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Introduction

This paper concerns an area that now is the subject of
controversy: TIs the representation of *sensory information in long-
term memory *¥propositional*® (Pylyshyn, 19733 Palmer, 1973) or
is the representation "analog" (Slewan,lq7/ )%

My own feeling about this is that the first five minutes of such a
discussion are valuablej the next N years of argument are fruitless.

In this paper, I present a Specific (and therefore probably

incorrect) representation of the letters of the alphabet and a particular
process model for mental rotation. My hope is that these specific
models will spur the development of more éoncrete theories of the
representation and manipulation of *sensory® information in long-term

memory.

- The Representation of letters

Early approaches to the representation of visual phenomenon,
especially letters, have been of two varieties: 1) template systems,
from the *analog" tradition, and 2) feature models, from the
propositional side. Both of these systems have their .shortcomings
(see Palmer, 1973).

Recently, network models have been advanced as a system for
representing sensory phenomenon. Pat Winston, in his thesis
(Winston, 1970), presented a system for representing, recognizing, and
learning spatial configuretions, such as arches. I will apply

the same general approach in this paper, with some twists.




An A

Early feature models would characterize an A as:
I horizontal line, 1 left oblique line, | right oblique line.
Clearly, this is not a sufficient representation, as it doesn“t

rule out configurations that are clearly not A’s, as in Figure 1.
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Figure 1: Non A’s accepted by a feature model as A

We need to augment this representation with the spatial relationships
between the features. What are the crucial relationships in an A?
Well, the ends of the diagonals touch, and each end of

the horizontal line intersects the middle of each diagonal.

Let’s develop a network representation of such an A (see Footnote 2
about the notatiorf conventions used). First, there are the 3 lines v
as shown in Figure 2a. Next, there are the parts of the lines that
touch, shown in Figure 2b. Finally, let’s add the relation "NEAR®
between those parts of the line that are in close physical proximity,

as shown in Figure 2c.
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Figure 2: Network representation of an A
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Examples of some spatial configurations allowed by
this definition are shown in Figure 3. These are all A’s, but

in all different orientations.

Figure 3: Different configurations specified by the definition

The definition we have just developed is an *orientation-free"
representation of an A.

(To test the adequecy of any representaion claimed, here
or eisewhere. you should try to find some configuration that meets the
definition’s constraints, but which wouldn’t be considered in
the category. For example, does the above definition (in Figure 2c) rule
out all non A’s?
Another side point: the definition above is ciearly not a complete
description of A, since it doesn‘t describe script A’s or small A’s.
This problem is an issue I will ignore for now.)

People can easily distinguish between an upside—down A and a
righg;side up one. Can we represent this orientation information
using the definition we have developed?
First of all, how is orientation specified? For an A, the intersection

of the two side lines must be at the top and the intersections of the

sides and the crossbar must be at the sides.




. Before we can tackle the problem of representing orientation
in a network, we must take a side trip into the issue of how to represent
orientation. It is in the representation of ”éontinuous" dimensions
like orﬁﬁtation, that the propositional vs. analog controveﬂ& gets its
hotest. First of all, do we really need a continuum — that is, do we
need to use an infinite number of values to represent orientation?
Clearly not — the human perceptual system just doesn’t have infinite
sensitivity. At the lowest'perceptual level, there is a finite change
in orientation that has to be made for a human to detect any change.
Smaller changes are just not perceived. So, in fact, we need only
represent discrete orientation categories, into which an infinite number
of physical orientations map. The existence of these orientation
equivalence classes doesn“t imply that orientation can‘t be perceived as
"continuous". As long as the size of these classes is smaller than
the "grain" of perception, rotation through discrete orientation
Classes will be perceived as continuous. A good example is the
perception of a movie of a rotating object. In this case, even the
external stimuli are "discrete! - only discrete orientations
of the object are presented. But we still perceive continuous
motion.

So let us assume that there is some set of equivalence

classes of orientations. Certainly, a psychologically valid set of
these have to be established empirically. (There’s even some
evidence that these classes are not of equal size — human have finer
discrimination along horizontal and vertical than on diagonals ).
But let us adopt the following compass point set, mainly for mnemonic

value, described in Figure 4,
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Figure 4: Hypothetical orientation equivalence classes

By North, we really mean "up", East is #right%, etc.

An Upright A

Now, back to A. How do we.augmenf our orientation-free
representation to represent a particularly oriented one?
The specification of the relative position of the various parts has to
be in relation to some particular position. So we need to add a
reference point for each definition. Then, if we .add the
necessary relative position predicates between the referhce point and
the orientation sensitive parts of the network — presto, we have an

upright A.
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Figure 5: Representation of an upright A,




Just for fun, here is the representation of a tilted A.

See if'you can derive the orientation from the representation!
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Figure 6: Representation of a tilted A.

Note that the reference points for these two representations are located

in the center of the crossbar of the A
You can test the naturalness of my representations by picking

any letter, say an N, and drawing your representation below.

You can then check it against mine in the Appendix.

Figure 7: Reader”’s Representation of an N.




See the Appendix for the orientation-free and orientation

sensitive (upright) representations of all of the letters.

Let“s summarize the representational system used for letters.
The basic building blocks are lines and curves. A line is a general
concept that includes both stright line segments and curves.
By a curve, I mean a simple curved line segment (one with no
inflection points - one who“s radius of curvature never crosses the
curve, .We have operators whfch specify parts of these basic
elements: END and MIDDLE. Lastly, we have a relation predicate
NEAR which specifies physical proximity between its argumentse.

With these components, we are able to represent with some
degree of success orientation-free definitions of the letters.
To specify particular orientations, we have to add a reference
peint and a set of orientation predicates which relate the orientation
sensitive subparts of the representation to the reference point.

(To represent more complex figures, we can use these elements

to define higher level units. See Footnote 3 for an

example of this.)

0.K., so what do we do with all these networks? Well, several
things. First, if these representations really describe the class
of configurations of printed capital letters, then we should be able
to use them to Yecognize these letters. In this view, the perceptual
processes construct a network representing the external stimulus

and a network matching process would identify the letter;




Secondly, we can do various mental manipulations of letters using
these representations. For example, we could rotate them. Let us assume
that the equivalence classes of orientations (discussed above)
are stored in a semantic network with the following relations between

successive classes:
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Figure 8: Network representation of orientation
Now, say we wanted to rotate an upright A one step clockwise.

That is, we want to change Figure 5 into Figure 9 below.
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Figure 9: Representation of an 9 .
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Wnat did we have to do to Figure 5 to get Figure 9? Basically, we

replaced each orientation predicate relation with the next orientation
relation in the clockwise direction. We can find this next predicate
by following the CLOCKWISE relation from the type node of the specified
predicate. For example, NORTH is replaced by NE (north-east), which
is the node we get to from NORTH by CLOCKWISE, as shown in Figure 8.
Here is a SOL definition (see footnote 4) for the procedure ROTATEl, which
will rotate a specified letter one step in the specified direction:

> Define Rotatel as action;

THE DEFINITION FRAME FOR ROTATE! ISs

* Rotatel object direction.

THE DEFINITION ISs

* Call the first node from object via reference reference-point.

* Change each node from reference-point via OF-1I

* from'"act" firstnode from it via “act®
* to "act" firstnode from that node via direction.
* ##

Now we can easily write the general procedure Rotate.
> Define Rotate as action.
THE DEFINITION FRAME FOR ROTATE IS:
* Rotate object number-of-steps direction.
THE DEFINITION IS:s
* Set a counter to 1.
* Rotatel object direction and increment the counter
* until the counter is greater than number-of-steps.

-k ¥#
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Now let’s look at the mental rotation task used by Shepard
and his associates (Shepard & Metzler, i971% Cooper and Shepard, .1972).
In these tasks, subject were required to mentally rotate images to
determine whether they matched perceptually presented ob jects.
The interesting result of all these studies is that the more the mental
image has to be rotated, the longer it takes. In fact, the relation
between timé to rotate and amount of rotation is linear. This relation

is shown in Figure 10,

Reaction
Time

o ! 1
0 180 360
Amount of Rotation Required for a Match

Figure 10: Data from mental rotation experiments

Now lets’s see if we can simulate the processes the subjects use
in these experimental tasks. Let us define an overall procedure COMPARE.
> Define Compare as action.
THE DEFINITION FRAME OF COMPARE ISs
* Compare mental-image to perceptual-image.
THE DEFINITION IS:
* Rotatel mental-image clockwise until a match between mental—image
* and perceptual-image occurs.
* If the match is same as identical, respond "yes",

* otherwise respond "no". ##

Let’s assume that MATCH is some relatively simple network matching
procedure. All other words in this definition are either defined

previously in this paper (ROTATEl) or are standard words in SOL.




11

Before we go on, let’s take a little digression to note a flaw
in this definition. You“ll note that it *blindly* rotates the image
clockwise until a match is found. If people really did this,

the data would look like that in Figure 11,

Reatshm
Time
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Figure 11: Fallacious predicted data

Another alternative, to randomly choose which way to rotate, would

produce the results shown in Figure 12,
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Figure 12: More fallacious predicted data

Somehow, people "know" which way to start rotating the object.
1711 leave this as a problem for the reader (and for myself). Note
that this problem exists for any model of the rotation process,

whether analog, propositional or in-between.
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Anyway, vie can develop an explicit prediction for the reaction
times in these rotation tasks from these process modelss:
S = number of steps needed to rotate the image into

correspondence with the perceptual input

M = time to execute the MATCH procedure, to check the result,
and to execute the ROTATE! procedure
C = constant time to perceive the problem and to make the

response (this is the garbage category)
then, RT = S * M + C i.e. the straight line data of Shepard et al.
Now, let’s look at a nice variation of this
paradigm, developed by Lynn Cooper (Cooper & Shepard, 1972).
In this version, subjects are told to mentally rotate a pafticular letter
clockwise in time to a rhythm (a tape recorder plays a monolog like
this *...up. tip, tip, down, tip, tip, up, «.."). At some time unknown
to the subjects, a real version of the same letter is presented in some
orientation, and the subjects determine whether the presented letter
is the same of the one they”’re rotating or its mirror image.
Let’s look at a possible model of what sub jects do in this task.
> Define #Do-Lynn’s—experiment! as action.
THE DEFINITION FRAME FOR DO-LYNN“S-EXPERIMENT IS3
* Do-Lynn‘s—experiment with letter.
THE DEFINITION IS
* Rotatel letter clockwise until a perceptual—input occurs,

* then compare letter to the perceptual-input. ##

Again, the prediction of this model 's the straight line function

found v thas e,d\peﬂW\CWL.
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The rotation model presented here has another interesting

prediction, derived from the definition of ROTATE! (given above).

From the definition, we can predict that it will take linearly

longer to rotate a figure with more orientationally sensitive

points. This prediction agrees with the intuitive notion that it

is harder to rotate some objects. In fact, this is experimentally

verified by Shepard et al.: to rotate complex block figures takes

about 20 msec./degree (Shepard and Metzler, 1971); to rotate simplier

figures (letters) takes about 2 msec./degree (Cooper and Shepard, 1972),

There are two points to note concerning this prediction.

1) This difference in rate depehds only on the number of orientation
sensitive nodes, pot on the overall complexity
- of the representation. Much of the orientation-free

representation isn’t involved in the rotation process (it comes
along for a free ride),

Y -~
MOdJde)Se.

2) This predictjon is evidence against extreme analo

Q

Physically, it’s no harder to rotate a visually complex ob ject
than a visually simple one (of equal mass). Considerable abstraction
must occur before "visual complexity" can even enter into a

rotation process.




RANDOM IDEAS, AN APOLOGY, AND A QUICK .SUMMARY

The representations of letters presented here are open to many
other experimental tests. To pick a random samples

1) The representations give a measure of visual complexity, which
can be tested (note the distinction between visual complexity and
oriéntational complexity mentioned previously).

2) They provide a measure of the similarity of any set of objects.

A direct test of these representations would be to see how well
they predict the table of letter recognition errors.

3) They provide a database for a model of recognition. In
particular, the letter representations provide an alternative set
of basic elements for the various models of letter recognition.

The ideas here are not completely worked out, and certainly not
_experimentally verified. My hope (and justification for writing this
up) is that this paper will spur the development of concrete ideas,
specific models, and informative experiments in this area,
so that we can go beyond futile black or white arguments of
propositional vs. analog representations.

In this paper, I have presented a representational system
for specifying orientation-free representations of the printed
capital letter. In addition, a scheme for representing orientation
was developed. The complete set of these representations is in
the Appendix. Using this representation system, we were
able to easily write models of the mental rotation processes.

These models satisfied the gross constraints of the data, and
in addition, provided an explanation for the differences

between objects in difficulty of rotation.

14
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NOTES:

(1) This research is supported by research grant GB 32235X from the
National Science Foundation. Many of the concepts discussed
in this paper have come from the activities of the LNR Research
Group. This paper has been especially influenced by Steve
Palmer, both in personal discussion and by his paper summar izing
these issues (Palmer, 1973). The particular representational
system and the model of rotation presented here were
developed at the Workshops on Human Information Processing,
at Carnegie-Mellon University, June-July, 1973.

(2) Here is a short summary of the notation used in these graphs:

relation R between nodes A and B is denoted like this:
| P .. % |

The converse relation from B to A is also symbolized by the
same arrow. If it isn’t assigned a name, it has the default
name of "R~I ., Relations used in the representations presented
here include PART, symbolizing that B is a subpart of Aj
REFERENCE, pointing to the reference point of a definitionj
OF, marking one argument of the operatorss
OBJ or 0, marking unordered arguments of predicates.
Concept token nodes for the typefxd;re noted as <A>.
This means that the <A> node stands for a particular instance
of the general concept A.

Predicate token nodes for the type A are noted as (A)
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(3) Larger scale units can be defined from the units used here.

For example, to analyze complex three-dimensional units,
you might want to define the units used by Guzman in

his scene analysis program (Guzman, 1969):

L Like "L* in Appendix.
T Like "T* in Appendix.
X Like "X* in Appendix.
K Like "K* in Appendix
Fork Like first "Y* in Appendix.
Arrow Like thiss v O

RO
L peicireses - Po(w()”

(4) SOL is a 1ahguage developed by our group for ease in writing models
of cognitive processes. See “The Memod Manual® if you want to
understand the nitty-gritty details of these definitions.

These definitions consist of 1) the specification of the name
and syntactic class, 2) the specification of the argument
frame, 3) the body of the definition, specifying uhe actions
to be performed, 4) the end of definition marker ##.

User input is in lower casej computer responses in UPPER.
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arceRbias UnlIENIALION-FREE AND ORIENTATION SENSITIVE (upright)
REPRESENTATIONS OF LETTERS
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Orientation-free Orientation-sensitive

Q o S—

Ve
LLINEY

KEMr Ve S Leuvrvey <LINE>épf‘

£ & e
=1

b A\ )
e
o o P-\;Aé

& g

e

R

LLINES <LLINE> curvey ¥

Rof,
ary
-
4 \ddle
O wA
Luwey curvey<

p et Tae B S ot e Ma¢
’E@i ;/,;@Q—@

[/

g
ey @nd)
T 7 ‘

ap eurve?
Y

@R

T s R
A )

/Ff € e of N




Orientation-free

U

o

LewrVeEy
oR
x
¢ SJ/ <

(Lwn (.('M.VV!) L NMEY

el

(LMI‘E.) <L|N5> CLINEY (Ll/\ley

SPasae

{LIVEY CLvED
of of

Cwnddie) @ 9315
ey

Orientation-sensitive

=\
l"" /.QL—/?(]{??
LenrvspetGuidle) —® ot

OoR

L/__ﬂ—mmgeﬁ

;‘ kY \
* »,\
R.Y7

(Luv(,v LQu.nrx) cLne )y

RS,

hww

. LLwvey




(LIVEy gy <Lve>

l3 Nor

LLINEY CLinvsY
of

-
€©h G

°

@Qear)®

X/ %
4 - q~}

LLINE> LLINEY “CLing> o “""f> LLINEY “Climvg>
ot 1E

.2 @nd @) k @ Epe——— /é;x*
e 5;,! & =t . - Do,

(Note: I don’t claim psychological validity for these representations.

The purpose of this appendix is only to demonstrate that the
system I have described is, in fact, robust enbugh to
represent all the letters. In fact, for some letters, several

alternative representations will be presented.)
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