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Abstract  We want to build robots capable of rich social dagg@media.mit.cdu
interactions with humans, including natural communication and bruce@media. mit.eclu
cooperation. This work explores how imitation as a social learning
and teaching process may be applicd to building socially intelligent
robots, and summarizes our progress toward building a robot capable
of learning how to imitate facial expressions from simple imitative
games played with a human, using biologically inspired mechanisms.
It is possible for the robot to bootstrap from this imitative ability to  Keywards

infer the affective reaction of the human with whom it interacts and ~ Human-robo interaction, facial imitation,
then use this affective assessment to guide its subsequent behavior,  theury of mind, kearning to imitate

Qur approach is heavily influenced by the ways human infants learn

to communicate with their caregivers and come to understand the

actions and expressive behavior of others in intentionat and

motivational terms. Specifically, our approach is guided by the

hypothesis that imitative interactions between infant and caregiver,

starting with facial mimicry, are a significant stepping-stone to

developing appropriate social behavior, 1o predicting others’ actions,

and ultimately to understanding people as social beings.

I Introduction

Humans {and many other animals) display a remarkably flexible and rich array of social com-
petencies, demonstrating the ability to interpret, predict, and react appropriately to the behavior of
others, as well as to engage others in a varicty of complex social interactions. Developing com-
putational systems that have these same sorts of social abilities is a critical step in designing robots,
animated characters, and other computer agents that appear intelligent and capable in their in-
teractions with humans (and each other), that are able to cooperate with people as capable partners,
that are able to learn from natural human instruction, and that are intuitive and engaging for humans
to interact with.

Yet, today, many current technologies (animated agents, computers, etc.) interact with us in a
manner characteristic of socially impaired people. In the best cases they know what to do, but often
lack the social intelligence to do it in a socially appropriate manner. As a result, they frustrate us, and
we quickly dismiss them even though they can be useful. This is a problem in that some of the most
exciting new applications for robots require them to cooperate with humans as capable and socially
savvy partners (see [34] for a review), For instance, robots are being developed to provide the elderly
with assistance in the home. Such robots should be persuasive in ways that are sensitive to the
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human’s needs, such as helping to remind them when to take medication, without being annoying
or upsetting.

In other applications, robots are being developed to serve as members of human-robot teams—
such as NASA's humanoid robot, Robonaut [1]. This robot is envisioned to serve as an astronaut’s
assistant to help its human counterparts maintain the space station or to explore distant planets. To
provide a human teammate with the right kinds of assistance at the right time, a robot partner must
not only recognize what the person is doing (i.c., his observable actions), but also understand the
intentions or goals being enacted. This style of human-robot cooperation strongly motivates the
development of robots that can infer and reason about the mental states of others within the context
of the interaction they share.

2 Overview

As robot designers, it is possible to gain valuable insight into how social and communicative
competencies might be acquired by a machine by looking to the field of human cognitive and social
development. An increasing amount of evidence suggests that the ability to learn by watching others
(and in particular the ability to imitate) could be a crucial precursor to the development of
approptiate social behavior—and ulimately the ability to reason about the thoughus, intents, beliefs,
and desires of others. For instance, Meltzoff [56] hypothesizes that the human infants ability to
translate the perception of another’s action into the production of her own provides a basis for
learning about self-other similarities, and for learning the connection between observable behavior
and the mental states that produce it. Such theories could provide a foothold for ulimately endowing
machines with human-style social skills and understanding,

This article presents a biologically inspired implementation of early facial imitation based on the
AIM model proposed by Meltzoff and Moore [62]. Although there are competing theories to exphin
early facial imitation (such as an innate-releasing-mechanism model where fixed-action patterns are
triggered by the demonstrator’s behavior, or viewing it as a by-product of neonaral synesthesia where
the infant confuses input from visual and proptioceptive modalities) [55], Meltzoff and Decety
present a compelling account of the representational nature and goal-directedness of eary facial
imitation, and how this enables further social growth and understanding (59). It is the implications
and extensibility of the AIM model that are of particular interest to us, rather than the ability to
imitate facial expressions per se. Next, we present our computational model of facial imitation for a
robot (demonstrated on its simulated counterpart) and discuss the key aspects of early facial
imitation that it captures. Afterwards, we briefly discuss how our approach compares with prior work
on creating imitative robots (and other imitative systems), especially as it relates to the problem of
bootstrapping social understanding,

Finally, we present 2 model for how our robot can bootstrap from its imitative ability to engage in
social referencing This capability is based on the social referencing capabilities displayed in early
childhood whereby a child adopts his mother’s emotional reaction to a novel situation to decide
whether to explore or avoid the unknown [43, 81). Similarly, the robot should be able to infer the
affective state of the human who interacts with it, using the human’s appraisal to evaluate a novel
situation in order to guide its own subsequent behavior (see Section 8). Thus, whereas other robots
have demonstrated the ability to imitate observable behavior, our model argues for how a robot
could use this capacity to infer the mental states (such as affective and attentional states) that undetlie
observable behavior. This is a fundamental aspect of our approach to building robots that under-
stand people in social terms.

3 Toward Robots That Understand Qther Minds

For robots to cooperate with people in 2 humanlike way, they must be able to infer the mental states
of others (their thoughts, intents, beliefs, desires, etc.) from observable behavior (their gestures, facial
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expressions, speech, actions, etc.). In humans, this competence is referred to as a theory of mind {ToM)
(69, folk psyeholagy [39), mind reading {84), or sedal common sense [62).

In humans, this ability is accomplished in part by each participant treating the other as a
conspecific—viewing the other as being “like me™ [38, 61]. Perceiving similarities between self
and other is an important part of the ability to take the role or perspective of another, allowing
people to relate to and to empathize with their social partners. This sort of perspective shift may
help us to predict and explin other’s emotions, behaviors, and other mental states, and 1o
formulate appropriate responses based on this understanding. For instance, it enables us to infer
the intent or goal enacted by another’s behavior—an important skill for enabling richly coop-
erative behavior.

3.1 Simulation Theory and Theory of Mind

Simulation theory (ST) is one of the dominant hypotheses about the nature of the cognitive
mechanisms thar underlie the TOM [25, 39, 42]. It can perhaps best be summarized by the cliché “to
know a man is to walk a mile in his shoes.” ST posits that by simulating another person’s actions and
the stimuli they are experiencing using our own behavioral and sdmulus processing mechanisms, we
can make predicdons about the behaviors and mental states of others based on the mental states and
behaviors that we would possess in their situation. In short, by thinking “as if” we were the other
person, we can use our own cognitive, behavioral, and motvadonal systems to understand what is
going on in the heads of others,

From a design perspective, ST is appealing in that it suggests that instead of requiring a separate
set of mechanisms for simulating other persons, we can make predictions about others by using our
own cognitive mechanisms to recreate how we would think, feel, and act in their situation — therely
providing us some insight into their emotions, beliefs, desites, intensions, and so on. We argue that a
S5T-based mechanism could also be used by robots to understand people in a similar way. Im-
portantly, it is a strategy that nawrally lends itself to representing the internal state of the robot
and human in comparable terms. This would facilitate a robot’s ability to compare its own internal
state with that of the person it is interacting with in order to infer the human’s mental states and to
learn from observing the human’s behavior. Such theories could provide a foothold for ulimately
endowing machines with human-style social skills, learning abilities, and social understanding,

3.2 Imitation and Simulation Theory

Melezoff proposes that the way in which infants Aarm to simulate others is through imitative
interactions. For instance, Meltzoff [36] hypothesizes that the human infant’s ability to translate the
perception of anothet’s action into the production of their own action provides a basis for learning
about self-other similarides, and for learning the connection between behaviors and the mental states
producing them.

ST rests on the assumption that the other is enough “like me” that he can be simulated using
one’s own machinery. Thus, in order to successfully imitate and be imitated, the infant must be able
to recognize structural congruence between himself and the adult model (i.e., notice when his body is
“like” that of the caregiver, or when the caregiver's body is “like” his own). The initial “like me”
experiences provided by imirative exchanges could lay the foundadon for learning about additional
behavioral and mental similarities berween self and other.

There are a number of ways in which imitation could help bootstrap a ST-type ToM [59]. To
begin with, imitating anothet’s expression or movement is a literal simulation of their behavior. By
physically copying what the adult is doing, the infant must, in a primitive sense, generate many of the
same mental phenomena the adult is experiencing, such as the motor plans for the movement.
Meltzoff notes that to the extent to which a motor plan can be considered a low-level intention,
imitation provides the opportunity to begin learning connections between perceived behaviors and
the intentons that produce them. Additonally, facial imitadon and other forms of cross-modal
imitation require the infant to compare the scen movements of the adult with his own felt

Artificial Life Volume 11, Number 1-2 33



C. Breazeal, D Buchsbaum, J. Gray, D. Gatenby, and B, Blumberg Learning From and About Others

movements. This provides an opportunity to begin learning the relationship between the visual
perception of an acton and the sensation of that actdon.

Emotional empathy and social referencing are rwo of the carliest forms of social understanding
that facial imitation could facilitate. Experiments have shown that producing a facial expression
generally associated with a particular emotion is sufficient for cliciting that emotion [79]. Hence,
simply mimicking the facial expressions of others could cause the infant to feel what the other is
feeling, thereby allowing the infant to learn how to interpret emotional states of others from facial
expressions and body language.

3.3 Mirror Neurons

Interestingly, a recently discovered class of neurons in monkeys, labeled wirror nenrons, has been
proposed as a possible neurological mechanism underlying both imitative abilides and ST-type
predicton of other’s behaviors and mental states [B5, 36]. Within area F5 of the monkey's premotor
cortex, these neurons show similar activity when a primate observes a goal-directed action of another
{such as grasping or manipulating an object) and when it carries out that same goal-directed action
(72, 37).

This firing pattern has led researchers to hypothesize thar there exists a common coding berween
perceived and generated actons [70]. These neurons may play an important role in the mechanisms
used by humans and other animals to relate their own actions to the actions of others. To date, it is
unknown if mirror neurons are innate in humans, learned through experience, or both. Interesting
computatonal models have been proposed for how they might be learned [66].

Mirror neurons are seen as part of a possible neural mechanism for ST. By activating the same
neural areas while perceiving an acton as while carrying it out, it may be not only possible but also
necessary to recreate addidonal mental states frequently associated with thar action. A mirror-
neuron-like structure could be an important building block in a mechanism for making predictions
abour someone else’s intentions and beliefs by first locating the perceived action within the observer’s
own action systern, identifying one’s own beliefs or intentions typically possessed while carrying out
that action, and then attributing them to the other person,

To summarize, there are a variety of ways in which having the ability to imitate others and the
mechanisms and structures that ability enmils could help a robot begin to interprer and make
predictions about others’ behavior. In the next section we highlight key aspects of early infant
imitation that we want to capture in our implementation in order to bootstrap our robot’s ability to
socially learn from people and to understand them as social beings.

4 Characteristics of Imitation in Human Infants

Early infant imitation occurs within an interpersonal context. According to Meltzoff {56], “human
parents are prolific imitators of their young infants.” Caregivers contnually shadow and mirror their
infant’s animated movements, facial expressions, and vocalizations. In turn, infants seem to
recognize when their behavior has been matched. They preferendally attend to adults whose actions
arc contingent on their own, and especially to adults who are imitating them [60]. Specifically, they
scem to recognize both temporal contingency (i.e., when the infant performs action x;, the adult
performs action 3, where x and y differ in form), and structural congruence (i.e., when x and y have
the same form). When matched, infants often respond by smiling and visually attending to the
carcgiver for longer periods of time. Meltzoff posits that infants are in fact intrinsically motivated to
imitate their conspecifics, and that the act of successful imitation is its own reward.

This early imitative capability continues to develop over time to become more versatile and
sophisticated. Meltzoff suggests a four-stage progression of imitative abilities (for a review, see [56,
71]. The first stage is called body babbiing (akin to vocal babbling) and involves random experimen-
tation with body movements in order to learn a ser of motor primitives that allow him to achieve
elementary body configurations. Through trial-and-error learning, even starting in utero, the neonate
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builds up a directory for mapping movements to goal states that can be monitored proprioceptively.
Eventually the neonate acquires an a« jpave that enables new body configuradons 1o be interpolated
within this space,

Next, the infant is able 1o imitate body movements. Just hours (and even minutes) after birth,
neonates can imitate facial acts that they have never seen themselves perform. This suggests an
innate mapping between the observation and execution of movements in humans. It has been shown
that 12- to 21-day-old infants can identify and imitate the movement of a specific body part and
imitate differential action patterns with the same body part [62]. This is called organ identiffcation.

At 6 weeks, infants have been shown to petform deferred imitation from long-term memory after
sceing the target facial act performed 24 hours earlier [63]. They are able to correct their imitative
response in a goal-directed manner from memory without requiring any feedback from the model.
This presents further evidence that the observation-execution pathway is mediated by a representa-
tional strucrure.

Melezoff argues that this structure is represented within an ifermodal space into which infants are
able 1o map all expressions and movements that they perceive, regardless of their source. In other
words, the intermodal space functions as a universal format for representing gestures and poses—
those the infant feels himself dofng, and those he sees the adult carrying out. The universal format is in
terms of the movement primitives within his act space. Thus the perceived expression is translated
into the same movement representation that the infant’s motor system uses (recall the discussion of
mirror neurons in Section 3.3) making their comparison much simpler. The imitative link berween
movement perception and production is forged in the intermodal space.

Once infants are several months old, they can imitate novel actons upon objects. By 1 to 1.5
years they are adept at imimating body movements and actions on objects (such as toys) in a variety of
contexts. At 18 months, they are able to read beyond perceived behavior to infer the underlying goals
and intensions of the actor [57]. This is demonstrated by their ability to imitate the goal of an artempt
that was enacted unsuccessfully. For instance, the adult may try to perform a manipulation on an
object where her hand slips several imes so the goal remains unachieved. The infant does not imitate
the literal action, bur rather performs the action correctly {or even uses novel means) to achieve the
intended goal. This brings the infant to the threshold of understanding the behavior of others in
terms of their underlying mental states,

5 A Robot Architecture for Facial Imitation

To bring our robot to a similar point, it is important to capture these key aspects of infant imitation
in our implementation. Much as infants” earliest social interactions involve imitating facial expres-
sions, our first step towards creating a robot capable of social understanding is an implementation of
facial mimicry. In order for a robot to imitate, it must be able to anslate between seeing and doing,
Specifically, to solve the facial imitaton task the robot must be able to:
® Locate and recognize the facial features of a demonstrator
® Find the correspondence between the perceived features and its own
® Identfy a desired expression from this correspondence
* Move its featres into the desired configuraton
® Use the perceived configuration to judge its own success

Meltzoff and Moore [62] proposed a descriptive model for how an infant might accomplish these
tasks, known as the adtive intermodal mapping (AIM} hypothesis. A schematic of the AIM model is

presented in Figure 1. In general, the AIM model suggests that a combination of innate knowledge
and specialized learning mechanisms underlies infants’ ability to imitate in a cross-modal, goal-
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Caregiver Infant's
Body

Perception
System

Organ

identificaticn | Propricception

Representional
System/ Intermodal
Space

Caregiver Organ Equivalence Infant Org_an
Relations Detector |Ralations

I Movemant-End

Motor Babbling ‘Stata Directory

Figure | . Schematic of the active intermodal mapping hypothesis (Melzoff and Moore [62]). AIM models the mechanisms
necessary for infant facial imitation (see Section 4). This figure depicts the flow of dara between the external world, the
infant’s internal representation of perceived expressions (the adult's expressions and his own}, and the infant’s mowor
system. Representations of the adult expression and the infant's own expression are compared in terms of organ
relations. If the infant’s current expression is not a good match for the adult’s, the movement-end state directory
(previously generated by the infant through motor babbling) is searched for a better match, which is then executed by
the motor system,. If subsequent comparisons still find the match between perceived and produced expressions to be
inadequate, the motor system may execute a localized search of the motor space.

directed manner. Specifically, AIM presents three key components of the imitadve process as dis-
cussed in the previous section: motor babliing, organ identification, and the intermodal space. Taken
together, this model suggests mechanisms for identfying and attending to key perceptual fearures
of faces, mapping the models face onto the imitator’s, generating appropriate movements, and
gauging the correspondence between produced and perceived expressions. We have used this model
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to guide our own implementation as summarized in Table 1 (with allowances made for the differing
physical limitations of babies and robots).

Table | . An overall comparison of Melzoff's AIM model of infant imitation and our robotic imication architecture, This
table summarizes how our approach and AlM's address a variety of tasks necessary for imitating facial expressions. The
rasks are listed In the leftmost column. For a more deuiled explanation of the steps of AlM see Secdon 4. For a full
explanation of our imitation architecture see Sections 5 and 6.

Task AlM Qur implementation
Locate and recognize Organ Axiom ffT software,
model’s facial identification mavement and
features and contingency detection
movements
Find correspondence Organ Trained neural nets
between perceived identification

features and own
features

Use correspondence
between model’s
face and own to

Map perceived
expression into
intermodal space,

Map perceived
expression into
intermodal space,

identify an using organ using Leo’s

expression to be relations as the joint space as the

produced universal universal
representation. represengtion.
Search the Search the posegraph

Discover motor

movement-end
state directory for
the closest end
state.

Motor babbling

for the closest
matching basis pose.

Posegraph contains

commands/ builds up routes between
movements knowledge poses. Motor
necessary to of how to achieve programs know
generate desired various organ how to move
expression relations; adds the body along

Judge success of

this knowledge to
the movement -end
state directory.

Use proprioceptive

these routes.

Compare closest

imitation, and feedback to basis pose with
improve compare intermodal
achieved organ representation

relatfons with
perceived organ
relations. Locally
explore motor
space to find a

of perceived pose.
Locally explore
blend space to
find a better
match. Repeat

better match. until no
Repeat until better match
satisfied. can be found.
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5.1 Leonardo the Robot

Our experimental platform is a robot called Leonardo (Leo}—a 64 degree of freedom (DoF) fully
embodied humanoid robort thar stands approximately 2.5 feet tall (see Figure 2). The robot’s feet are
permanently affixed to its base, but the robot is otherwise fully articulated. The design is targeted for
rich social exchanges with humans as well as physical interactions with the environment. Hence, the
robot is designed to be able to communicate and gesture to people as well as physically manipulate
objects. The robot has an expressive silicone face (24 DoFs, not including the ears) capable of near-
human-level expression, and an active binocular vision system (4 DoFs), making it an ideal platform
for implementing facial mimicry. In addition, the robot is equipped with two 6 DoF arms, two 3
DoF hands, two actively steerable 3 DoF ears, and a 5 DoF neck, with the remainder of the DoFs in
the shoulders, waist, and hips.

We have also developed a simulated version of Leonardo (Virtual Leonardo, shown in Figure 2),
which shares the same kinematics, sensory input, and cognitive architecture as the physical robot.
This animated version is an exact joint-for-joint model of the real-world Leonardo, and both use the
sarne behavioral and motor systems (described in the following sections). Thus, the implementation
presented in this article works with both the physical and the simulated robot. Because the silicone
face is not currently on the physical robot, the results in this article are presented on the animated
version so that the expressions are readable.

In order to give Leonardo the ability to locate and identify the facial features of a human partner,
we use the visual sensing software from Nevengineering Inc. (www.nevengineeringcom). Their
Axiom ffT software locates a face in an attached camera’s field of view and wacks its features,
returning 2 set of normalized 2D coordinates for 22 points on the user’s face: 2 points for each
eyebrow, 3 for each eye, 4 for the nose, and 8 for the mouth (see Figure 3). For the results presented
with Virtual Leonardo we used a statically mounted eamera. On the physical robot, the software runs
on a camera mounted within one of Leonardo’s eyes.

5.2 Cognitive Architecture Overview

Leonardo’s imitative ability is implemented within an existing cognitive, affective, and behavioral
framework [19]. As a result, interacting with Leonardo is more like interacting with a creature than
like interacting with robot that is specialized for one skill. Figure 4 presents an overview of the
cognitive architecture of our system. In this section, we briefly describe the system components most
relevant to the imitative task at hand.

5.2.1 Perception System

We use a hierarchical mechanism called a perveps free to extract state information from sensory inpus,
Each node in the tree is called a perreps, and more specific percepts are closer to the leaves, Percepts
are atomic perception units, with arbitrarily complex logic, whose job is to recognize and extract

Figure 2. Leonarda, the robot and virtual simulator. Cosmetically finished (left), with mechanics exposed (center), and
the animated model {right). Character design copyright Stan Winston Studio. Images © MIT Media Lab (left and right
image) and Sam Ogden (center image).

a8 Attificial Life Volume 11, Number 1-2



C. Breazcal, D. Buchsbaum, J. Gray, D. Gatenby, and B. Blumberg Learning From and About Others

57377 1T U3I373k

Py | md

Figure 3. The Axiom ffT software. The picture on the left shows the camera input to the Axiom fiT software, with a
human participant’s face in the field of view. The white points on the person’s face are the 22 points tracked by the
Axiom T sofrware (see Section 5.1). The picture on the right shows the Axiom fiT's representation of the person'’s
face. with coordinates for each of the 22 points being tracked,

features from raw sensory datm. For example, a face percept might recognize the presence of faces in
the visual field, and its children might recognize the presence of specific features such as the eyes and
nose. The root of the tree is the most general percept, which we call True, since it is always active.

Our current imitation architecture has a perception system that receives sensory input from the
Axiom ffT software, and implements a number of simple percepts. In addition to the True percep,
there is a face percept, which fires whenever it receives Axiom ffT data indicating the presence of a
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Figure 4. Leonardo’s architecture. Leenarda learns how to map perceived facial expressions into its intermodal space (its
awn joint space) by having the human participant imitate the robot Leonardo generates a variety of poses by motor
babbling. When the human’s movements are contingent on its own, the robot decides it is baing imitated, and uses the
human's current expression and its own current expression to train 2 set of neural nets that it uses for mapping the
human's expression into the intermodal space. Once these nets are trained to encode this mapping, Leonardo can
convert data into Its intermadal representation and classify the pose as one of its own. This allows the robot to produce a
similar pose, thereby imitating the human, This diagram shows an overview of how these steps are accomplished within
the robot’s cognitive architecture.
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human face. Similarly, this percept has child percepts corresponding to facial organs—the eyebrows,
eyes, nose, and mouth. There are a number of movement pereepts, which detect when the human’s facial
features have moved, and contingency percepls, which detect when they have moved in response to
Leonardo’s own movements {the details of which are again described in Section 6.1.3).

5.2,2 Action System

The robot’s action system is responsible for behavior arbitraion —choosing what behavior the robot
engages in and when it does so. Individual behaviors are represented in our system as action inples
[11]. For our purposes here, the key components of the action tuple are its action and its frigger context.
The action is 2 piece of code primarily responsible for sending high-level requests for movements or
movement sequences to the motor system that commands the robot’s actuators. The request can
range from something relatively simple such as to “look at” something, to more complex actions
such as “press a button.” The trigger context is responsible for deciding when the action should be
activated. In general, there are a variety of internal states (e.g,, motivadons) and external states (e.g,
perceptions) that might trigger a pardcular action.

Action tuples are grouped into action grosps that are responsible for deciding at each moment
which single action tple will be executed. Each action group can have a unique action selection
scheme. For our imitation architecture we use a single action group with an action selection scheme
that activates an action tuple any time its trigger context goes high.

Leonardo’s facial imitation architecture requires two key actions: a motor babbling action and an
imitation action, each of which is wrapped in an acton tuple. The function and details of these two
actions are presented in Secdon 6.1 and Secdon 6.2, respectively.

5.2.3 Motor System

Once the action system has selected an action for the robot to perform, the motor system is
responsible for exceuting the movements required to carcy out that action. In our system, motor
movements are represented as paths through a directed weighted graph, known as the creature’s
posegraph [28). Each node {or pose) in the graph is an annorated configuration of the creature’s joints,
and can be thought of as a single body configuration.

It is worth noting that this motor system design is quite similar to that hypothesized by AIM.
Poses can be seen as variations on organ relations, with the posegraph being a specific implementation
of the movement-end state directory structure that AIM proposes. For the purposes of implement-
ing facial mimicry, Leonardo was provided with a posegraph containing a small set of basis facial
poses (presented in Figure 5). They can be seen as analogous to the initial movement-end state pairs
that AIM sugpests infants discover /n wfere and are born knowing,

5.2.3.1 Movement Primitives

A link berween two poses tepresents an allowed transition between joint body configurations. These
links are designed to permit only biclogically plausible and safe movements, which will not put the
robot into unnawral body configurations or potentially dangerous ones. Together, the poses and the
paths berween them define the robot's space of possible movements (its pose spac), with entire
movement trajectories existing as routes through this space. For example, a pointing gesture might
be represented as a path through 15 poses.

In addition to the posegraph, the motor system contains motor programs that are capable of
generating paths through pose space in response to requests from actions. These programs may be
quite simple (essentially no more than playing out a particular animation) or more complex (for
example, trying to touch or pick up an object).

For our facial imitation architecture, we use a basic posegraph where all of Leo’s basis poses are
directly connected to each other. Our motor program takes the current and desired poses and
smoothly transitions between them by slowly rotating each joint into its new position.
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Figure 5. Leonardo's basis faclal poses. The poses are broken up by organ into three groups, Each group of facial poses
makes up a posegraph for that organ (see Section 5.2.3). For each group, these poses represent the convex hull of all the
possible poses for that organ; the basis poses can be blended together using different blend weights to create other
possible configurations.

5.2.3.2 Interpolating Primitives

The motor system allows for a wide range of safe, realistic-looking motor actions, which can be easily
created, stored, and recreated. However, it s often impractical to represent all of a robot’s desired
poses explicitly. The motor system therefore also allows for the creation of blended poses: poses that
are a weighted average of other poses (the weights used for blending are known as Mend weights).
Using blended poses creates an exponential increase in the size of the creature’s pose space, allowing
whole ranges of positfons and actions to be generated from only a few explicit examples (for
instance, the robot’s button-pressing behavior along a continuous line can be generated by blending
the poses in three example routes: press-lefr-button, press-right-button, and press-center-button).
The final pose is computed on a per joint basis, as follows: For cach joint angle ], in the robot:

NumBxemplars
Je= D EwixW, (1)
=]

where E,; is the £th joint angle in the ith exemplar, and W is the weight of the /th exemplar.

The motor system is able to trear blended poses just like regular poses. Together, Leo’s basis facial
poses define the convex hull of a facial pose space, and Leonardo can achieve all the poses within
that space by blending the basis poses with different weights. This systemn is a nice analogue to
Meltzoff’s suggeston that motor primitives within the infant’s repertoire can be interpolated to
generate new movements. This is important for the matching-to-target process that is characteristic
of carly facial imitagon,

5.2.3.3 Motor Subsystems

Finally, the robot can be given even greater movement flexibility by using a number of motor
subsystems, each of which is responsible for controlling a closcly associated set of joints (left
arm, right arm, torso, ewc). Each motor subsystem is able to search the posegraph and exe-
cute movements independently, allowing each subset of joints, or bedy ergan, to be in a different part
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of the posegraph simultancously. Once again, this allows the robot a greater range of motions from
fewer poses.

Our facial imitation implementation uses three motor subsystems within Leo’s face, corre-
sponding to his mouth region, left eye region, and right eye region (see Figure 5). This allows Leo to
move cach of these regions independently of each other 1o generate novel expressions. In this article,
when we refer to the motor system as searching for a pose in the posegraph or executing a pose, this
is shorthand for the motor system delegating these tasks to the three subsystemns.

6 Learning from Imitation Games

The overall structure of an imitative interaction consists of two parts: a first stage, where the human
participant imitates Leonardo’s facial expressions, and a second stage, where Leonardo mimics the
human’s expressions. The interaction is summarized in Figure 6, Leonardo takes advantage of the
bidirectional structure of the imitative exchange by accomplishing different tasks during different
parts. During the first stage of the interaction Leo solidifies his representation of the correspondence
between the human’s facial features and his own (the intermodal representation}. During the second
stage, Leonardo uses this correspondence to model and imitate the human’s expression in a goal-
directed fashion. Data flow paths for each stage within the cognitive architecture are presented in
Figure 4,

6.1 Human Participant Imitates Leonardo

The imitative interaction begins with the human participant approaching Leonardo. Leonardo relies
on the Axiom ffT software (described in Section 5.2.1) to deteet when 2 human face is present in the
robat’s field of view. When data from the facial feature tracker indicates that Leo is secing & human
face, the face percept in Leo’s perception system becomes active and triggers the robot’s motor
babbling action.

6.1.1 Motor Babbling

Similar to the motor babbling exhibited by infants in the ATM model to physically explore their
motor space, Leonardo’s motor babbling action causes the robot to physically explore its pose space.
While Leo’s motor babbling action is active, it randomly selects a pose from the basis set used to
create its posegraph, requests that the motor system go to that pose and hold it for a moment
{(approximately 4 seconds), and then selects 2 new pose. While Leonardo is motor babbling, the
human participant tries to imitate Leo's facial expressions.

Motor babbling serves a number of purposes in the imitatve interaction. First, by becoming
more active when the user approaches, Leo can communicate in a simple way its awareness of the
human participant. Leonardo beginning to motor babble when it sees the person can be seen as
analogous to an infant becoming more active in the presence of an interested caregiver. Second, our
primary reason for having Leonardo perform motor babbling is to help the robot learn to map
perceived human expressions onto an intermodal space, like the one used by infants in the AIM
model. By detecting when the human participant is likely to be imitating it, Leonardo can use its own
pose (generated through motor babbling) and the human’s imitation of this pose to improve the
robot’s ability to map the human's facial expression to its own intermodal space.

6.1.2 Intermodal Representation

According to Meltzoff’s model, infants use the same internal representation for their own
expressions and those they see an adult perform. Furthermore, this representation is the same
one used within the infant’s motor system to describe how the infant must move in order to achieve
a given expression, As such, this representation bears a strong resemblance to the function of mirror
neurons [39]. The intermodal representation allows the infant to discover correspondences between
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Figure &, Typical imittive interaction, This schematic shows the ordering of events in a typical imitative exchange with
Lecnardo, In general, the interaction consists of two stages: the first stage, where the human participant imitates
Leonardo, and the second stage, where Leonardo imitates the human participant. Figure 4 presents the processing that
occurs in each of these stages within the cognitive architecture. The dashed arrow represents the transidon that occurs
until Legnardo has learned how o represent the human's expression in its awn foint space.

his own expressions and those of the human model, by providing a format in which they can be
directly compared.

In our motor system, Leonardo’s expressions are represented as poses, and the motions to
achieve them are represented as routes through Leonardo’s posegraph. We chose to use poses in
Leonardo’s own josnt space as its intermodal representation. Therefore, the human expressions that
Leonardo perceives must be mapped from the set of 2D absolute coordinates provided by the facial
feature tracking software onto the robot’s joint space. This process is complicated by the fact that
there is not a one-to-one correspondence berween the tracked facial fearures and Leo’s joints, To
solve this problem, Leonardo learns the intermodal representation from experience while the human
participant is imitating the robot. This is a rough analogy to learning mirror neurons for encoding
and representing perceived movement in terms of motor primitives [66]. The robot models the
intermodal map using a separate neural nerwork for each facial region corresponding to the right eye,
left eye, and mouth (see Section 6.1.4).

6.1.3 Detecting Contingency

In order for Leo to successfully train the neural nets, the robot must provide the networks with
example input-output pairs. Within the framework of the imittive interaction, one way for Leonardo
to acquire this dara is for the robot to identify when the human partcipant is imitating it, and to then
store a snapshot of the current facial feature daw and the robot’s own current joint configuration,
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Unfortunately, before the neural networks are trained, Leo cannot detect an exact correspondence
between the human’s facial features and its own pose. Identifying when the robot is being imitated is
tricky at this stage.

The literature on infant imitation indicates that infants are especially responsive to adult
movements that appear to be contingent on their own. Similarly, Leonarde determines when a
person is imimtng [eo contingendy, based on the elapsed tme (less than a couple of seconds)
between the starr of Leo’s movement and the human’s response. To avoid false positive detections of
human movement due to sensor noise, thresholds for human movement were set per dimension
reladve to the standard deviation of dara for that dimension. In additon, the human’s movement
must be surrounded by a few seconds of stillness, so as not to classify constant motion as contingent.
Some error is stll possible with this metric; for instance, if the human moves contingently but is not
imitating Leo. Overall, however, we found that using contingent motion to detect imitatve
interactions produced more accurately trained neural nets,

6.1.4 Organ Identification

We found that during the training process, people often only imitate a particular region of the robot’s
face (e.g, the mouth or the eyebrows) rather than the robot’s entire expression. If, for instance, the
human chooses 1o imitate only Leo’s mouth, then the rest of the human’s face provides irrelevant
data for the training of the included regions. To address this problem, we partiion the incoming
facial feature data and Leo’s DoFs into three independent groups of features that are handled
separately: the left eye-cyebrow area, the right eye-cyebrow area, and the mouth. The data from each
facial region of the human’s face is collected using three separate contingency detectors. These
groupings allow Leo to starr with a rough idea of which of its organs correspond to those of the
human participant, an advantage the AIM model proposes infants share.

Inside ecach area, the exact reladonship between the coordinate data from the facial feature
tracking software and the joints in Leo’s face is not yet known and must be learned individually, using
separate neural networks. For cach, we used a two-layer network, with seven hidden nodes (seven
was established to be a good number after we varied it for several tests). The inputs to the networks
are the relevant DoFs from the Axiom ffT data: the x and y positions of facial fearures, normalized
to be invariant to scaling of the face, facial transladon, and rotatdon. The outputs are the angles for
relevant joints in Leo’s face. Each joint in the virmal robot is restricted to one DoF of rotation, just
as the motors in the actual robot are.

6.1.5 Representation of Novel Expressions

Once the separate neural networks arc trained, they are able to input the data from visual
perception of a human expression, and output the intermodal representation of thar expression
in terms of the robot’s joint angles. The separation into facial regions has an important advantage:
Leo can create an intermodal representadon of the human pose separately for each group of
fearures. This allows it to generalize and create overall expressions that may never have been in the
babbling set. For example, if none of Leo's babbled poses have asymmetric eyebrows, a neural
network for the entre face would never allow it to create an intermodal representation with one
cocked eyebrow. With this method, however, the eyebrows each respond separately to produce 2
representation of the novel facial expression.

6.2 Leonardo Imitates the Human Participant

Once Leo is capable of representing perceived facial expressions in intermodal space, the robot
begins trying to imitate the human (the imitation acdon is triggered once Leo has acquired a
predetermined number of facial snapshots). Leo physically manifests its switch in focus by ceasing to
motor babble. Instead, Leo becomes siill, and begins trying to detect an appropriate expression of
the human participant to imitate. Meltzoff notes that young infants don’t imitate facial expressions
that are presented stadcaily. Rather, in order to imitate, infants must see the adult assme the facial

44 Artificial Life Volume 11, Number 1-2



C. Breazeal, D, Buchsbaum, ]. Gray, D. Gatenby, and B. Blumberg Learning From and About Others

expression, perhaps because the preceding movement is a clue that the expression that follows is
worth imitating, Correspondingly, we decided 10 have Leonardo use motion cues to determine when
1o begin imitatng,

Like an infant, Leo attempts to reproduce the human model’s facial expression when it is a stable
expression that direetly follows a movement. Using our previously described methods for detecting
stability and motion in the human facial fearure data, we created a collection of percepts, each of
which fires when the human significandy moves an organ, and a corresponding trigger context,
which activates Leonardo’s smitation action. Leo’s imitation action mediates his imitative behavior, by
working closely with his motor system to generate and evaluate successive approximation of the
perceived pose as it is represented in intermodal space.

6.2.1 Goal-Directed Search

To imitate the observed expression, Leonardo’s motor system searches for the pose in the posegraph
that is the closest match to the intermodal equivalent. This step is essendally an implementation of
the mechanism AIM posits for looking up organ relations from the intermodal space in the
mavement-end state directory. Finding this pose is a critical step in the imitation process. Next, Leo’s
motor system executes this pose, producing the robot’s first imitative attempt. However, infants do
not end their attempt ar imitating with this first approximation. Rather, infants use their initial
solution as the starting point for a goal-directed search of their motor space, more accurately
imitating the adult’s expression, and refining their motor knowledge.

In a similar manner, Leonardo searches for a more accurate imitative pose by blending the inigally
closest pose with others in its posegraph, incrementally adjusting the blend weights undl it has found
the best local march, Currently, Leonardo’s imitation action executes this search using a simple hill-
climbing algorithm (Table 2). Using the initial basis pose as a starting point, the algorithm iteratively
searches for a set of weights defining the blended pose that is the local best match to Leo’s
representation of the human’s expression.

The distance metric that the hill climber uses is a simple implementation of the equivalence
detector described in the ATM model—1o find the distance between the human pose represented in
intermodal space and Leo's pose, we sum the average angular and translational distances across all
joints. While we were initially uncertain this would be a sufficient measure of equivalence between
poses, our results so far have found that this distance metric functions adequately, and seems to
accurately reflect the visual match judgments made by human observers (see Section 7). Leo
identifies the closest pose by finding the pose P in his basis set with the minimum distance to the
intermodal pose [, using the following equation:

D(1,P) =-§ ZAngﬂlarDiﬂ(Uk,ij) A 2)
k=r

where [J; (P]} is the &th joint in pose T (P), and ¥ is weight of joint 4.

The hill-climbing algorithm continues iterating untl it can no longer find a combination of blend
weights thar produces a better marching pose than the result of the last iteration. Once Leonardo has
carried out the final blended pose, the robot has imimted the human's pose as best it can, and the imita-
tion cycle is complete. Leo’s imitation action deactivates, and the robor begins attending 1o the motions
and expressions of the human participant again, trying to detect another appropriate pose to imitate.

7 Facial Imitation Results
Our implementadon has been tested on the simulated version of Leonardo (Virtual Leonardo),
because the physical robot’s silicone face is not yet mounted, The same software system is used to

drive the animated and the physical robot. We have found the system to produce a sadsfactory match
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Table 2. Pseudocode for hill-climbing algorithm,

Define:
* Das the distancemetric defined in equation 2

® P({X1, X2, X3...}) is the blend of facial poses
withgivenweights x,, X2, X3...

L] BW(k, W)= {Wi, Waioop Wep—=ChuuyWe tC,unl}
(that is, the array Wwith ¢ subtracted from
the value at index SP and added to the value
at index k)

Wis the array of blend weights, which is
updated so that P(W)iteratively approaches
I, the target intermodal pose.

Initialized Wto allO‘swithal at index SP,
where 5P is the index of the initial basis pose.

Repeat until Wconverges:
IndexToIncrease = ArgMin(D{I, P(BW(i,W)}})

i=1,...,n
W=BW (IndexTolIncrease, W}

berween the human input and Leonardo’s successive approximations. The realism of Leonardo’s
produced expressions is also reasonable, especially when its output is contrasted with the raw pose
data, which is often noisy.

The entre interaction with Leonardo oceurs in real dme, with the human participant imitating
Leonardo for approximately 5 minutes, followed by Leonardo imitating the human unil the human
terminates the interaction, The intermodal representaton learned in the first phase can be acquired
by interacting with a different person than the one that Leo imitates in the second phase of the game.
Hence a new intermodal representation does not have to be learned for each person Leonardo
interacts with (however, this mapping seems 10 be more robust for the mouth region and more
person-specific for the eye region).

Figure 7 presents three imitative interactions, including the human facial expression, the
representation of the human’s pose in Leo's joint space (the human pose represented in intermodal
space), and Leo’s final approximation of the human's pose. The images show Leo imitating a number
of facial expressions presented by a human participant involving the mouth and eyebrows, The
learned intermodal representation of the human pose is shown, as well as Leo's best approximation
of it via goal-directed search of its blend space.

Figure 8 highlights the improvements made by Leonardo’s motor system on the raw neural net
output. While Figure 7 clearly demonstrates that the neural nets are able to learn a very accurate
intermodal mapping from the human pardcipant’s expression to Leonardo’s joint space, this raw
mapping still occasionally produces impossible joint configurations due to noise in the tracking data.
However, by using Leo’s closest basis pose as the starting point for the search for the best matching
pose to the human’s expression, Leonardo avoids attempting to exccute impossible or unnatural joint
configurations,

Figure 9 shows some of Leo’s intermediate approximations of the model’s expression, generated
while searching its blend space. As can be seen in this figure, Leonardo is able to produce visually
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Figure 7. Lecnardo imitating three human participants. This figure shows Leo imitating a number of facial expressions
presented by three different human participants. The first row shows the camera’s view of the human expression. In each
user grouping, the second row shows the intermodal representation of the human expression, that is, the human's
expression mapped onto Leo’s own joint space. The third row shows Leonardo’s best approximation of the intermodal
representation of the human pose after the search-to-match process. As can be seen, Leonardo is able to use 2 goal-
directed search of its blend space to find very close approximations of the human's pose. The intermodal representation
was trained by one person and then tested by several different people,
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Figure 8. Noise in the neural network cutput and correction by Leo’s motor system. The figure shows the human's
expression, the neural network’s direct mapping of this expression onto Leo’s joint space, and the initial closest pose to
this mapping in Leonardo's posegraph. The areas circled indicate joint positions in the direct mapping that are not
possible for the physical robot to achieve. By using the robot’s closest basis pose as the starting point for the search-to-
match process, Leonardo avoids attempting to execute impossible joint configurations.

successful marches 1o a wide variety of human facial expressions via interpolation of its movement
primitives. Finally, Figure 10 shows that Leonardo is able to superimpose its motor subsystems
corresponding to different facial regions to represent and generate novel facial poses, such as a
cocked eyebrow.

8 From Facial Imitation to Social Referencing

Social referencing is an impormnt form of socially guided learning in which one person utilizes
another person’s interpretation of a given situation to formulate his or her own interpretaton of it
and to determine how to interact with it [31, 51]. Given the lairge numbert of novel situations, objects,
and people that infants {as well as robots) encounter, social referencing is extremely useful in
forming carly appraisals and coping responses to unfamiliar stimuli with the help of others.
Referencing behavior operates primarily under conditions of uncertainty—if the situation has
low ambiguity then intrinsic appraisal processes are used [21]. Further, social referencing can rake
multiple forms. For instance, emational referencing is viewed as a process of emotional communicaton
whereby the infant learns bow 1o fee/ about a given situation, and then responds to the situation
according to his or her emodonal state [32). For example, the infant may approach a toy and kiss it

Final Blend

Closest Basis Pose Intermediate Results of Geal Directed Search

Figure 9. Goal-directed search towards target pose. Once Leonardo has mapped the human’s pose onto its awn joint
space, creating a target pose, the robot executes a goal-directed search of its possible facial expressions to find the best
match to this arget In this figure, the intermediate stages of Leonardo’s goal-directed search for two target poses
{shown on the right) are presented.
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Figure 10. The training set that Virwal Leonardo uses to train its intermodal representation (Human Imitates Leo). As
can be seen (Leo Imitates Human}), Leonarde can then imitate facial configurations that Involve combining intermodal
representations for different regions of the face, By searching each of its motor systems (left eye region, right eye region,
and mouth) for the closest match in the overall pose, Leo can successfully imitate a novel cocked eyebrow configuration
where one brow is elevated and the other is lowered,

upon receiving a joy message from the adult, or swat the toy aside upon receiving a fear message
[44]. In dnstrumental referencing, the infant looks to the adult to determine what o do in a particutar
situation or bew fo inferact with a stimulus [81]. Clearly, instrumental and emotional factors interact—
a certain emotional state biases the child to have certain kinds of interactions with the stimulus, and
interacting with a stimulus in a particular way can influence how the child feels about it.

This section presents ongoing work in developing a model of social (emotional) referencing for
Leonardo, Due to space constraints, we will not present the model in detail, and only briefly describe
the associated shared attention and emotion systems. We focus our discussion on the role facial
imitation can play in bootstrapping the social referencing competence of Leonardo. Furthermore, we
present a scenario to illustrate how early facial imitadon can play an important role in the
development of soctal understanding. For instance, much of the exciternent over mirror neurons
stems from their potential as a mechanism for the simuladon of others” behavior and their mental
states by using an individual’s already existing machinery for generating those states within
themselves. Similarly, we are developing n model that uses the perception-production coupling of
Leonardo’s imitative abilities to allow the robot to make simple inferences about the emotional state
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of others, and 1o apply their affective appraisals to help the robot evaluate novel external situatons
via the robot’s joint attention and emotion-based mechanisms. This should allow Leonardo to use
the emotionally communicated assessment of others to form its own appraisals of the same
situations, and usc these appraisals to guide its own subsequent responses.

8.1 Social Referencing in Infants

In human infants, social referencing first appears as a secondary appraisal process at the end of the
first year of development. Baldwin and Moses [4] argue that the appearance of social referencing
demonstrates a simple but genuinely mentalistic understanding of other people. It is therefore a
significant milestone in the development of social understanding in humans. In particular, social
referencing indicates that infants understand the attendon of others as mental states —they
understand that the other is inferesfed in some external object or event and that they have some
sort of positive or negative evaluation of it. Thus, the infant has begun to understand that emotions
have an intendonal or referential quality. One usually feels happy, sad, and so on, abent things —
obijects, events, people, outcomes, and the like.

A variety of experiments have explored the social referencing behavior of infants for a range
of stimuli including unknown situations such as a visual cliff, unfamiliar persons, or novel toys
(see [32] for a review). For instance, a 12-month-old infant confronted by a novel simulus will
deliberately look to his or her mother {or other trusted adult) to witness the adult’s emotional
reaction to the thing in queston. The infant uses the adult’s emotional assessment as a basis to form
his or her own affective appraisal of the novel entity, and then uses this assessment to regulate his or
her own subsequent behavior towards it. For example, if the caregiver responds positvely and
enthusiastically to the unknown stimulus, the infant will be more inclined to explore or engage it.
Conversely, if the caregiver displays a fearful reaction to the unknown stmulus, the infant will tend to
avoid .

To perform social referencing, the infant must be able to accomplish at least four distinet social-
cognitive prerequisites {31, 51]. First, the infant must understand the content of the message. At
around 2 to 3 months of age, infants begin to discriminate the facial expressions of others and
respond ro them systematically with smiles and frowns of their own [80]. By 6 months of age,
infants are able to respond appropriately to the expressed emodons of others. For instance, enotion
contagion 15 a process by which the caregiver’s emotional expression influences the infant’s own
emotional state and subsequent behavior [31]. Second, the infant must be able to actively appraise
incoming information about environmental events, rather than simply respond to them in a pre-
wired fashion, By around 9 months, infants exhibit the ability to evaluate the consequences of
predicted outcomes before responding [31]. Further, these appraisals persist to regulate how the
infant interacts with the stimulus in the future and in different contexts. Thitd, the infant must have
referendal skills. Specifically, he or she must be able to identify the particular referent that is the
topic of the adults communication. Infants first demonstrate the ability to share attentdon with
others, as in following the adult’s gaze or pointing gestures to the object that they refer to, at around
9 to 12 months of age (S, 20]. Finally, the infant must have inferential skills to extract the intentonal
namre of the affective informadon from the adult’s expression and associate this appraisal with the
specific referent. Namely, the infant begins to understand that the expressed emotion is abont
something in particular [4]. This ability also appears near the end of the first year, when social
referencing behavior can be observed.

8.2 A Computational Model for Social Referencing

In our computational model of social referencing, three systems and their associated mechanisms
interact to give rise to social referencing behavior. These skills include the ability to imitate facial
expression, the ability to share attention with others, and the ability to engage in emotional
communication. We have already presented the facial imitation capabilities of Leonardo in detail.
We briefly describe the emotion system and shared attention system below.
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8.2.1 Model of Basic Emotions

The robot’s emotion system is based on computational models of basic emotions as described in
[17]. Emotions are an important motivatdon system for complex organisms, as they can also be for
robots. Emotions seem to be centrally involved in determining the behavioral reaction to
environmental (often social) and internal events of major significance for the needs and goals of
a creature [68, 46]. Several theorists argue that a few select emotions are basic or primary——they are
provided by evolution because of their proven ability to facilitate adaptve responses to the vast array
of demands and opportunities a creature faces in its daily life {29, 47]. In pardcular, the emotions of
anger, disgust, fear, joy, sorrow, and surprise are often supported as being basic by evolutionary,
developmental, and cross-cultural swudies [30). Models for these basic emotions have been
implemented in robots [17].

Each basic emotion is designed to serve a partcular function (often biological or social), arising in
particular contexts, to prepare and motivate the robot to respond in adaptive ways. Several emotion
theorists posit an appraisal system that assesses the perceived antecedent conditions with respect to the
organism’s well-being, its plans, and its goals [48, 35). Scherer [78] has studied this assessment
process in humans and suggests that people affectively appraise evenis with respect to novelty,
intrinsic pleasantness, goal/need significance, coping, and norm/self compatibilicy. Our model of
basic emotions includes a simple appraisal process based on Damasio’s theory of somatic markers
[23}, that tags the robot’s incoming perceptual and internal states with affectve informaton, such as
valence (positive or negative) and novelry.

These appraisals, along with other internal factors, evoke a particular emotive state that recruits
response tendencies within multiple systems, including eliciting specific kinds of expressive and be-
havioral responses for coping with the demands of the original antecedent conditions. Plutchik [67)
calls this stabilizing feedback process bebavioral homeostasis. Through this process, the robot’s models
of basic emotions establish a desired relation between the robot and the environment that pulls the
robot toward beneficial stimuli and events and pushes it away from others that are not. The relational
activity can be social or instrumental in nature, motivating the robot’s behaviors for exploradon and
information gathering, seeking comfort, engagement and interaction, avoidance, or escape [33].

8.2.2 Model of Shared Attention

Leonardo’s awentdonal system determines the robots focus of attention, monitors the attendonal
focus of the human, and uses both to keep track of the referential focus held by both. Therefore, the
robot not only has a model for its own attentional state, but models that of the human as well.
Previous computational models have focused on developing robors that can engage in deictic gage or
Jaint visual attention, defined by Burterworth [20] as “looking where someone else is looking” [73, 74].
In contrast, our approach follows that of Baron-Cohen [5], where joint attenton is explicidy
represented as a mental state. This turns out to be very important for social referencing as described
in Section 8.2.3.

Leonardo’s attentional system computes the level of saffency (a measure of interest) for objects and
events in the robot’s perceivable space. The 3D space around the robot, and the objects and events
within this space, are represented by the vision system, The anendon system operates on this 3D
spatial representation to assign saliency values to the items therein, There are three kinds of factors
that contribute to the overall saliency of something: its pereeptual properties (its proximity to the robot,
its color, whether it is moving, etc.), the infernal state of the robor {including what the robot is
searching for and other goals), and secially direcied reference {pointing 1o, looking at, or talking about
something to bring it selectively to the robot’s arendon). For each item in the 3D spadal
representation, the overall saliency at each dme step is the result of the weighted sum for each of
these factors [13). The item with the highest saliency becomes the current attentional focus of the robot
and determines where the robot’s gaze is directed [14]. The referential focus is determined as the last
object that was the subject of shared attention between robot and human (what they were both
locking at},
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Using the same 3D spadal map, the robot also monitors what objects the human looks at, points
to, and rtalks about over tme, These items are assigned a tag with a value that indicates which
objects have been the human's focus of attention and therefore have been salient (of interest) to her.
This allows the robot to keep track of items that both the human and robot are mutually aware of,
The human's current attentonal focus is defined as what she is currenty looking at. The human's
referential focus is determined by the last object that was the object of shared attention with the
robot. For instance, Figure 11 shows the robot and human sharing joint visual attention
(represented in 3D); the robot has wacked the human’s head pose and pointing gesture to the
object referent.

8.2.3 Bootstrapping Social Referencing

This section presents a scenario {(currently under development) where the robot’s imitatve capability,
its artentional system, and its emotion system interact to bootstrap its ability to engage in social
referencing, In Section 8.1 we summarized four capabilides that are important for social referencing
and at what ages they begin to appear in human infants. In our model, the mechanisms associated
with these three systems interact with simple associatdve learning mechanisms to achieve each
equivalent developmental stage for the robot. Figure 12 shows the maodel of social referencing
behavior as represented within the cognitive-affectve architecture for the final stage.

In the first stage, the robot has the ability to discriminate human expressions and to respond with
its own appropriate emotional response. To achieve this capability, the facial imitation system
interacts with the emotion system ro help the robot to recognize these expressions and respond in an
emotionally appropriate manner. As discussed eatlier, the intermodal representadon within the
imitation system can be used to help the robot to distinguish different facial expressions of the
human, Furthermore, experiments with human subjects have shown that producing a facial
expression generally associated with a particular emotion is sufficient for eliciing that emotion
[79]. The robot has a similar (innate) mechanism, so that the act of having the robot mimic the
human’s facial expression will induce the corresponding emotional state within the robot. Once the
emotion is activated, the robot responds in a characteristic manner: Positive affect is accompanied
with exploration and interaction behaviors, whereas negative affect is accompanied with avoidance or
comfort secking behaviors,
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Figure I1. Leonardo's shared attention representation in 3D. The robot's visualizer shows the robot and a human
sharing joint visual attention on the same object The right image shows the visual input of a person looking at and
pointing to the center button. The left image shows the visualization of the robot’s internal model. In this visuafization,
the human's gaze is shown as the vector starting at the human’s head, and his pointing gesture is shown as the line from
his torso. The robot looks at the same button {(arrow from robot’s head) to engage in deictic gaze. The attentional state
of robot and human are explicitly represented, as is the referent focus (see Section 8.2.2).
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Figure 12. Model of social referencing. This schematic shows how social referencing is implemented within Leonardo's
extended cognitive-affective architecture. Significant additions 1o the imitation architecture include the attention system
that madels the attentional and referential state of the human and the robor, a belief system that bundles visual features
with attentional states to represent coherent entities in the 3D space around the robot, an affective appraisal process
(associated with the emotion system) that operates on the current sec of beliefs, and the emotion system with its
accompanying behavioral and expressive counterparts, The social referencing behavior executes in three passes through
the architecture, each pass shown by a different shaded band. The numbers represent steps in processing as informadon
flows through the architecture, In the first pass, the robot encounters a novel object In the second pass, the robot
references the human to see his or her reaction to the novel object. On the third pass, the robot uses the human's
assessment as a basis to form its own affective appraisal of the object (step |15} and interacts with the object accordingly
(step 18},

In the second stage, the robot learns o form its own affective appraisals. This is accomplished via
simple associative learning mechanisms within the affective appraisal system (a component of the
emotion system). Given a novel simulus (one that the robot does not yet know how to tag
affectively), the robot uses its own current emotive state as the affectve tag for the novel stimulus
via simple associadve learning, Once the human’s expressions can be reliably recognized (in the first
stage), this ability allows the robot to learn what these expressions mean in affective terms. The
robot can learn the affective meaning of the observed facial expression during the facial imitation
game. Specifically, this is accomplished within the affective appraisal system where the robot learns
via simple association how to affectively tag a visually observed facial expression with the emotion
that is induced within the robot when it imitates that expression via the mechanism proposed by
Strack et al. [79].

In the third stage, the robot’s reference skills are exercised by its shared artention system (as
discussed in Secton 8.2.2). Leonarde’s attentional system determines the robot’s focus of atten-
ton, monitors the attentional focus of the human, and uses both to keep track of the referen-
tial focus held by both. This allows the robot to shift its gaze and attentional focus to gather
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information (e.g, to look to the human’s face for evidence of emotional response, or to look back
to the novel toy to establish joint attention), while maintaining the correct referental focus. Keeping
the artentional focus and referential focus as distiner states is critical, because it allows the acquired
information (from shifting the attentional focus) to be associated with the novel object (the
referental focus), rather than with what the robot happens to be visually attending to at a particu-
lar time.

In the final stage, the robot uses its shared attention and affecdve appraisal mechanisms to
associate an emotionally communicated appraisal (provided by the human) with a novel object (the
referential focus). The presence of a novel objeet gives rise to an internal state of uncertainty within
the robot that triggers its information secking behavior, This causes the robot to look 1o the human’s
face to see how he is reacdng to the novel stimulus, The robort reads the human’s expression (which
the robot has already learned how to affectively appraise in the second stage). The affective appraisal
system tags the object referent with this socially communicated affective information.

Once the robot knows how to affectively appraise the toy, that appraisal gives rise to the
corresponding emotive state and behavioral response. If the novel toy is associated with positive
affect, the robot enters into a positive emotive state and tends to explore or interact with the woy. If
the novel toy is associated with nepative affect, the robot enters into a negative emotive state and
tends o avoid or reject the toy, The robot’s emotive response towards that toy will persist to future
interactions with it, because the robot knows how to appraise it affectively.

8.3 Summary

This discussion (as well as our ongoing efforts in developing 2 model of social referencing for
Leonardo) has focused on emotional referencing, As outlined in Section 8.2, the robot’s facial
imitation capabilities play an important role in bootstrapping the first two stges of the social
referencing skill. Mechanisms and interactions associated with the robot’s imitative behavior can be
used to help the robot recognize the human’s emotive facial expressions and to learn their affective
meaning, This allows the robot to participate in early forms of emotional communication {such as
emotion contagion). The addition of joint attention mechanisms allows the robot to associate the
affective messages of others with things in the world (stages 3 and 4). Thus facial imitadon, in
concert with shared artention and the emotion system, helps to bootstrap early forms of emotional
understanding for the robot. This is an important milestone on the way to building robots capable of
social understanding in the affectdve and referential realms,

In the broader picture of social referencing, instrumental referencing (discussed in the beginning
of Section 8) can also bootstrap from imitatve learning to help a child {or robot) learn Jow to interact
with a novel stimulus—what 1o do rather than how to feel [81]. This shall be the subject of future
work as we extend Leonardo’s imitative skills to the rest of its body so that it may learn new skills via
imitation (sce the following section).

9 Discussion and Related Worlk

Whereas the majority of work in robot imitadon has focused on imimton-inspired mechanisms as a
way to easily program a robot with new skills, ours has focused on imitation as a social process [15]
and a means to bootstrap further social understanding of others as described in Section 8 [16]. In
related work, Scassellad [75] has explored social understanding by robots in the context of joint
visual attention and developing a robot that imitates only the movement of entities that it deems to
be animate. Dautenhahn [24], Billard and Dautenhahn [6], and Billard [8] have explored an
“empathic” style of social understanding in robots where the learner robot acquires a shared
protocol with the model from an imitation/ following context (see Section 9.3). In contrast, our work
explotes social understanding in the emotional and attentional realms, where the robot explicidy
represents the mental states of the human as distnct from its own., This is critical for more
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sophisticated social behavior such as social referencing (as described in this article), or teamwork
where the mental states of the human and robot must be shared and brought into alignment
whenever there is a discrepancy [18].

Although a number of computational approaches for imitative behavior have also been inspired
by the AIM model [26,27,76], these have not been applied to the domain of early facial imitadon. In
fact, surprisingly little computational work has focused on facial imitation given the rich scientfic
literature on it. Instead, most robotic efforts have focused on imitating arm gestures, dexterity skills,
or head movements. The majority of work in building systems that mimic facial expressions are
designed 1o be puppetcering interfaces where a person can drive the expressions of an animated
character or a robot using the movements of her own face [40, 22]. Such efforts focus on
technical issues relating to tracking facial features and facial expression recognition, rather than
modeling facial imitzton.

A number of different imitatdon paradigms have been explored in robotics to give robots the
capability to learn from each other, from people, and about people. A couple of reviews on robot
imitation can be found [12, 77]. This section discusses how our particular interest in imitative
behavior relates to and is different from these other efforts to build robots that imitate cither robots
or humans.

9.1 Learning by Demonstration

Some of the eatliest work in this area is called fearning by demonsiration. In this approach, the robot
{often a tobotic manipulator} learns how to perform a new task by watching a human perform the
same task. This may or may not involve imitative behavior. In the case where it does not, called fask-
fevel imitation, the robot learns how to perform the physical wsk of the demonstrator—such as
stacking blocks [52] or inserting pegs [45]—without imitating the behavior of the demonstrator.
Instead, the robot acquires a high-level sk model, such as a hicrarchy of goal states and the
actions to achieve them, from observing the effects of human movements on objects in the
environment.

In other work with highly articulated humanoid robots, learning by demonstration has been
explored as a way to achieve efficient learning of dexterous motor skills [3, 76]. The state-action
space for such robots is too large to search for a solution in a reasonable dme. Instead, the robot
observes the human’s performance, using both object and human movement information to
estimate a control policy for the desired task. The human’s demonstration helps to guide the robot’s
search through the space, providing it with a good region to initiate its own search. If given
knowledge of the task goal (in the form of an evaluation function), robots have learned to perform a
variety of physical tasks— for example, learning the game of “ball in cup” or a tennis forehand (04,
65] by utilizing both the demonstrator’s movement and that of the object.

Another way to accelerate learning is to encode the state-action space using a more compact
representation. This makes the overall state-action space more compact and therefore faster to
explore. Researchers have used biologically inspired representations of mavement, such as morement
primitives [10, 53], to encode movements in terms of goal-directed behaviors rather than discrete joint
angles, Primitives allow movement trajectories to be encoded using fewer parameters and are
combined to produce the entire movement repertoire. The tradeoff for this compact representation
is loss of granularity and/or generality of the movement space. As a result, more recent work has
focused on using imitadon as a way of acquiring new primitives (as new sequences or combinations
of existing primitives) that can be added to the repertoire [49, 33].

As discussed in Section 5.2.3, our approach also incorporaies the notion of movement
primitives. Facial configurations are represented as poses in the posegraph of each motor for the
face. They can be sequenced, layered, or superimposed within the separate motor systems to
generate novel facial expressions. For instance, the robot can learn how to produce a cocked
eyebrow expression by making a goal-directed search over blending weights and poses within each
motor system, and then layering these results to produce the novel expression. Our motor rep-
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resentation is very similar to that proposed by Meltzoff, encoding 2 “directory of body configura-
dons” within the motor system.

9.2 Learning to Imitate

In Jearning to imitate, the robot learns how to solve the correspondence problem through experience
{i.e., how to map the observed movement of another onto the robot’s own movement repertoire).
One strategy for solving the correspondence problem is to represent the demonstrator’s movement
trajectory in the coordinate frame of the imitator’s own motor coordinates. This approach was
explored by Billard and Schaal, who recorded human arm movement data using a Sarcos SenSuit and
then projected that data into an intrinsic frame of reference for a 41 DoF humanoid simulation.

Another approach, the use of perceptual-motor primitives [83, 49, is inspired by the discovery of
“mirror neurons” in primates. These neurons are active both when a goal-oriented action is
observed and when the same action is performed (recall Section 3.3). Matarié [54] implements this
idea as an online encoding process that maps observed joint angles onto movement primitives to
allow a simulated upper torso humanoid to learn to imitate a sequence of arm trajectories, Others
have adapted the notion of mitror neurons to predictive forward models [86]. For instance, Demiris and
Hayes [27] present a technique that emphasizes the bidirectional interaction berween perception and
action where movement tecognition is directly accomplished by the movement-generating mech-
anisms. To accomplish this, a forward model for a behavior is built directly into the behavior module
responsible for producing that movement. In model-based imitation learniug, the imitator’s motor acts
are represented in task space, where they can be directly compared with the observed trajectory.
Using this approach, Atkeson and Schaal [2] show how a forward model and a priori knowledge of
the task goal can be used to acquire a task-level policy from reinforcement learning in very few trials.
They demonstrated an anthropomorphic robot learning how to perform a pole-balancing task in a
single trial and a pendulum swing up task in three or four wials [2, 3].

As discussed in Secton 3.3 and Section 6.1.2, our implementation is also inspired by the possible
role that mirror neurons play in imitadve behavior. In the approaches described above, mirror-
neuton-inspited mechanisms are used as an online process either for mapping perceived movements
to another coordinate frame or as forward models that are directly involved in generating the
observed action. In contrast, our implementation is consistent with that discussed in [66] and [59],
where mirror neurons are believed to represent observed movement in terms of the creature’s own
motot coordinates (i.e., the intermodal representation). This concept of explicit representation (i.e.,
memory) is important in order to capture the goal-directed match-to-target search that characterizes
exploratory imitative behavior of infants [62]. Tt is also important in order to account for the ability
of young infants to imitate deferred actions after a substantial time delay (on the order of hours and
even days) that Meltzoff has observed [58, 63].

9.3 Learning by Imitation

Imitative behavior can either be learned or be specified a priori. In fearning by imitation [8, 9], the robot
is given the ability to engage in imitative behavior, This serves as a mechanism that bootstraps
further learning and understanding from guided exploradon by following a model. Initial studies of
this style of social learning in robotics focused on allowing one robot to learn reactive control
policies to navigate through mazes [41] or an unknown landscape [24] by using simple perception
(proximity and infrared sensors) to follow another robot that was adept at maneuvering in the
environment. This approach has also been applied to allow a robot 1o learn interpersonal
communication protocols between similar robots, between robots with similar morphology but
that differ in scale [6], and with a human instructor [8],

Learning by imitation advocates an “empathic” or direct experiential approach to social under-
standing whereby a robot uses its internal mechanisms to assimilate or adopt the internal state of the
other as its own {24, 50]. Given our discussion of Section 3.2, we also advocate a simulation theoretic
approach to achicve social understanding of people by robots.

56 Artificial Life Volume 11, Number 1-2



C. Breazeal, D. Buchsbaum, ]. Gray, D. Gatenby, and B Blumberg Learning From and About Others

However, this pure empathic understanding where the robot simply “absorls” the experience and
does not distinguish it as arising from self or being communicated by others is not sufficient for
human-style cooperation. The reason is that the robot must be able to determine what is held in
common, what is not, and therefore what must be communicated and agreed upon so that
coordinated joint activity can be established and maintained. Hence, capturing this representational
aspect of the ToM to allow the robot to maintain information about its own internal states as well
as those of others is very important for building robots that can cooperate with people in a
humanlike way.

Therefore, in our approach, the robor can use its own cognitive and affective mechanisms as a
simulator for inferring the othet’s internal states. Howevey, it is critical that they be represented as
distinct from the robot's own states. For instance, our robot could not engage in social referencing if
it could not attribute affective states to entities external to itself. Although the robot’s understanding
of how facial expression relates to internal affecdve states is bootstrapped by an empathic or
simulation-theoretic approach, these affective states have a representational aspecr that allows them
to be attributed to novel stimuli,

9.4 Imitation as Social Interaction

Imitative exchanges are among the carliest forms of interaction and communication that take place
between infants and adults. The approaches to robot imitadon presented above view the interaction
in only one direction: from human demonstrator to robot learner. This reladonship is hard coded
into the robot in the learning-by-imitation work—the learner is programmed to follow the model. In
learning by demonstration, the human performs the sk while the robot passively observes the
demonstration. In contrast, Leonardo learns how to imitate within a mixed-inidatve interaction.
When the robot leads the imitatdon game (human imitates robot), the robot learns its intermaodal
representation from this experience. Once this map has been acquired, the human can lead the game,
and the robot will imitate his or her facial expressions,

Additonally, Leonardo must decide when to lead the imitative game, when to learn from the
interaction, and when to follow. The robot’s contingency metrics play an important role in allowing
the robot to determine whether the human is playing the imitation game with it or not. This is very
important, given that the robot must collect its own training instances to learn its intermodal
representation. This is in contrast to the imitative approaches described above, where the robot
cannot choose for itself when is the right or wrong time to engage in imitatve behavior, to lead or to
follow, or to learn from the interaction.

10 Summary and Conclusion

Taken as a whole, Meltzoff’s work articulates a compelling story of the possible role imitation plays
in the ultimate development of the ToM. The ability to understand human behavior in terms of
the mental states responsible for producing it is very important for human-style collaboration (as
argued in Section 1). For this reason, we are particularly interested in exploring imitation as a way to
bootstrap further social understanding of robots so that they might someday cooperate with humans
as capable teammates [18]). Therefore, although other models have been proposed to explain
neonatal facial imitation (e.g., positing that this early ability is based on innarte fixed action patterns)
such models do not serve our purposes because they do not allow for this ontogenetic trajectory that
could ultimately lead to a ToM.

This ardcle presents a detailed compurational model of early facial imitation that tries to capture
some of its key characteristics. We have based our approach on the AIM model, in part because its
mechanistic description affords implementation, but more importantly because it tries to account
fundamentally for a mulitude of aspects and abilities (c.g, innate endowments, early imitative
behavior, the importance of the social context, its goal-directed quality, its representation aspects)
that are important for explaining the development of facial imitation into more sophisticated
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imitative abilities—such as the ability to imitate deferred acts, and uldmately to imitate intended acts.
Correspondingly, we have taken care to incorporate these aspects into our own implementation,

Finally, in Section 8 we have described how this work can be extended to implement social
referencing whereby the robot can infer the affective reaction of others to a novel object and then
apply this asscssment to that object. This is considered to be a key milestone in the social
development of human infants, for it presents one of the earliest cases where infants begin to
understand others in rerms of mental states, Furthermore, it is one of the earliest cases where infants
begin to understand that such mental states are often referential —that they are about external things
and events in the world. Thus, inspired by the social development of human infants, our key interest
in pursuing models of imitation with robots is to explore its posited role in bootstrapping more
sophisticated compeiencies for understanding the minds of others.

This ability is key for developing robots that understand humans as social beings. As argued in
Sections 1 through 3, this capability should allow us to design socially intelligent robots that appear
intelligent and capable in their interactons with humans, are able to learn from natural human
instruction, are able to cooperate with people as capable partners, and are intuitive and engaging for
humans to communicate and interact with socially. These skills represent a solid foundadon for
future applications where sociable robots will play a useful, helpful, and enjoyable role in the daily
lives of ordinary people.
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