3(b)). The robot expressed its intentions by attempting
to execute the PickUp behavior, lowering and opening its gripper and tilting its

camera downward while approaching the object, and then moving backwards to
avoid the boxes.
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¢ \isiting non-existing targets: the robot’s task was to visit a number of targets in a
specific order (Green, Orange, Blue, Yellow, Orange, Green), in an environment
where one of the targets had been removed (Figure 1.3(c)). After some time, the
robot gave up searching for the missing target and sought out a human helper.
The robot expressed its intentions by searching for a target, which appeared as
aimless wandering. This behavior was not conducive for the human to infer the
robot’s goal and problem. In this and similar situations, our framework would
benefit from more explicit communication.

1.4.2 Discussion

From the experimental results [18] and the interviews and report of the human
subject who interacted with the robot, we derived the following conclusions about
the robot’s social behavior:

e Capturing a human’s attention by approaching and then going back-and-forth
is a behavior typically easily recognized and interpreted as soliciting help.

e Getting a human to follow by turning around and starting to go to the place
where the problem occurred (after capturing the human’s attention) requires
multiple trials in order for the human to follow the robot the entire way. Even
if interested and realizing that the robot wants something from him, the human
may have trouble understanding that following is the desired behavior. Also,
after choosing to follow the robot, if wandering in search of the place with the
problem takes too long, the human gives up not knowing whether the robot still
needs him.

e Conveying intentions by repeating a failing behavior in front of a helper is
effective for tasks in which the task components requiring help are observable
to the human (such as the blocked gate). However, if some part of the task is
not observable (such as the missing target), the human cannot infer it from the
robot’s behavior and thus is not able to help (at least not without trial and error).

1.5 Learning from Imitation and Additional Cues

Learning by observation and imitation are especially effective means of human
skill acquisition. As skill or task complexity increases, however, teaching typically
involves increased concurrent use of multiple instructional modalities, including
demonstration, verbal instruction, attentional cues, and gestures. Students/learners
are typically given one or a few demonstrations of the task, followed by a set of
supervised practice trials. During those, the teacher provides feedback cues indi-
cating needed corrections. The teacher may also provide additional demonstrations
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that could be used for generalization. While most of these learning and teaching
tools are typically overlooked in the majority of robot teaching approaches, con-
sidering them collectively improves the imitation learning process considerably.

Toward this end, we developed a method for learning representations of high
level tasks. Specifically, we augmented imitation learning by allowing the demon-
strator to employ additional instructive activities (verbal commands and attentional
cues) and by refining the learned representations through generalization from mul-
tiple learning experiences and through direct feedback from the teacher.

In our work, the robot is equipped with a set of skills in the form of behaviors
[13, 14]; we focus on a strategy that enables it to use those behaviors to construct
a high-level task representation of a novel complex, sequentially structured task.
We use learning by experienced demonstrations in which the robot actively partic-
ipates in the demonstration provided by the teacher, experiencing the task through
its own sensors, an essential characteristic of our approach. We assume that the
teacher knows what behaviors the robot has, and also by what means (sensors) the
robot can perceive demonstrations. The advantage of putting the robot through
the task during the demonstration is that the robot is able to adjust its behaviors
(via their parameters) using the information gathered through its own sensors: the
values of all behaviors’ parameters are learned directly from sensory information
obtained from the environment. In addition, executing the task during the demon-
stration provides observations that contain temporal information for proper behav-
ior sequencing (which would otherwise be tedious to design by hand).

During the demonstration the robot follows the teacher while all of its behaviors
continuously monitor the status of their postconditions (without executing any of
their actions). Whenever the robot’s observations match the goals of one or more
primitive behavior, this means the robot has observed something it is also able
to perform, and the corresponding abstract behavior activates, allowing the robot
to learn which of its own behaviors that are relevant for the particular portion of
the task being demonstrated. Feedback cues received from the teacher are used in
conjunction with these observations, to eliminate any irrelevant observations.

The general idea of our task learning algorithm is to add to the robot’s behavior
network an instance of all behaviors whose postconditions have been detected as
true during the demonstration, and during which there have been relevance signals
from the teacher, in the order of their occurrence (on-line stage). At the end of
the teaching experience, the intervals of time when the effects of each of the be-
haviors were true are known, and are used to determine if these effects were active
in overlapping intervals or in sequence. Based on that information, the algorithm
generates proper dependency links (permanent, enabling or ordering) between be-
haviors (off-line stage). This one-step learning process is described in detail in
[18].
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Through this process, the robot may learn a correct, but over-specialized version
of the task. Two types of errors can occur in the learning process: learning irrele-
vant steps (false positives) and omission of steps that are relevant (false negatives).
It is thus important that the robot can generalize over multiple demonstrations and
incorporate additional feedback from the demonstrator. To enable a robot to gen-
eralize from multiple demonstrations of the same task (presented in similar or dif-
ferent environments), we build a task representation that encodes the specifics of
each of the given examples, and also incorporates their common components [19].
However, repeated observations of irrelevant steps will also inadvertently lead the
learner to include them in the learned representation. Also, limitations in robot
sensing and challenging structures in the environment may prevent the robot from
observing some relevant steps.

To address these issues, we allow the teacher to provide feedback to the robot
while observing the robot’s execution of the learned task, during practice experi-
ments. The teacher signals any detected errors as they occur, through appropriate
feedback cues (as spoken commands). The provided feedback allows the robot to
eliminate irrelevant observations and, by re-demonstrating relevant steps that were
previously missed, the demonstrator enables the robot to make its learned task rep-
resentation more complete [19].

1.5.1 Experimentsin Learning from Multiple Cues

We implemented and tested our approach to learning with additional cues on the
Pioneer 2-DX mobile robot described in Section 1.4.1. For the voice commands
and feedback we used an off-the-shelf Logitech cordless headset, and the IBM
ViaVoice software recognition engine. We performed two sets of robot teaching
experiments to validate the key features of the proposed approach.

1.5.1.1 Generalization froma Small Number of Examples

In the first experiment set, we demonstrated the robot’s generalization capabilities
by teaching it an object transport task in three consecutive demonstrations, per-
formed in different environments (Figure 1.4), and designed to contain incorrect
steps and inconsistencies.

The environment consisted of a set of colored cylindrical targets. The teacher
lead the robot around those, instructing it when to pick up or drop a small orange
box. The task to be learned was as follows: go to either the Green (G) or the Light
Green (LG) targets, pick up an Orange (O) box, go between the Yellow (Y) and
Red (R) targets, go to the Pink (P) target, drop the box there, then go to the Light
Orange (LO) target, and come back to the target Light Green.

The shown courses of the three demonstrations illustrate that none corresponded
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Fig. 1.4. Structure of the environment and course of demonstration

exactly to the intended task description. Some contained unnecessary steps (such as
a final visit to a Green target in the first trial), and some had inconsistencies (such
as the visits to the Light Orange target at various demonstration stages). Figure 1.5
shows the task representations (their topological form) obtained after each learning
demonstration, followed by generalization. The topological representation of a
task network is obtained by applying a topological sort on the behavior network
graph; this representation shows the succession of behavior execution for the task.
With generalization, the following types of alternative paths can be obtained:

e Both paths contain actual behaviors. For example, Figure 1.5(c) encodes the fact
that both going to the Green or to the Light Green targets is acceptable for the
task. Given such alternate paths, the robot choses opportunistically, as induced
by the state of the environment (e.g., go to the target seen first).

e One path is a direct link to the end of the other alternate sequence. In Fig-
ure 1.5(c), there is a direct link from MT5(Red,...) to MT7(Pink,...), bypassing
the behavior MT6(LOrange,...). For such paths, the robot automatically choses
the direct path, shortcutting the alternate sequence.

The generalized representation captures the main structure of the task while cor-
rectly treating the irrelevant and inconsistent components: they are captured as
parts of a bypassed alternate path that will never be executed. While irrelevant
actions are thus effectively pruned, any necessary but inconsistently demonstrated
steps would have to be included by different means. This is to be expected; gen-
eralization alone, when provided with inconsistent examples, is not sufficient for
learning a correct representation. The next section shows how practice and teacher
feedback can be used for solving this problem.

1.5.1.2 Learning from practice and teacher feedback

We allowed the robot to refine the previously learned task representation through
practice (Figure 1.5(e)) in a different environment (Figure 1.6(a)). Figure 1.6(b)
shows the robot’s trajectory and the teacher’s intervention (dotted). After dropping
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Fig. 1.5. Evolution of the task representation over three successive demonstrations

the box at the destination Pink target, the robot started moving toward the Light
Green target. Observing this, the teacher intervened (“COME”) and demonstrated
to the robot the step it had missed (i.e., the visit to the Light Orange target). During
this stage, the demonstrator also made use of informative feedback cues (“HERE”)
to prevent the robot from considering passing by irrelevant targets (Pink and Yel-
low in this case) as relevant visits. The teacher signaled that it finished demonstrat-
ing the missing step (“GQ”), after which the robot continued with and finished
the task by itself. Figure 1.7(a) shows the structure of the task after this practice
run. The newly added steps are marked on the graph: they also include a Drop
behavior, as the robot had nothing in the gripper at the point of the demonstration,
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and therefore the goals of this behavior were also detected as true. At execution
time, the existence of this behavior had no influence, since the robot had already
dropped the object.

® | |
(a) Generalized task (b) Feedback after (c) Feedback after
(new environment) 374 demonstration 15t demonstration

Fig. 1.6. Structure of the environment and course of task execution during practice and
feedback

We now consider an alternate approach for instruction, starting from the first
demonstration in the previous section (Figure 1.4(a), 1.5(a)). Assume that, for a
second object transport task, the teacher considered the initial visit to a Green
target wrong, and that the Light Green target should have been visited instead.
Furthermore, the visit to the Light Orange target was also wrong, and not a part
of the task to be learned. Figure 1.6(c) shows the trajectory of the robot and the
intervention (dotted) and messages of the teacher during the robot’s practice run.
The effects of the teacher feedback were that: the visit to the Green target was
replaced by a visit to the Light Green target, and the visits to the Light Orange
and Green were removed. Figure 1.7(b) presents the structure of the task after this
practice run.

The robot correctly executed the tasks learned after both of the above practice
runs. In each case, it successfully adapted its task representations according to
the teacher’s feedback, resulting in a graph structure that matched the user’s target
tasks.

1.5.2 Discussion

The spectrum of tasks learnable with our method includes all tasks achievable with
the robot’s basic set of behaviors. If the robot is shown actions for which it does
not have any representation, it will not be able to observe or learn from those expe-
riences. For the purposes of our research, it is reasonable to accept this constraint;
we are not aiming at teaching a robot new behaviors, but at showing the robot how
to use its existing capabilities to perform more complicated tasks.

An additional factor influencing the performance of the proposed learning ap-
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proach is the level of robotics expertise of the trainer. In prior experiments we
had two non-expert users [20] serve as teachers to another robot. The results indi-
cated that it is possible for these users to learn how to successfully teach the robot
a task in a small number of trials, and with no other prior training. We have also
demonstrated that the approach works for learning from robot teachers, which have
significantly less expertise [21].

The practice-feedback experiments described above are a fast and precise method
for refining previously learned tasks, since errors can be naturally indicated by the
teacher immediately upon being noticed. To give the robot appropriate feedback,
the teacher does not need to know the structure of the task being learned or the

details of the robot’s control architecture.
added behaviprs
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Fig. 1.7. Topologies obtained after practice and feedback
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1.6 Related Work

The presented work is most related to human-robot interaction (HRI) and robot
learning. Most HRI approaches so far rely on using predefined, common vocab-
ularies of gestures [22], signs, or words. They can be said to be using symbolic
languages, whose elements explicitly communicate specific meanings. One of the
most important forms of implicit communication, on the other hand, is body lan-
guage. It has been applied to humanoid robots (in particular head-eye systems), for
communicating emotional states through face expressions [23] or body movements
[6]. Facial expressions cannot be readily applied to mobile robots whose platforms
typically have non-anthropomorphic or non-biomimetic physical structure. The
work we described demonstrates how the use of implicit, action-based methods
for communication and expression of intention can be applied to the mobile robot
domain, despite the structural differences between mobile robots and humans, and
also how communication between robots and humans can be achieved without ex-
plicit prior vocabulary sharing.

Endowing robots with the ability to imitate is of growing interest in robotics
[24, 25]. In the mobile robot domain, [8] demonstrates learning to navigate a maze
(learning forward, left, and right turning behaviors) by following another robot.
In the humanoid robot domain, [9] used model-based reinforcement learning to
speed-up learning for a system in which a 7 DOF robot arm learned the task of bal-
ancing a pole from a brief human demonstration. Other work [26, 27], related to
ours in philosophy, explored imitation based on mapping observed human demon-
stration onto a set of behavior primitives, implemented on a 20-DOF dynamic hu-
manoid simulation. [28] describes how the behavior primitives are learned and
how they are recognized and classified in the imitation process. The key difference
between that work and ours is at the level of learning: the above work focuses on
learning at the level of action imitation (and thus usually results in acquiring reac-
tive policies), while our approach enables learning of high-level, sequential tasks.

[29] demonstrate a hierarchical architecture for learning by imitation, employing
HMMs to learn sequences (and thus potentially tasks) of primitive behaviors which
are themselves learned and clustered. [30] describes related work on learning by
imitation using two levels of primitives, the higher level employing self-organizing
maps to combine (but not sequence) the lower-level primitives.

The above techniques use demonstration as the sole means for teaching and the
complexity of the learned tasks is limited to reactive policies or short sequences of
sensory-motor primitives. Our approach allows for learning high-level tasks that
involve arbitrarily long sequences of behaviors. Methods for robot task teaching
that consider additional instructive modalities in addition to demonstration have
also been proposed. [31] presents an approach in which good/not good feedback
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was given at the end of a run in which the robot performed the demonstrated skill.
However, such delayed reward generates problems of credit assignment; our ap-
proach relies on immediate feedback. [32] considers fusing user intention with
demonstration information as additional means for instruction. The approach en-
ables the robot to successfully learn the correct task, but may become burdensome
as the teacher is expected to provide, at each step, information on what goals he
has in mind, and what actions and objects are relevant. In contrast, our approach
relies solely on the teacher’s observation of the robot’s execution during practice.

1.7 Conclusions

We have presented an action-based approach to human-robot interaction and robot
learning that addresses aspects of designing socially intelligent robots. The ap-
proach was shown to be effective in using implicit, action-based communication
and learning by imitation to effectively interact with humans.

We argued that the means of communication and interaction for mobile robots,
which do not have anthropomorphic, animal, or pet-like appearance and expres-
siveness, need not be limited to explicit types of interaction, such as speech or
gestures. We demonstrated that simple body language could be used allowing the
robot to successfully interact with humans and express its intentions and need for
help. For a large class of intentions of the type: | want to do *“this” - but | can't,
the process of capturing a human’s attention and then trying to execute the ac-
tion and failing is expressive enough to effectively convey the message and obtain
assistance.

Learning capabilities are essential for successful integration of robots in human-
robot domains, in order to learn from human demonstrations and facilitate natural
interaction with people. Due to inherent challenges of imitation learning, it is also
important that robots be able to improve their capabilities by receiving additional
training and feedback. Toward this end, we presented an approach that combines
imitation learning with additional instructional modalities (relevant cues, gener-
alization, practice), to enable a robot to learn and refine representations of com-
plex tasks. This is made possible by the control architecture that has a perceptual
component (abstract behavior) that creates the mapping between the observations
gathered during demonstration and the robot’s behaviors that achieve the same ob-
served effects. We demonstrated these concepts on a Pioneer 2DX mobile robot,
learning various tasks from demonstration, generalization, and practice.

While we believe that robots should be endowed with as many interaction modal-
ities as is possible and efficient, this work focuses on action-based interaction as
a lesser studied but powerful methodology for both learning and human-machine
interaction in general.
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