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Studies of the factors affecting reproductive success in group-living monkeys
have traditionally focused on competitive traits, like the acquisition of
high dominance rank. Recent research, however, indicates that the ability to
form cooperative social bonds has an equally strong effect on fitness. Two
implications follow. First, strong social bonds make individuals’ fitness inter-
dependent and the ‘free-rider” problem disappears. Second, individuals must
make adaptive choices that balance competition and cooperation—often with
the same partners. The proximate mechanisms underlying these behaviours
are only just beginning to be understood. Recent results from cognitive and
systems neuroscience provide us some evidence that many social and non-
social decisions are mediated ultimately by abstract, domain-general neural
mechanisms. However, other populations of neurons in the orbitofrontal
cortex, striatum, amygdala and parietal cortex specifically encode the type,
importance and value of social information. Whether these specialized popu-
lations of neurons arise by selection or through developmental plasticity in
response to the challenges of social life remains unknown. Many brain areas
are homologous and show similar patterns of activity in human and non-
human primates. In both groups, cortical activity is modulated by hormones
like oxytocin and by the action of certain genes that may affect individual
differences in behaviour. Taken together, results suggest that differences
in cooperation between the two groups are a matter of degree rather than
constituting a fundamental, qualitative distinction.

1. Introduction

When cooperating and competing with one other, animals must make rapid,
adaptive decisions based not only on the current behaviour of their social partners
and opponents, but also on memory of previous interactions with those individ-
uals and those individuals’ allies [1]. This behavioural plasticity, or social
competence [2,3], enables animals to respond optimally to rapidly changing
social environments and should be under strong selective pressure. Indeed, ana-
lyses of the mechanisms involved in social decisions have indicated that the
neural networks regulating both social behaviour and the evaluation of stimuli
and rewards are evolutionarily ancient and highly conserved across a wide var-
iety of vertebrates [4]. Because the same neural networks regulate a wide
variety of behaviours—including aggression, parental behaviour and social
bonding—selection appears to operate not on particular traits, but on general be-
havioural motifs that can be fine-tuned to specific physical and social contexts [5].

In order to survive and reproduce, group-living animals must both compete
and cooperate with others—often with the same individuals simultaneously.
Past examinations of the factors contributing to reproductive success in group-
living animals were largely focused on competitive traits, such as the acquisition
of dominance rank. It has become increasingly clear, however, that the ability to
form cooperative social bonds has as strong an effect on an individual’s fitness
as its competitive ability, if not stronger [6,7]. These findings indicate that natural
selection has favoured individuals that are equipped with the cognitive architec-
ture to navigate a social world in which they must make rapid decisions about
when to compete and when to cooperate and when and whether to involve them-
selves in a given social interaction. We are only beginning to understand the precise
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neural and hormonal mechanisms that mediate adaptive
decision-making in animals, and the degree to which such abil-
ities vary among individuals remains largely unexplored
[2,6,8-12]. We also still have little understanding about the
extent to which such variation is heritable. To help guide
future research, in this review, we discuss the links between
competition, cooperation and fitness in non-human primates
and describe some recent studies that use novel techniques to
examine the neural, hormonal and genetic bases of social func-
tions important for the expression of cooperative behaviour. We
focus, in particular, on studies of Old World monkeys, because
these species have been studied the most extensively.

2. The adaptive value of social bonds

Females in many species of Old World monkeys, includ-
ing baboons and macaques, remain in their natal social
groups throughout their lives, where they form stable, differen-
tiated relationships with particular other females [1,13,14].
Close social bonds are manifested through a variety of different
behaviours, including grooming, the maintenance of proximity
and coalitionary support. By many measures, therefore, these
are cooperative relationships: grooming and other affiliative
behaviours occur at high rates, reproductive skew is typically
low and all females are able to breed.

Nonetheless, the same individuals are also competitors:
females form stable, linear matrilineal dominance hierarchies
in which high-ranking individuals enjoy priority of access to
food, mates and in some species, paternal care [15-17]. Female
dominance rank appears to depend in large part on the presence
of allies, who are usually close kin, and females without such
allies typically fall in rank to larger matrilines [18—20].

Because the presence of allies often appears to be essential
for establishing and maintaining dominance rank, it was long
thought that cooperative social bonds functioned primarily to
enhance individuals’ competitive abilities, which, in turn,
improved fitness [21]. In recent years, however, it has become
evident that cooperation itself, even in the absence of any com-
petitive advantages it may confer, may also enhance fitness. In
two long-term studies of baboons (Papio spp.), for example,
dominance rank was not the best predictor of two measures
of female reproductive success: offspring survival and longev-
ity. Instead, females with the highest fitness were those with
the strongest and most persistent bonds with other females
[22-25]. Similar correlations between cooperative social bonds
and components of fitness have been observed in a variety of
other social mammals, including in particular humans [6].

Most recent research on the adaptive value of social
bonds has focused on group-living females, where rank-
related reproductive skew is low. Less attention has been
paid to correlates of cooperation and fitness among primate
males, for whom reproductive success is often more strongly
correlated with dominance rank, which in turn is related to
condition and fighting ability [26]. In recent years, however,
it has become evident that the presence of allies can, in
some instances, also influence the dominance ranks, tenure
and reproductive success of primate males (Assamese maca-
ques, Macaca assamensis [27]; Barbary macaques, Macaca
sylvana [28]; geladas, Theropithecus gelada [29]). This obser-
vation also holds true for chimpanzees (Pan troglodytes
[30,31]), whose male-bonded, fission—fusion society is very
different from that of most Old World monkeys. Thus,

mechanisms that favour cooperation should be evident in
males as well as females.

In addition to alliance support, a number of other factors
may contribute to the relationship between social bonds and
fitness. For example, female baboons with stronger and more
stable bonds may be less spatially peripheral in sleeping trees
and while feeding, and they and their offspring may be less
vulnerable to predators. Strong, enduring social bonds may
also alleviate stress. Female baboons appear to rely on their
social bonds as a coping mechanism when a potentially infan-
ticidal male immigrates into their group. During such events,
females’ grooming networks become less diverse, and females
whose grooming had already focused on a few predictable
partners show a less dramatic rise in levels of faecal glucocor-
ticoids (fGCs), a hormone metabolite associated with stress
[32]. Similarly, lactating females who establish ‘friendships’
with a resident adult male exhibit a smaller increase in gluco-
corticoid levels when compared with females who do not
form such friendships [19,33]. Comparable correlations
between fGC levels and focused female—female bonds have
been observed in rhesus macaques (Macaca mulatta) [34] and
Assamese macaques [35].

Female baboons also experience elevated fGC levels follow-
ing the death of a close relative. Individuals who increase their
number of grooming partners in subsequent months experi-
ence a more rapid decrease in fGC levels than females that
fail to do so, perhaps because increased grooming allows
‘bereaved’ females to repair the damage to their grooming net-
work [36]. The link between stress and social attachment may
occur, in part, because stress prompts the release of the peptide
oxytocin (OT), a hormone that motivates attachment, trust and
pair-bonding behaviour (see below) [37-39] and suppresses
social wariness [40].

The advantages of a close social network may also
extend to females’ offspring. Data from a variety of species
have indicated that maternal exposure to environmental
and social stressors can have detrimental impacts on their
offspring’s health and behaviour [41-47].

From a functional perspective, then, cooperation—even
independent of any benefit associated with enhanced competi-
tive ability—is linked to fitness and health, especially for
females. Given this relation, the dilemma posed by free-
riding—which has vexed so many theoretical debates about
the evolution of cooperation—may largely disappear. Because
free-riding occurs within the constraints of a system that
favours cooperation, an individual can ‘cheat’ only so much
before its partner defects to a more cooperative partner. Indi-
viduals rely on each other to form close social bonds, and the
fitness of partners therefore becomes interdependent [48].
Indeed, among non-human primates, the affiliative inter-
actions of individuals who share a close social bond tend to
become highly reciprocal over time (female baboons [14];
male chimpanzees [49,50]). Such reciprocity is evident even
among kin, where the opportunity for indirect as well as
direct benefits should be expected to result in high skew.

3. Mechanisms mediating the evaluation of
social partners’ value and status

If natural selection has favoured individuals who are success-
fully able both to compete and to cooperate with others, then
it should also promote the cognitive architecture to support

96005107 :LLE g 20S Y “supif ‘Jiyd  biro-buiysiigndKanosiedorqis H



Downloaded from http:/rstb.royalsocietypublishing.org/ on September 21, 2017

these abilities. Non-human primates—indeed, many social ani-
mals—are skilled voyeurs of other individuals” behaviour.
They not only recognize other individuals’ relative dominance
ranks and social relationships, but also the nature and quality
of recent interactions, the value of particular partners and per-
haps even other individuals’ intentions [1,51]. Moreover, many
of their social interactions are contingency-based, and vary
with the nature and quality of recent social interactions.

Monkey groups are noisy, tumultuous societies and an
individual could not manage her social interactions if she
interpreted every vocalization and behavioural gesture she
heard or observed as directed at her. Inferences about the
directedness of vocalizations are probably often mediated
by gaze direction and relatively simple contingencies. Even
in the absence of visual signals, however, monkeys are able
to make inferences about the intended recipient of a call
based on their knowledge of a signaller’s identity and
the nature of recent interactions. For example, in playback
experiments in which female baboons were played the ‘recon-
ciliatory’ grunt of their aggressor within minutes after being
threatened, they behaved as if they assumed the call was
directed at themselves, as a signal of benign intent. As a
result, they were more likely to approach their former
opponent and to tolerate their opponent’s approaches than
after hearing either no grunt or the grunt of another domi-
nant female unrelated to their opponent [52]. Call type was
also important, because subjects avoided their recent
opponent if they heard her threat-grunt rather than her recon-
ciliatory grunt [53]. By contrast, if subjects heard a female’s
threat-grunt shortly after grooming with her, they ignored
the call and acted as if they assumed that the female was
threatening another individual. Thus, baboons use their
memory of recent interactions to make inferences about the
caller’s intention to communicate with them. Experiments
on free-ranging chimpanzees similarly suggest that individ-
uals rely on memory of the nature and quality of recent
interactions when deciding whether or not to respond to a
group-mate’s calls [54].

The neural mechanisms underlying the complex decisions
that monkeys and other animals must make when managing
their interactions remain largely unexplored. Considera-
bly more progress has been made, however, in studies
that focus on simpler forms of social behaviour, including
social attention, which mediates the initial acquisition and
prioritization of information about the identity, status
and attentive states of others, and social motivation, which
drives individuals to interact with others. The fundamental
importance of these basic social functions for individuals to
survive and thrive is made plain in human disorders, such
as autism, schizophrenia and social anxiety, in which these
mechanisms are disrupted.

In order to make adaptive decisions about how to
respond to others, animals must be motivated to attend to
social stimuli. In fact, both humans and non-human primates
find social stimuli intrinsically rewarding, and some social
stimuli are more interesting and valuable than others. Cap-
tive male rhesus macaques, for example, will give up juice
rewards in order to view the faces of dominant males or
female hindquarters, but have to be paid extra juice to view
images of the faces of females and subordinate males
[55,56]. Subsequent work has shown that female rhesus
macaques value the same classes of social information, par-
ticularly male signals related to testosterone [57]. These

findings endorse the idea that the primate brain prioritizes
the acquisition and evaluation of social information, includ-
ing the reproductive quality of potential mates and the
status of potential social partners.

Recent evidence from cognitive and systems neuroscience
strongly suggests that specific neural circuits mediate percep-
tual and cognitive functions necessary for strategic social
behaviour. For example, using structural magnetic resonance
imaging (MRI), Bickart et al. [58] showed that the size of the
amygdala—a brain nucleus important for emotion, vigilance
and rapid behavioural responses—is correlated with social
network size in humans. Subsequent studies showed simi-
lar relationships for other brain regions implicated in social
function, including the orbitofrontal cortex (OFC) [59] and
ventromedial prefrontal cortex (vmPFC) [60]. One study
even found an association between grey matter density in
the superior temporal sulcus (STS) and temporal gyrus and
an individual’s number of Facebook friends [61].

Collectively, these studies suggest that the number, and
possibly the complexity, of relationships one maintains
varies with the structural organization of a specific network
of brain regions that are recruited when humans and non-
human primates perform tests of social cognition such as
recognizing faces or inferring others’ mental states [62,63].
Such results, however, do not reveal whether social complex-
ity actively changes these brain areas through plasticity, or
whether individual differences in the structure of these
networks ultimately determine social abilities.

To address this question, Sallet et al. [8] experimentally
assigned male rhesus macaques to social groups of different
sizes and later scanned their brains with MRI. There were sig-
nificant positive associations between social network size and
grey matter thickness in mid-STS, rostral STS, inferior tem-
poral (IT) gyrus, rostral prefrontal cortex (rPFC), temporal
pole and amygdala. There was also a region in rPFC in
which grey matter thickness scaled positively with social
rank; as grey matter in this region increased, so did the
monkey’s rank in the hierarchy. As in the human studies
described previously, many of these regions have been impli-
cated in various aspects of social cognition and perception
[64]. These findings support the ideas that homologous
neural mechanisms underlie social cognition in human and
non-human primates, and that neural plasticity in specifically
social brain areas actively responds to the demands of the
social environment.

Probing beyond structural variation, Sallet et al. [8] also
examined spontaneous coactivation among these regions
using functional MRI (fMRI). Measures of coactivation are
thought to reflect coupling and potential interaction of infor-
mation flow between regions. Coactivation between STS and
rPFC increased with social network size, whereas coactiva-
tion between IT and rPFC increased with social rank. These
findings show not only that structural changes occur in
these regions to meet the demands of the social environment,
but also that these structural changes are associated with
changes in function.

Although variation in the structure and intrinsic connec-
tivity of these and other brain areas provide a substrate for
social information processing, these findings tell us little
about the underlying neural code for social information.
Early studies in the 1970s identified neurons in the temporal
lobe of macaques that responded specifically to faces [65,66],
and subsequent brain imaging studies showed that portions

96005107 :LLE g 20S Y “supif ‘Jiyd  biro-buiysiigndKanosiedorqis H



Downloaded from http:/rstb.royalsocietypublishing.org/ on September 21, 2017

of the temporal lobe and fusiform gyrus also respond in humans
viewing faces [67,68]. More recently, Tsao et al. [69] used a com-
bination of fMRI and direct electrophysiological recordings in
macaques to demonstrate that hemodynamic activation of
these brain areas indexes the spiking of local patches of neurons
that respond uniquely to faces. Disruption of signalling by these
neurons, as occurs in disorders like congenital prosopagnosia or
following lesions, severely impairs social identification and rec-
ognition behaviour [70-72]. Collectively, these studies suggest
that initial identification and recognition of the immediate
social context are mediated by highly specialized neurons that
may be dedicated to this purpose.

New functional imaging and neuronal recording studies
have begun to reveal how subsequent social motivation and
attention are encoded in the primate brain. For example,
Smith et al. ([73]; see also [74]) demonstrated that humans
viewing pictures of attractive and unattractive faces activated
regions of the ventral striatum, vmPFC and OFC—brain areas
typically associated with reward and decision-making—that
were also involved in processing monetary gains and losses.
This finding endorses the idea that social and non-social
decisions are mediated ultimately by an abstract, domain-
general mechanism [75]. Two follow-up studies using direct
electrical recordings from neurons in male rhesus macaques
found that some neurons in these same brain areas respond
strongly when monkeys select either a preferred social image
(e.g. female perineum, high status male face) or a large juice
reward, but respond less when the same monkeys choose
unpreferred social images (e.g. low status faces) or small juice
rewards [76-78], consistent with an abstract code for value.

Nevertheless, the same studies also identified popula-
tions of neurons in OFC and striatum that encoded the
type and importance of social information, in addition to its
value [77,78]. Even more notably, neurons signalling social
information were distinct from those signalling gustatory
information. These findings suggest that parallel-processing
streams devoted to gustatory and social information may
have arisen by duplicating a primitive neural network that
originally evolved to support foraging for food and water
and repurposing it to processing social information [79].
Duplication and specialization of such a network for the pur-
pose of social information processing seems likely to have
emerged within the primate lineage in concert with the evol-
ution of large, complex, dynamic social groups and the
demands they impose on the acquisition and evaluation of
social information [79-81].

By contrast, neurons in brain areas that mediate attention
and visual orienting behaviour, such as the parietal cortex,
signal the abstract value of a particular location or object,
derived from both its social and non-social value to the
animal [76]. Convergence of social and non-social value signals
in these neurons indicates that target selection and oculomotor
planning represent a final common pathway in which infor-
mation initially processed in segregated channels must be
integrated to support the coherent guidance of behaviour [5].
These findings resonate with embodied cognition models
that situate information processing and decision-making in
circuits that control action and behaviour [82-84]

As noted above, social hierarchy is a predominant feature
of behaviour in most primate societies, and thus social rank
appears to be a key factor shaping attention and motivation
[55,85], as well as more complex behaviours like grooming
and alliance formation [1,13,21]. Despite the importance of

social rank, however, there remain gaps in our understanding
of how neural circuits mediate status-related behaviours.
Although regions in the amygdala, brainstem and hypothala-
mus vary structurally and functionally with social rank, it
remains unknown precisely how they contribute to or
respond to social status. For example, though amygdala func-
tion and structure correlate with social status in both humans
and non-human primates [12,86,87], it remains unknown
which aspects of dominance this set of nuclei contributes to
or underlies. One model suggests that the amygdala contrib-
utes to learning or representing one’s own status within a
social hierarchy [87,88]. Alternatively, the amygdala could con-
tribute to behaviours that support social hierarchy, including
gaze-following [88] and theory of mind (ToM) [89] (see
below). The amygdala could also contribute to social rank
via interpersonal behaviours or personality traits, such as
aggression [90], grooming [90] or fear responses [91,92].
Finally, scaling of the activity of neurons in parietal cortex,
and possibly other areas, by the rank of other individuals in
the visible scene [76] likely mediates the selective allocation
of attention to dominant individuals over subordinates in
many primate groups [1,13,93]

Together, these studies, and others like them, suggest the
following back-of-the-envelope framework for the organiz-
ation of basic social processes in the primate brain.
Specifically, patches of neurons in the temporal lobe (in non-
human primates) and fusiform gyrus (in humans) mediate
the initial decoding of the current social environment. Next,
processing by specialized neurons in OFC, vmPFC and stria-
tum computes the nature, importance and value of social
agents for guiding subsequent behaviour. Neurons in amyg-
dala and brainstem areas may contribute to processing the
relative ranks of self and others in order to regulate attention,
as well as approach and retreat. Finally, neurons in parietal
cortex, and possibly other areas involved in attention, signal
the abstract value or importance of objects and individuals in
the local environment, in order to shape the adaptive allocation
of attention to others. Notably, current evidence suggests that
social and non-social information remains segregated from
perception through evaluation and may only be integrated
during the process of making decisions and planning action
([75]; but see [94]). These circuits provide the foundation
upon which more complex social behaviours, like cooperation
and alliance formation, are developed and elaborated.

4. Cognitive and neural boundaries of
cooperation

Despite the complexity of their social behaviour, non-human
primates fail to achieve the high levels of prosociality so
evident in human interactions. These failures have been
attributed to both cognitive and emotional constraints [51].
Because non-human primates appear to lack the ability to
attribute to others mental states that are different from their
own, they may be unable to empathize with others, to recog-
nize the need for help in the absence of a request, and to
recognize attempts by others to cheat or free-load [51,95-98].

Nonetheless, this distinction between human and non-
human primates is not as clear-cut as it might seem. Although
non-human primates obviously do not possess adult humans’
full-blown, reflective ToM, they do share with humans many of
ToM'’s more fundamental attributes, including sensitivity to
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gaze, intentions and emotional empathy [11]. For instance,
non-human primates are acutely sensitive to others’ gaze and
attention. Gaze-following—orienting attention in the same
direction as another individual—is a component of joint atten-
tion and may be foundational for ToM. Recent fMRI studies
and lesion studies in humans implicate the temporoparietal
junction (TPJ) in gaze perception and ToM [99]. One neuroima-
ging study suggested human TPJ may be homologous with the
posterior STS in monkeys, based on patterns of resting-state
connectivity measured using fMRI. Identifying where others
are looking appears to be accomplished by neurons along the
STS [100] and in the amygdala [101] that respond to the sight
of another individual looking in a particular direction. Inacti-
vation of neurons in the STS using a drug to block neuronal
spiking impairs gaze-following in rhesus macaques, consistent
with a role in identifying the locus of other animals” attention
[102]. Shifting attention in response to the direction in which
another individual is looking appears to be mediated by
‘mirror’ neurons in the lateral intraparietal area (LIP) that
respond both when monkeys look in a particular direction
and when they observe another monkey look in the same direc-
tion [103], another example of embodied cognition. Together,
these findings suggest that a circuit connecting STS, amygdala
and LIP subserves rapid, reflexive gaze-following in non-
human primates. Moreover, this circuit appears to have
become further elaborated during human evolution to support
joint attention and ToM [104].

Gaze-following and joint attention appear to be critical
for the coordinated behaviour required by both cooperation
and competition, but social interactions also require that the
brain keep track of information regarding the experiences
and expectations of others. Human brain imaging studies
have identified a number of areas that respond when
people make decisions with regard to others, including
OFC, dorsal anterior cingulate cortex (ACCs), anterior cingu-
late gyrus (ACCg), ventral striatum, dorsolateral prefrontal
cortex and TPJ. TPJ and ACCg in particular appear to contrib-
ute uniquely to social decisions and may mediate complex
social functions like empathy and ToM.

A recent study assessed how social information is encoded
by neurons in OFC, ACCs and ACCg in male rhesus macaques
that were making simple decisions to reward or withhold a
reward from another monkey [80]. In this task, subjects were
given the choice between either withholding or providing
juice to another monkey in the absence of any reward to them-
selves. Subjects were significantly more likely to choose the
reward than the withhold option, and this prosocial tendency
was enhanced by familiarity [105]. By contrast, subjects were
selfish when choosing between rewarding themselves alone
or rewarding both themselves and another monkey. Thus, the
monkeys’ responses were both competitive and cooperative,
and their decisions exhibited considerable flexibility.

Neurophysiological recordings found that OFC neurons
responded when monkeys chose to reward themselves. By con-
trast, ACCs neurons responded whenever monkeys chose to give
up rewards. Most importantly for cooperation, ACCg neurons
selectively encoded the rewarding experiences of the recipient
monkey, either responding only when monkeys chose to
reward the recipient or responding equivalently to giving and
receiving reward. Increased frequency of prosocial decisions
was associated with enhanced signal-to-noise in the responses
of ACCg neurons, suggesting that signal fidelity or integrity in
this area contributes to variation in prosocial behaviour.

These data confirm the critical role of ACCg for complex
social functions, including social reward and empathy-like pro-
cesses, and resonate with prior work showing activation of
ACCg and medial PFC in humans associated with empathy
and ToM. Such observations suggest that ACCg is a key
nexus for computing shared experience and may be specialized
to support complex social decisions, such as whether or not to
cooperate, in primates. Results also suggest that differences in
the structure and function of ACCg, along with other areas
associated with awareness and empathy (e.g. anterior insular
cortex [106,107]), may underlie differences in cooperative abil-
ities between humans and other primates, as well as differences
between individuals within a species.

5. Neuromodulatory sources of variation in
cooperative potential

There is strong evidence that variation in cooperative ten-
dencies, both between species and individuals within species,
arises through the interaction of genetic influences on the devel-
opment of neural circuits and experience-dependent plasticity
during development and even into adulthood. One relati-
vely basic source of variation in cooperative potential is via
neuromodulatory effects on neural circuits mediating social
bonding [40,108]. For example, OT plays a crucial role in mam-
malian social behaviour. OT is necessary for mother—infant and
pair-bonding in many mammals [109,110]. Joint attention, joint
action and physical contact activate areas of the brain associated
with the processing of reward, and these behaviours are facili-
tated by the release of OT. Importantly, what seems to be
rewarding to animals is not physical contact per se but the specific
identity of the social partner. For example, in socially monog-
amous tamarins (Saguinus oedipus), strongly bonded pairs
exhibit higher OT levels than more weakly bonded pairs [111].
Among wild chimpanzees, urinary concentrations of OT are
higher after individuals groom with a closely bonded partner
(both kin and non-kin) than with a less closely bonded partner
[112]. Evidently, grooming with a close friend or relative is
more emotionally rewarding than engaging in the same behav-
iour with a less preferred partner. Chimpanzees also exhibit
elevated OT levels after sharing food [113].

In healthy humans, inhaling OT, which translocates the
peptide into the brain, increases trust and prosocial behav-
iour [114,115]. Children with autism spectrum disorder
(ASD), which is associated with disruptions in social behav-
iour and communication, show significantly lower plasma
OT compared with typically developing children [116], and
a mutation in the OT receptor gene has been linked to ASD
[117,118]. OT inhalation improves social skills and reduces
stereotypy in people with ASD [119].

Inhalation of OT also influences social attention and pro-
social behaviour in rhesus macaques. In one study, inhaling
OT increased attention to faces and eyes during free viewing,
as in humans [40]. By contrast, it reduced species-typical vig-
ilance for unfamiliar, dominant and emotional faces in two
additional tasks. Relaxed vigilance induced by OT inhalation
also promotes attention to others in live, dyadic interactions
[120]. These findings suggest that OT promotes attention to
others, in part, by relaxing vigilance and possibly by enhan-
cing social reward. Endorsing this hypothesis, inhaling OT
significantly increased the frequency of prosocial decisions
made by rhesus macaques when choosing whether or not
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to reward another monkey [120], a result that is consistent
with an increase in empathy or vicarious social reward.
Importantly, the effects of exogenous OT on social behaviour
depend on context. For example, inhaling OT enhances pro-
social behaviour towards in-group individuals, but
increases selfish behaviour towards out-group individuals
[121]. Together, these findings strongly implicate OT in the
regulation of social behaviour and cognition by both social
context and internal state.

Precisely how OT regulates the structure and function of
neural circuits mediating social behaviour remains only par-
tially understood. Endogenous OT levels vary both across
species [122,123] and across individuals within a species
[124], thus potentially contributing to species” and individuals’
differences in social behaviour [125]. Variation in the distri-
bution and abundance of OT receptors also appears to
contribute to OT regulation of social behaviour [126].
For example, pair-bonding in the monogamous prairie vole
(Microtus ochrogaster) is mediated, in part, by activation of OT
receptors localized to circuits associated with reward. Lack of
OT receptors in these classic reward circuits may underlie lack
of pair-bond formation in polygynous meadow voles (Microtus
pennsylvanicus) and montane voles (Microtus montanus) [122].
Recent studies have demonstrated that OT receptors in both
monogamous titi monkeys (Callicebus cupreus) and rhesus
macaques [127,128] appear to be limited to areas of the hypo-
thalamus and brainstem implicated in arousal and visual
orienting behaviour. Notably, vasopressin receptors are much
more widespread in cortex and basal ganglia, and OT may
bind to these receptors when released at higher volumes or
delivered exogenously.

Once OT binds to a receptor, it may influence neuronal sig-
nalling in a variety of ways that may ultimately impact social
behaviour. For example, OT applied to hippocampus in rats
enhances signal-to-noise ratio of neurons by increasing spike
probability while simultaneously decreasing spontaneous
background activity [129], potentially providing a foundation
for enhanced learning and memory. OT receptor binding
leads to a cascade of intracellular events via G proteins, with
downstream effects on neuronal activity that can vary across
regions depending on receptor subtype or cell-specific receptor
coupling mechanisms [130]. OT signalling is also influenced by
other signalling molecules. In prairie voles, for example, OT
receptors in the ventral striatum must be coactivated with
dopamine D2 receptors in the same area in order for pair-
bonding to occur [131]. In rats, OT receptor expression is
modulated by female sex hormones, as is the localization of
OT receptors to dendrites or axons [130].

Thus, OT may exert complex effects on social behaviour
via activation of both OT and vasopressin receptors localized
in different neural circuits, depending on current context,
internal state, and genetic factors that shape OT release and
the expression of both OT and vasopressin receptors [130].

6. Biological and behavioural variation in the
quality of social interactions

To date, studies of animal cognition have tended to focus on
population norms: whether the members of a given species
exhibit a particular trait or manifest a particular neural
response. To demonstrate that a trait is linked to fitness, how-
ever, it is essential to show that variation in the trait is linked

to variation in fitness. Thus far, no studies of non-human pri-
mate cognition have been able to address this question
directly. We know that individuals vary in the strength of
their cooperative bonds, even when controlling for the avail-
ability of kin. However, we do not yet have a clear
understanding about the degree to which this variation is
owing to individual differences in skill or motivation, or
whether it has a genetic basis.

What has become evident, however, is that individuals
vary in the quality and frequency of their interactions with
other group members and in their responses to social uphea-
vals. This variation cannot be explained solely in terms of
measures like dominance rank or the presence of kin. Instead,
variation in patterns of affiliation that are correlated with fit-
ness may result, in part, from variation in personality styles
[79]. Female baboons who are generally more friendly to
others, particularly to those of lower dominance rank, tend to
form stronger social bonds than less friendly individuals [9].
These females also seem to be more motivated to anticipate
challenges and to react adaptively to setbacks. They show a
greater anticipatory increase in fGC levels upon the immigra-
tion of a potentially infanticidal male and a greater increase
in grooming partners following the death of a close relative
[11]. In contrast, females who are less friendly and who are
often alone form significantly weaker bonds. The extent to
which these behavioural syndromes are heritable remains
unclear. In one study of baboons, close female kin did not
have ‘personalities” that were more alike than non-kin [132];
however, a similar study conducted on rhesus macaques
suggested some heritability in personality traits [7].

A recent study in rhesus macaques found that social
network position has a genetic basis [10]. Some of this variation
is linked to polymorphisms in genes known to regulate seroto-
nin signalling. Specifically, 5-HTTLPR contributes to removal
of serotonin from the synapse and is polymorphic in rhesus
and human; TPH2 codes for the rate-limiting enzyme in sero-
tonin synthesis and is also polymorphic in both species.
Rhesus macaques with the minor allele of both genes are
socially peripheral, making fewer allies than monkeys posses-
sing a major allele. Social isolation may arise from the
influence of genetic variation in TPH2 on variation in vigilance
for social threats in this same population of rhesus macaques
[133]. In the laboratory, variation in 5-HTTLPR predicts elev-
ated arousal and decreased social interest in assays of social
attention and social reward [134]. Moreover, there is new
evidence that serotonin and OT interact in brain circuits impli-
cated in emotion regulation and social behaviour in humans
[135], thus linking two neuromodulatory systems previously
implicated in arousal and social function. Thus, although the
definitive studies on the repeatability, fitness consequences
and heritability of personality styles and social skills in the
wild remain to be conducted, current evidence suggests
that individual variation in social behaviour arises, in part,
from the adaptive influence of genes on neural circuits and
neuromodulatory systems mediating social function [136].

7. Conclusion

In this review, we have focused on cognitive mechanisms that
can be attributed, wholly or in part, to selection acting within
the domain of conspecific interactions. Many questions, how-
ever, remain unanswered. For example, the degree to which
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the social environment presents animals with problems that are
formally different or more complex than those presented by
other behaviours, like foraging or predator avoidance, remains
an open question. We cannot yet specify the extent to which
similar neuronal mechanisms mediate both social and non-
social challenges, or the ways in which social challenges are
distinct from non-social ones. Similarly, although evidence
suggests that the same ancestral neural circuits underlie
many components of social bonding, competition and
decision-making across a diverse array of taxa, other relevant
brain areas may be unique to primates [2,3,4]. Finally, the
degree to which sociality is heritable remains an open issue,
and the epigenetic effects of social perturbations are just begin-
ning to be examined. Several measures of gene regulation,
including DNA methylation, chromatin accessibility and
gene expression are known to respond to variation in envi-
ronmental, developmental and social stressors [47,137]. The
long-term consequences of these effects on social behaviour
remain poorly understood.

In sum, non-human primates appear to be highly motivated
to attend to each other’s social interactions. They recognize not
only other individuals’ relative dominance ranks and social
relationships, but also the nature and quality of recent inter-
actions and the value of particular partners [138]. These
cognitive skills enable individuals to establish strategic social
bonds that, in turn, enhance fitness. Evidence suggests that,
early in the evolutionary history of primates (and perhaps
many mammals), selection favoured the development of gen-
etic, neural and hormonal mechanisms that promoted not
only competitive, but also cooperative, behaviour.
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