Cogs17 Neurobiology of Cognition Lecture 12: Language and Lateralization

- Review: Crossover of perceptual and motor pathways; Plays a role in some dominance patterns

- VISION: Right Visual Cortex receives from Left Visual Field (from Right Retinas of both eyes) & vice versa
- SOMATOSENSORY: Right somatosensory cortex from Left half of body (& vice versa); Face more shared
- MOTOR: Right hemisphere controls Left half of body (& vice versa); Both control face altho opposite dominant

Lateralization = Dominance of one hemisphere of cerebral cortex over the other for particular functions

- Determined in part by Wada Test = Anesthetize 1 hemisphere by injecting Sodium Amytal in L or R carotid artery
 - Right hemisphere is usually dominant for visio-spatial tasks and socio-emotional processes (see more below)
 - Left hemisphere is usually dominant for language & other sequential and analytic processes
 - Includes manual control: ~90% humans are <u>right-handed</u>, even prehistorically (per early tools, artwork, etc.)
 - Planum Temporale area in Temporal Cortex (includes Wernicke's Area) larger in Left Hemisphere
- In Nonhuman Primates: Equal or only slightly larger in left, also involved in <u>vocal communication</u> - **Interference** can be observed in simultaneous tasks controlled by same hemisphere, or in competition between hemispheres
 - e.g. While talking (Left hemi dom), will tap more slowly w/Right hand (Left hemi dom), than w/Left hand (Right hemi dom)
 - e.g. Stuttering (most often in left-handers) may involve hemispheric competition for control of speech
- Corpus Callosum = Bundle of axons connecting 2 cortical hemispheres integrate sensory/motor info from 2 sides
 - <u>Thicker</u> in <u>Left Handers</u> (who also tend to be more ambidextrous than right-handers)
- Thicker in <u>Women</u>, who are thus <u>less lateralized</u> (e.g. after damage to one hemi, other more able to take over function) - **Split-Brain Patients** have Corpus Callosum connections severed - e.g. As treatment for epilepsy
 - Word or image flashed in Right Visual Field (=> Left hemi) can be ID'd by touch only by Right hand but not by Left hand
 - Image flashed in Right Visual Field (=> Left hemisphere) easily named, but not if in Left Visual Field
 - Image (e.g. 5) flashed in Left Visual Field (=> Right hemisphere) and experimenter ask yes/no question
 - e.g. Exp: Is this a letter? Subject: Yes (response produced by ignorant Left hemisphere)
 - If incorrect, knowledgeable Right hemisphere => frown, Left detects frown & changes response! - Sometimes patient's hands operate independently - e.g. One buttons shirt while other unbuttons it
 - Overall, however, behavior fairly normal, subject learns to cope by shifting eyes, hands, talking to self, etc.
- Anterior Commisure connects anterior parts of cerebral cortex, especially the Temporal Lobes
 - Larger in Females and Homosexual Males

Specializations of the LEFT Hemisphere

Broca's Area

Left Frontal Lobe, just rostral to the base of the Primary Motor Cortex which controls face and mouth movements
 Damage to this and surrounding <u>Cortical</u> area, including underlying <u>Basal Ganglia</u> => <u>Broca's Aphasia</u>

- AKA "Nonfluent" or "Productive Aphasia" = deficits in producing (& comprehending) grammatical speech
 - Subjects are aware of and highly frustrated by deficits
- Symptoms vary, but can include Articulation Difficulties, Agrammatism, and Anomia
 - Articulation Difficulites: Speech is slow, halting, laborious (loss of prosody), words often mispronounced (e.g. phonemes switched, such as "lipstick" => "lickstip")
 - However, words generally used correctly and speech is at least somewhat comprehensible
 - Anomia = Cannot "find" word, esp <u>Closed Class</u> terms
 - Although speech fairly meaningful tend to omit Closed Class (grammatical) terms such as
 - Prepositions (of, by, for) Articles (the, a) Conjunctions (and but), Tense & # markers (-ed -es) etc.
 - That is, speech consists mainly of nouns, verbs and adjectives ("Content Terms")
 - Cannot even repeat or read Closed Class terms
 - e.g. Can repeat COWS EAT GRASS but cannot repeat NO IFS, ANDS, OR BUTS
 - e.g. Can read TWO BEE OAR KNOT TWO BEE, but cannot read TO BE OR NOT TO BE
 - Agrammatism: Difficulty in producing and understanding grammatical forms
 - e.g. Given "The boy that the girl is chasing is tall", cannot say who is tall
 - e.g. Cannot follow sequential commands "Put red block on green block"
 - e.g. Given "Boy chases Man" can't choose correct drawing (boy chase man vs. man chase boy)
 - Unless <u>can use meaning</u> to figure out probable order e.g. can choose "Man swats mosquito" - So in general comprehension is better than production
 - Also produces deficits in Sign Language production

Wernicke's Area

- Left Temporal Lobe, on Superior Temporal Gyrus just caudal to Primary Auditory Cortex
- Damage to this & surrounds (including adjacent <u>Parietal</u>) => <u>Wernike's Aphasia</u> AKA "<u>Fluent</u>" or <u>"Receptive Aphasia</u>" = Deficits in the comprehension (and production) of <u>meaningful speech</u>
 - Subjects often seem unaware of deficits, although do detect reaction (confusion, frustration) of others
- Symptoms include Fluent Articulation, Anomia, Nonsensical Speech, and Incomprehension
 - Fluency: Speech is unlabored, prosody maintained, sounds like it *should* make sense (but doesn't)
 - Still take turns in conversation, recognize questions and readily answer, respond to intonation, etc.
 - Speech is grammatical, although sometimes switch agent/object (e.g. "The Astros listened to the radio") - **Nonsensical Speech**: Very glib, but use wrong words or nonsense words
 - Anomia: Mainly for <u>Content Terms</u> (nouns, verbs adjectives etc.) May substitute vague phrases, wrong word - Depending on location of damage, can get specific deficits:
 - e.g. Words for animate vs. inanimate objects, parts of the body, spatial relations etc.
 - Incomprehension: Cannot follow simple directions, cannot pick named object, etc.
 Some can read, write words and even read lips, but cannot understand spoken = "Pure Word Deafness"
- Does <u>NOT</u> typically produce <u>deficits in Sign Language Comprehension</u>
 - -Instead, STS and Parietal Lobe damage implicated in deficits of Sign Language comprehension

Arcuate Fasiculus

- Bundle of axons (White Matter) forming reciprocal connections between Broca's and Wernicke's Areas
- Damage to these axons => <u>Conduction Aphasia</u>
 - Ability to Repeat impaired esp of unfamiliar or nonsense words
 - So Arcuate Fasiculus in part for "<u>Rehearsal</u>" of just-heard and/or about-to-be-spoken words (talk to self) - i.e. Aspect of a particular form of Working Memory called the "<u>Phonological Loop</u>"
 - May produce **<u>Phonemic Paraphasia</u>** = substitute wrong phoneme into word

Instead of "happy" say "hippy" (substitute another word); instead of "party" say "partoo" (nonsense)
Damage to other white matter connections between Temporal and Frontal lobes...

- May permit meaningful, fluent speech, fairly good comprehension, but show problems in conversation
- May impair <u>Lip Reading</u>, processing <u>Facial Expression</u> (esp when **Right STS** involved)

<u>IMPORTANT</u> to recognize that **both hemispheres** and **multiple cortical areas** participate in language!

- e.g. Right hemisphere also active e.g. Occipital (visual) & Parietal (spatial) lobes usually involved
- e.g. Orbito-frontal Cortex important for evaluating appropriateness of response
- Understanding and generating language is a complex process involving non-cortical areas as well
 - e.g. Cerebellum plays a role in articulation (for rapid, skilled movements)
 - e.g. Limbic System important for comprehending & producing emotional content, and recall
 - e.g. <u>Basal Ganglia</u> for pragmatic goals, turn-taking Etc etc etc!

Specializations of the RIGHT Hemisphere

- Global pattern-recognition versus local (detailed) analysis
 - e.g. Magnocellular (low spatial frequency) visual pathway dominates over Parvocellular (high spatial frequency)
 - Right hemisphere plays dominant role in organizing narrative selecting and assembling elements
 - i.e. "Gets the gist" versus keeps particular details straight; Getting a joke
- Music (esp Melodic) perception and appreciation

- Probably related to <u>global pattern-recognition</u> abilities, <u>organization</u>, and interpreting <u>affective</u> tonal qualities - **Spatial** abilities, related to above.

- Split-brain patients can complete picture <u>puzzle</u> better with left hand
- Damage (esp in **Parietal** Lobe) results in...
 - => Deficits in <u>map</u> reading, and in generation/use of own "cognitive map" (resort to landmarks to get around)
 - => Deficits in perceiving or discussing <u>spatial relations</u> (over/under, left of/right of)
 - => Some indication that <u>mathematics</u> (geometry, but also other types) impacted
- Socio-Emotional expression and perception. Damage (esp in Frontal Lobe) results in...
 - => Reduced emotional expression both in face and in speech (i.e. speak in monotone, little inflection)
 - => Reduced ability to recognize, correctly categorize emotional expression/speech in others
 - Includes failure to recognize sarcasm, humor (probably also related to global/gist processing)

Again IMPORTANT to recognize that in normal people, both hemispheres participate in, contribute to all of above