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Abstract: Helping students develop deep conceptual knowledge and ways of 
thinking for knowledge transfer—that is, applying and using knowledge and 
problem-solving skills in new contexts and situations—are important goals for 
STEM literacy and for educational subjects in general. However, there is an ongoing 
research debate about whether learning designs and instructional approaches that 
provide instruction first or Productive Failure first are best for achieving these goals. 
This chapter provides an overview of this debate and of recent research findings 
challenging traditional views about the necessity of initially providing instruction. 
Studies are discussed (many in STEM subject areas) in which students first engage 
in problem solving and failure followed by instruction (i.e., Productive Failure [PF]) 
that have findings of superior conceptual learning and transfer by a factor of three 
compared to instruction first. As an example of STEM instruction involving PF, a 
study of students learning about complex systems and climate change using computer 
models is discussed that found significantly higher problem solving and transfer 
outcomes for the PF instructional approach compared to instruction first. The chapter 
concludes with considerations of future STEM learning research and the potential 
implications of innovative learning designs such as PF for enhancing students’ ways 
of thinking and problem solving in science and related areas. 

 

1 Please do not quote from this manuscript without written permission from the first author. Suggested reference:  
Jacobson, M. J., Vulic, J., & Levin, J. A. (in press). Nexus for STEM problem solving and transfer research: Instruction 

first or Productive Failure first? In L. D. English & T. Lehmann (Eds.), Ways of Thinking in STEM-based Problem 
Solving: Teaching and Learning in a New Era. Routledge.  
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It is generally recognized that there are important general characteristics of STEM literacy such 
as students developing solid conceptual knowledge and ways of thinking about science and 
mathematics as well as the ability to use or transfer STEM knowledge to solve problems in 
new contexts and situations. However, these characteristics, particularly the ability to transfer 
knowledge, are challenging to achieve. Reasons for this include the Goldstone and Day (2012) 
observation that “schools often measure the efficiency of learning in terms of speed and 
retention of knowledge” (p. 149), with less attention to students generalizing and applying their 
acquired knowledge. Further, they argue there is an urgent need for “specific, validated 
techniques for teaching with an eye toward facilitating students’ transfer of their learning” (p. 
149). We concur with this view, but the question must be asked: How best to address this need? 

In this chapter, we argue that a principled answer to this question requires engaging a current 
core debate or “fault line” (diSessa, 2006) in the fields of educational research and the learning 
and cognitive sciences. Prior “fault lines” include the cognitive/situative debate (Anderson et 
al., 2000; Jacobson et al., 2016), the knowledge-in-pieces/coherent-knowledge debate (diSessa, 
2006; Slotta, 2011), and the quantitative/qualitative methods debate (Firestone, 1987). Each of 
these debates involved strong disagreements about theorizing, empirical findings, or 
methodological approaches—often in combination. These debates also persisted in the 
literature for years and even decades during which the research communities could not 
vindicate one camp or the other before a reconciliation was generally articulated and accepted 
(for a detailed discussion of these dynamics in the cognitive-situative debate, see Jacobson et 
al. (2016)).  

Perhaps the most critical current educational research debate began after the start of the 21st 
century from the argument that superior learning occurs by providing instructional guidance 
(i.e., direct instruction [DI]) compared to “minimally guided” instructional approaches such as 
problem-based learning [PBL], inquiry, and discovery learning (Kirschner et al., 2006). This 
debate has evolved in the literature over the past nearly 20 years and we propose it may now 
be framed as the instruction first versus Productive Failure (PF) first debate. A large amount 
of empirical research—much of it involving STEM subjects—has been done into various facets 
of this debate, with the focus on students’ learning outcomes based on these different types of 
learning designs and instructional approaches. We believe the current cumulative body of 
empirical findings challenges the Kirschner and associates’ argument.  

We first provide an overview of the instruction first or PF first debate, followed by a more 
detailed discussion of one of the STEM studies included in the Sinha and Kapur (2021) meta-
analysis to illustrate a PF computer model-based learning design for students to learn about the 
scientific complexity of climate change and to discuss the significant learning and transfer 
findings compared to instruction first. The chapter concludes with considerations of directions 
for future research and the potential implications of STEM teaching and policy. 

The Instructional Guidance Debate  

The Superiority of Direct Instruction? 

This debate was initially framed from arguments made in Kirschner et al. (2006) based on 
disputes about how instructional guidance can impact learning since the mid-twentieth century. 
They proposed that students best learn specific concepts and procedures in different subjects 
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from direct instructional guidance and not from learning activities in minimally or unguided 
environments. Direct instructional guidance (i.e., direct instruction; we will use these two terms 
interchangeably in this chapter) is defined as the use of cognitively appropriate learning 
strategies to fully explain concepts and procedures to students, with learning viewed as changes 
in long-term memory. Rather than defining minimally guided instruction, they list several 
instructional approaches they regard as exemplars, including discovery learning, problem-
based learning (PBL), inquiry learning, experiential learning, and constructivist learning. They 
claim these are “differently named but essentially pedagogically equivalent approaches (p. 75)” 
in which students are involved with learning activities in which they personally discover or 
construct understandings about concepts and procedures. Kirschner and colleagues discuss 
several studies that compared guided and unguided/minimally guided instruction. They assert 
the research evidence conclusively supports the superiority of guided instruction for initial to 
intermediate level student learning, which they believe is consistent with research about expert-
novice difference and with cognitive load theory. 

In a response to Kirschner et al. (2006), Hmelo-Silver et al. (2007) disputed the Kirschner et 
al. claim about “pedagogically equivalent approaches” and asserted they had conflated learning 
approaches such as problem-based learning (PBL) and inquiry learning (IL) with unguided 
instruction. Unlike approaches such as discovery learning, Hmelo-Silver et al. argue that PBL 
and IL make extensive use of scaffolding, which is a type of instructional guidance. This use 
of scaffolding in turn reduces cognitive load and facilitates learning in complex domains, as 
well as addressing other educational goals such as learning epistemic practices and skills such 
as self-directed learning and collaboration. However, while the argument is persuasive that 
Kirshner et al. incorrectly categorized approaches such as PBL and IL and being “minimally 
guided,” Hmelo-Silver et al. do not directly challenge the core assertion of Kirschner and 
colleagues, which is direct instructional guidance results in superior learning outcomes 
compared to other instructional approaches.   

Researching, Reframing, and (Possibly) Resolving the Debate  

During the decade and a half following the publications of Kirschner et al. (2006) and Hmelo-
Silver et al. (2007), a body of empirical learning research has been accumulating that directly 
or indirectly investigates various aspects of the assertion made by Kirschner et al. (2006) that 
direct instructional guidance approaches are superior for learning compared to minimally 
guided instruction approaches. These studies have investigated a range of issues that provide a 
more granular understanding of design considerations for learning and instruction, such as 
specific details of various learning designs, wider range of subjects (although the majority of 
studies were focused predominately within STEM fields), students’ grade level, assessments 
for a greater range of knowledge variables (e.g., procedural, conceptual, transfer), and 
considerations of the social contexts of learning.  

Of special relevance to research related to the debate during this period was the articulation of 
a new type of learning design—Productive Failure (PF) (Kapur & Bielaczyc, 2012) that 
differed in key ways from the designs reviewed by Kirschner et al. (2006). Unlike the single 
phase of a learning intervention generally found in the research on direct instruction/minimally 
guided instruction approaches reviewed by Kirschner et al., PF employs two phases. First, in 
the Exploration and Generation (or just Exploration) phase, students work on a problem activity 
for which they, as novices, are likely to have incomplete or incorrect knowledge and thus would 
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likely struggle (i.e., fail) in reaching a canonical or “correct” solution. Second, in the 
Consolidation and Knowledge Assembly (or Consolidation) phase, the teacher provides 
instruction that builds on the students’ ideas and provides the concepts and procedures 
necessary to solve the problem. Kapur and Bielaczyc (2012) theorize that students activate 
prior knowledge in the Exploration phase, and then in the Consolidation phase they contrast 
and compare their inaccurate or partially correct solutions to the teachers’ concepts and 
procedures, resulting in the assembly of new knowledge. The early research on PF generally 
used direct instruction approaches as a control condition, and found significantly higher gains 
in terms of conceptual knowledge and transfer for PF when compared to DI (Kapur, 2006, 
2010, 2014; Kapur & Bielaczyc, 2012). 

The language used to describe the debate also has evolved. Jacobson et al. (2015) proposed 
that the Kirschner et al. (2006) framework of “direct instructional guidance” and “minimally 
guided instruction” could be reframed as “high pedagogical structure” and “low pedagogical 
structure.” They analyzed the empirical studies discussed by Kirschner et al. as comparisons 
between high pedagogical structure (i.e., direct instruction) and low pedagogical structure (i.e., 
minimally guided instruction). Further, they noted that no discussion was provided by Kirshner 
et al. of studies in which there were different sequences of pedagogical structure in the learning 
activities, such as Schwartz and Bransford (1998), VanLehn et al. (2003), Bjork and Linn 
(2006), and Kapur (2006).  

Loibl et al. (2017) proposed a different terminology to describe learning designs with two 
phases: “problem-solving followed by instruction” (PS-I) and “instruction followed by 
problem-solving” (I-PS). They also reviewed 34 studies of PS-I approaches selected from 20 
published articles, with a focus on PF (Kapur & Bielaczyc, 2012) research and Invent with 
Contrasting Cases (Schwartz & Martin, 2004) as subsets of PS-I. Their review found 
significant learning outcomes from PS-I approaches compared to I-PS when specific design 
features were used, such as instruction that built on students’ ideas and providing contrasting 
cases during problem solving. They also proposed a set of cognitive mechanisms associated 
with positive PS-I learning outcomes, such as activation of student’s prior knowledge, 
awareness of knowledge gaps, and recognition of deep features (not just surface features) of a 
problem. 

Further developments in the instructional guidance debate, such as research reviews by Darabi 
et al. (2018) and Sinha and Kapur (2019), expanded the range of targeted concepts for learning 
and the geographical locations where the research was conducted. In the most detailed and 
extensive meta-analysis of this body of research to date, Sinha and Kapur (2021) included 53 
studies with 166 comparisons of PS-I and I-PS designs. Their overall analysis found PS-I had 
a significant and large Hedge’s g effect size of 0.36 over I-PS. Further, for PS-I instructional 
approaches that implemented the design principles of Productive Failure (PF), there was a 
Hedge’s g of 0.58 over I-PS. To contextualize these findings, Kraft (2020) has proposed 
baseline benchmarks for effect sizes in educational interventions, categorizing them as small 
(less than 0.05), medium (0.05 to 0.20), and large (0.20 or greater). Thus, the PS-I versus I-PS 
effect size of 0.36 is nearly double and the PF versus I-PS effect size of 0.58, which is nearly 
triple what is considered a large effect for educational interventions.  

The Sinha and Kapur (2021) analysis also provided a more granular insight into the learning 
efficacy associated with different learning design elements than in earlier reviews. As a metric 
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to distinguish PF from PS-I, they proposed a PF fidelity score that includes criteria such as 
eliciting multiple representations and subject matter ideas from students, engagement in group 
work, instruction building on students’ solutions, and a social facilitation element in the 
instruction phase. They found that the studies with high PF fidelity scores yielded the highest 
effect size results in their posttest assessments, indicating a strong positive correlation between 
PF fidelity and educational outcomes.  

The main results of the Sinha and Kapur (2021) meta-analysis found that PF was best in terms 
of learning gains—and both PF and PS-I were superior—when compared to I-PS for more 
cognitively challenging conceptual knowledge. It was also found that PS-I, PF, and I-PS 
approaches had statistically equivalent gains in learning procedural knowledge. Data analysis 
revealed a nuanced pattern, where I-PS was found to be more effective with younger students 
in grades two to five and for learning domain general skills, which was probably due to a lack 
of prior knowledge across the younger cohort.  

To summarize, nearly two decades after Kirschner et al. (2006) made the provocative claim of 
the superiority of direct instructional guidance approaches, the preponderance of empirical data 
does not support their assertion about the superiority of instruction first for learning. Rather, 
the research to date demonstrates that productive failure first has significant advantages over 
direct instruction or I-PS approaches for fostering deeper conceptual understandings as well as 
for developing transferrable problem-solving skills and equivalent learning as I-PS for 
procedural knowledge.   

Productive Failure for Model-based Learning about Complex Systems and Climate 
Change  

In this section, we illustrate a PF intervention involving STEM learning and problem solving 
from the Jacobson et al. (2017) study, which was included in the Sinha and Kapur (2021) meta-
analysis. Before doing so, we observe that nearly all of the PS-I/I-PS studies reviewed by Sinha 
and Kapur (2021) involved learning activities in conventional classroom settings where 
students verbally discussed problems—sometimes with hand written notes, diagrams, or 
mathematical calculations—and teachers verbally provided instruction.  

In contrast, the Jacobson et al. (2017) study was the only intervention included in Sinha and 
Kapur (2021) to use problem solving activities with computational models. Part of the context 
for Jacobson et al. (2017) was  a recognition that scientists increasingly employ computer 
modeling and scientific visualization tools to study a wide range of physical and social 
phenomena (Epstein, 2006; Jacobson & Wilensky, 2022; Mitchell, 2009) and also recognition 
for research demonstrating significant learning outcomes from model-based approaches in 
STEM areas such as physics, chemistry, genetics and evolution, and engineering (Blikstein & 
Wilensky, 2010; Goldstone & Wilensky, 2008; Horwitz et al., 2010; Jacobson et al., 2015; 
Sengupta & Wilensky, 2009). However, few of the earlier model-based learning studies 
provided specific details about instructional sequencing, and most seem likely to be categorized 
as I-PS where the model-based activities were provided after initial instruction about the 
targeted science topics. 
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The Jacobson et al. (2017) study involved Australian secondary students in four classes who 
used NetLogo (Wilensky, 1999) computer models to learn core concepts about complex 
systems (typically not formally taught until master’s level science courses) and climate change 
ideas found in secondary level science courses. Table 1 shows the daily topics and content 
knowledge and Figures 1 and 2 provide screen shots of a complex systems forest fire model 
and a climate change model.  

<Insert Table 1 approximately here.> 

<Insert Figures 1 and 2 approximately here.> 

The study involved a pretest, the experimental and comparison learning interventions over four 
class periods, and a posttest; see Table 2 for the daily components of the study. In the PF 
experimental condition that involved two classes, students first worked collaboratively on problems 
with the computer models (i.e., the PF Exploration and Generation phase). The teacher then provided 
instruction (i.e., the PF Consolidation and Knowledge Assembly phase) that explained the complex 
systems and climate concepts relevant for solving the problems, after which the student worked on a 
second set of problems for which solutions required the use of the complex systems and climate concepts 
explained in the instruction. The Direct Instruction (DI) comparison group (i.e., I-PS) also 
involved two different classes and used the same computer models and problem activities, but 
with the teacher instruction provided before the students worked on the two sets of problems.  

<Insert Table 2 approximately here.> 

The dependent measures for the learning outcomes were: (a) declarative knowledge, (b) 
conceptual knowledge (Coleman, 1998), (c) near transfer, and (d) far transfer. Items for 
assessing declarative and conceptual knowledge had two parts, such as: “(a) What are examples 
of emergent properties in climate systems? (b) Please explain.” Students were intended to 
provide factually oriented information (i.e.,  “knowing what”; Bransford et al., 2000) in part 
(a) and conceptual knowledge (i.e., “knowing how or why” or explanatory information 
Coleman, 1998)) in part (b). Near transfer was assessed with the “Butterfly Effect” Problem: 
It has been said that a butterfly flapping its wings in Brazil can jiggle the air and thus can help 
cause a snowstorm in Alaska. Is this possible? If so, how? If not, why not? This is regarded as 
“near transfer” problem because a reasonably complete expert explanation would provide 
relevant declarative and conceptual domain knowledge about climate and complex systems 
from the instruction, but this specific problem is new (i.e., not worked on in the intervention) 
to the students. Far transfer (sometimes called far across domain transfer) was assessed with 
the “Robot Mining” problem (Resnick, 1994): How can autonomous robots on a remote planet 
effectively and efficiently mine for gold? This is a far transfer problem as it is about a 
completely different domain than those used in the experimental learning interventions (i.e., 
robotic mining versus biological/environmental sciences) and requires using specific complex 
systems concepts (e.g., agent interactions, positive feedback, self-organization, emergent 
properties) to solve the problem. 

The qualitative observations of the classes noted that the PF classroom environment was lively 
as the students collaboratively worked on the daily problems and discussed their ideas while 
using the computer models. This seemed to indicate that the students were engaged and 
motivated as they were generating ideas while using the models, which was the intention of the 
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PF Generation and Exploration phase. During the PF Consolidation and Knowledge Assembly 
phase, the teacher used an interactive white board to run the computer models and to explain 
the targeted climate and complex systems ideas for each day. The students often would ask 
questions and try out computer model parameter settings the teacher was using on their own 
laptop computers. In contrast, the DI/I-PS classroom environment was very quiet. As in a 
typical teacher led class, the teacher presented the climate and complex systems content and 
the students silently took notes, rarely asking questions. During the two problem solving 
activities, the students mainly looked at the notes taken during the teacher’s instruction rather 
than collaboratively talking or reasoning with the computer models to answer the problems. 
These qualitative findings are consistent with a key design feature of PF compared to DI/I-PS, 
which is the importance of the “social surround” (Kapur & Bielaczyc, 2012). 

For the quantitative results, there were no significant differences between the PF and DI groups 
on the pretest. On the posttest, no significant differences were found on the declarative posttest 
scores between the PF and DI treatment conditions, however, the PF group had significantly 
higher results on the posttest conceptual knowledge and transfer scores, as shown in Figure 3. 
The Hedge’s g effect size for these results was 0.95 (Kapur, 2019, Aug). This is nearly five 
times greater than the 0.20 Kraft (2020) benchmark of a large effect size, and also larger than 
the PS-I versus I-PS effect size of 0.36 and the PF versus I-PS effect size of 0.58 reported in 
Sinha and Kapur (2021).  

There are three main implications of the Jacobson et al. (2017) findings. First, a limitation in 
much current research involving model-based learning is the assumption that merely using the 
technology by students will automatically enhance their learning. This assumption is clearly 
challenged by these results in which an I-PS design significantly attenuated the efficacy of 
learning with computer models compared to a PF design. Future research is needed to further 
explore the issue of which learning designs are optimal for fostering STEM learning from 
computational modeling and related systems. Second, given the increasing use of 
computational modeling and simulations in 21st century science, future research could also 
investigate potential advantages for students to learn scientific knowledge and problem-solving 
skills with computer modeling and related systems, rather than learning the knowledge and 
skills separately and then later “applying” (or transferring) the new knowledge in 
computational models. Third, and perhaps most important for the “real world” of classroom 
teaching, is the finding that students using computer models in a PF approach seemed 
genuinely engaged and motivated compared to students in a DI setting using the same computer 
models and problem-solving activities. Given many students find STEM classes uninteresting, 
further research is clearly warranted into the potential motivational aspects of using PF with 
computer modeling for learning science and related knowledge.  

<Insert Figure 3 approximately here.> 

Conclusion 

This chapter has discussed research involving different instructional approaches for helping 
students learn conceptual knowledge and problem-solving skills for STEM literacy and as well 
as general educational subjects. An overview is provided of the contention by Kirschner et al. 
(2006) that initially provided direct instructional guidance or I-PS approaches are superior to 
other instructional approaches, which we refer to as the instruction first or Productive Failure 
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first debate. The current status of the research related to this debate is probably best 
summarized in the Sinha and Kapur (2021) meta-analysis, which found PS-I learning designs, 
in particular those in which students first engaged in problem solving and failure followed by 
instruction (i.e., Productive Failure [PF]), had significantly higher effect sizes for conceptual 
learning and transfer compared to I-PS approaches. As an example of STEM instruction 
involving PF, a  study by Jacobson et al. (2017) is discussed that used PF for learning about 
complex systems and climate change with computer models, which found superior learning 
outcomes when compared with direct instruction provided first before using the same computer 
models.   

Overall, the cumulative evidence from a wide range of empirical studies shows that students 
can more deeply learn STEM knowledge and more successfully use or transfer this knowledge 
in problem solving. Future research in this area is warranted for longer duration studies to 
validate (or not) PF and other PS-I approaches as well as to better understand their possible 
influence on longitudinal trajectories of learning, such as work on preparation for future 
learning (Bransford & Schwartz, 1999; Sinha & Kapur, 2021). In closing, it is hoped this 
chapter will help stimulate interest in the potential implications of innovative learning designs 
such as PF and the use of computational modeling for problem solving activities to greatly 
enhance students’ ways of thinking and problem solving in—and enjoyment of—science and 
related subjects. 
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Tables 

 

Table 1 

Daily topics and content knowledge 

Day Complex Systems Topics
  

Concepts for Climate 
Model  

Concepts for Complex 
Systems Models 

0 Pre-test   

1 Feedback in dynamic systems Climate model with feedback 

• Global temperature, 
greenhouse effect, cloud 
cover 

Ants foraging model 

• Input, output, positive 
feedback 

 

2 Emergence Wind and storm model 

• Convection, wind, 
greenhouse effect, 
enhance greenhouse 
effect 

Birds flocking model 

• Emergence, micro level 
of systems, macro level of 
systems 

3 Dynamic equilibrium Carbon cycle model 

• Equivalent carbon, caron 
cycle, fossil fuel, carbon 
sinks 

 

Wolf-sheep predation model 

• Equilibrium, dynamic 
equilibrium, close system 

 

4 Tipping points and positive 
feedback 

Climate model with water 
feedback 

• Atmospheric water 
feedback, albedo 

Forest fire model 

• Positive feedback, tipping 
points, linear versus non-
linear effects 

5 Post-test   

 

Note: This table is from Jacobson et al. (2017, p. 5). 
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Table 2 

Daily components of study 

Direct Instruction (DI) Comparison Condition 

Direct Instruction 
Learning Design 

Teacher Instruction Practice   

Classroom 
Activities 

Teacher Lecture • Problem 1 

• Complex 
Systems Model 

• Problem 2 

• Climate 
Model 

• Problem 3 

Climate        
and Complex 
Systems 
Models 

Duration Phase 1:  

15-20 Minutes 

Phase 2:  

15-20 Minutes 

 Phase 3:  

10-15 Minutes 

Productive Failure (PF) Experimental Condition  

Productive 
Failure 

Generation and Exploration Consolidation and Knowledge 
Assembly 

Classroom 
Activities 

• Problem 1 

• Complex 
Systems Model 

• Problem 2 

• Climate Model 

Teacher Lecture • Problem 3 

• Climate 
and 
Complex 
Systems 
Models 

Duration Phase 1:  

15-20 Minutes 

 Phase 2:  

15-20 Minutes 

Phase 3:  

10-15 Minutes 

 

Note: This table is from Jacobson et al. (2017, p. 5). 
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Figures 

 

Figure 1. Screen shot of the NetLogo Forest Fire model. 
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Figure 2. Screen shot of the Climate Model with Water Feedback.  
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Figure 3. Normalized scores on the three types of knowledge assessed in Jacobson et al. (2017). An “*” indicates a statistically 
significant difference. 

 

 


