Where Nations Fight

Capabilities, Interests and Contiguity in Interstate Disputes*

Erik Gartzke†

28 May 2011

Abstract

Much has been written about why nations fight. Less attention has been devoted to explaining where countries exert and endure militarized violence. A simple game theoretic bargaining model that takes into account both the onset and location of disputes identifies differences in how capabilities and national interests affect each stage of a contest. National capabilities, which are generally thought to explain the why of conflict, may actually do more to determine where disputes occur. In contrast, the similarity or difference of state interests is predicted to be much more salient for conflict onset or initiation. The model also helps to unravel a longstanding debate about why proximate countries fight more often. Neighbors have both greater opportunity and possibly increased willingness to fight. Using data on the location of militarized disputes, I show that capabilities mostly impact where countries come into conflict, while a measure of interests best predicts whether contests occur. The effects of contiguity on the advent and location of disputes suggests that neighbors are excessively willing to fight.

*I thank Alex Braithwaite for access to his data and for guidance on the literature. A STATA “do” file that replicates the analysis will be made available upon publication.
†University of California, San Diego, Department of Political Science. e-mail: egartzke@ucsd.edu.
1 Introduction

Much has been written about why nations fight. Considerably less attention has been devoted to the question of where countries confront one another with force. The focus on onset rather than location is perfectly intuitive. However, studying where states fight may potentially contribute measurably to unraveling the causes of war, given that much remains to be discovered. Indeed, as the results here suggest, variables widely thought to account for the why of war prove far more effective in explaining where contests occur. Powerful states use force farther from home, but they are not much more likely to fight than less capable countries, once interests are taken into account.

This study explores the determinants of where nations fight. I also examine the effects of location on conflict more generally. Shifting the focus to this less conventional dependent variable makes it easier to differentiate the relative contributions of interests and material power to the advent of war. Research of the causes of conflict has consistently shown that geographic proximity is associated with increased conflict. Contiguity is the largest and most robust “cause” of interstate conflict in standard statistical models. Yet, it remains unclear what contiguity represents. Neighbors may fight because it is physically easier for them to do so, or because proximity leads to additional interaction, augmenting tensions that are sometimes result in warfare. While distance diminishes conflict, contiguity continues to have an independent impact, suggesting that at least some of the effect of proximity is due to interests. This in turn implies the need for more sophisticated ways to conceptualize and measure interstate interests, an effort that is only haltingly attempted here.

Unraveling the impact of contiguity on conflict also begins to address the respective effects of motive and opportunity more broadly. While capabilities determine whether warfare is possible between two nations, interests matter more in differentiating dyads that could fight (but will not) from those that may in fact resort to force. Capabilities have a considerable effect on the location of actual contests. Interests play almost no role in determining where states fight, but they have a substantial impact on whether disputes occur. I use a formal game theoretic bargaining model to decipher and illustrate the contrasting effects of capabilities and interests on whether and where states fight. I then test these claims using both one- and two-stage regressions. While warfare is precipitated by both capability and interest, these factors operate in considerably different ways.
2 Literature: The Importance of Being Proximate

Geographic proximity has consistently been identified as one of the most significant and substantial empirical predictors of conflict in statistical tests in the literature (c.f., Bremer 1992, Hensel 2000). Arguments involving the proximity of potential opponents typically fall into one of two categories, what Diehl (1991) and Starr (2005) refer to, respectively, as “geography as context” and “geography as cause.” This dichotomy roughly approximates that of Most & Starr (1989) in which proximity is argued to have an effect upon both the opportunity and willingness of a state to engage in conflict.

Proximity can provide an opportunity for interaction and, by extension, for conflict. Arguments associated with this theme build on cost-based logics such as Boulding’s “loss-of-strength gradient” (1962) and Zipf’s “principle of least effort” (1949) in which it is claimed that projecting power becomes increasingly inefficient with distance. Conflict is considered to be more likely “close to home,” where a nation’s own military force is most easily brought to bear (Bueno de Mesquita 1981).

Proximity can also provide states with the motive for warfare. Territorial instincts or structural hierarchies ensure that most states compete over issues that are locally defined. In this vein are arguments accounting for the generation of security dilemmas, and describing factors that influence perceptions of threat that could serve as the basis for willingness to engage in conflict (Herz 1951).

Empirical studies of conflict resoundingly corroborate the general proposition that proximity increases conflict. They are of little value, however, in discerning the relative importance of distance as opportunity or as interest. This confusion is neatly summarized by Tir & Diehl (1998), who ask whether “territorial disputes are more salient to decision makers and therefore more dangerous than disagreements over other issues” . . . or whether . . . “contiguity indicate[s] merely that there is greater opportunity for interactions between states who border each other, and therefore one might expect more hostile — as well as more peaceful — interactions between neighbors” (1998, page 4).

In an effort to parse out which of these explanations is most valid, it may be useful to assess the distinct claims and tests available in the literature at various levels-of-analysis. First, proximity could affect the probability of monadic conflict onset (i.e., state belligerence). Thus, increasing the number of neighbors for a state increases the probability that it will fight (Wright 1942, Richardson 1960b, Most & Starr 1980), perhaps by adding to decision-maker uncertainty (Midlarsky 1975).
Second, it is claimed that proximity increases dyadic conflict propensities. For instance, earlier studies consistently returned evidence of shorter average distances between warring pairs of states than non-warring states (Gleditsch & Singer 1975, Garnham 1976, Gochman 1990). Increasingly exhaustive spatial and temporal domains have been used to show that contiguity is associated with considerably heightened levels of conflict (Weede 1975, Mihalka 1976, Moul 1988, Gochman 1990) — up to 35 times more likely according to Bremer’s seminal study of “Dangerous Dyads” (1992).

Most of these studies fail to offer a direct means to differentiate propensity fueled by opportunity from that accounted for by willingness. Lemke (1995) adapts the loss-of-strength gradient to identify dyads that fall within the overlap of each state’s military capabilities as dyads most likely to experience conflict — a finding that builds primarily upon the opportunity tradition of Wesley (1962). On the other hand, Vasquez (1993, 1995) argues persuasively that human territoriality indicates that conflicts occur between neighbors most frequently over territories of mutual interest.

Third, proximity is shown to have an important bearing on regional patterns of conflict onset and diffusion. Siverson & Starr (1991) utilize the opportunity/willingness framework in order to consider the problem of contagion at the state-environment level. In particular they consider borders and alliances to be the agents of diffusion in the spread of conflict. These agents (“Warring Border Nation” [WBN] and “Warring Alliance Partner” [WAP]) are viewed as treatments that states undergo. Thus diffusion takes the form of new state involvement in war as a consequence of interaction with a warring state (infection). Similar conclusions — associating proximity between states and regional clustering of conflicts — emerge from studies by Starr & Most (1983, 1985), Kirby & Ward (1987), and Kennedy (1989). In more nuanced (and geographically-sensitive) efforts, Bremer (1992) isolates patterns of coercive contagion within regions, while Faber, et al (1984) and Houweling & Siccama (1988) demonstrate that there are short spatial and temporal distances between successive conflicts (the phenomenon occurs most notably within the same region).

Much of the continued uncertainty surrounding the most accurate theoretical account of the empirical observation linking proximity and conflict presumably comes from the varied and arguably, insufficient operationalizations of proximity that have hitherto dominated the literature. Measures employed have certainly enjoyed increasing sophistication: dominant indicators evolving
from measures of the number of borders a state has (Wright 1942, Richardson 1960b, Wesley 1962) to whether or not two states are contiguous (Most & Starr 1976; Bremer 1992, 1993) to a measurement of the distance between capital cities of potential opponents (Boulding 1962, Zipf 1949, Gleditsch & Singer 1975, Gochman 1990) to the requisite travel times between states (Bueno de Mesquita 1981) to the distance between the territories of the two states (Ward & Gleditsch 2002). What is notable with each of these treatments of proximity, however, is that they do little more than scratch the surface of the inherent geography of conflict processes. Perhaps most troublingly, they consistently fail to address the presumably critical relationship between states and the locations of contests.

Almost without exception, these studies place primary importance on phenomena occurring within and across the boundaries of particular states, but not on those occurring at precise locations. In other words, distance metrics are employed as measures of “state interaction,” but do not reflect the geographic locations (i.e. longitude and latitude co-ordinates) at which conflicts take place nor, crucially, the proximity of the locus of conflict to the territories of individual states.¹

Gartzke (2009) examines the interaction between national capabilities and distance. Power is an important predictor of the proximity of disputes. The approach focuses exclusively on opportunity, as selection on the dependent variable (or, rather, inability to select distances for non-disputes) makes it difficult to meaningfully discuss willingness. A series of models identify factors that affect the distance from the initiating state’s capital to the location of a MID. OLS regression (monadic and dyadic) reveals that more powerful initiator states fight further from the initiator’s capital. States with more neighbors fight closer to home. Powerful targets push initiators back closer to the initiator’s capital. These results suggest the need to examine the effect of different theoretical claims about the balance of power on the location of contests, the focus of study here.

Braithwaite (2010) assesses whether democracies ensure that the conflicts they fight are at greater distance from their home territories. Democracies are said to pay higher costs for conflict (Bueno de Mesquita, et al. 2003). Democratic populations may be viewed as risk-averse, especially when it comes to the homeland. Moreover, democracy allows risk-averse populations who care about territorial integrity to select and replace leaders, influencing foreign policy decision making.

¹Notable exceptions include Braithwaite (2010), Gartzke (2009), and Braithwaite & Joyce (2009).
3 Theory: Where and Whether States Fight

The causes of international conflict have been a subject of speculation and debate for centuries. Here, I discuss two related issues, the effect of location on war and the significance of contiguity.

3.1 Capabilities and Interests as Substitutes and Complements

Like crime detectives, students of international relations often conceptualize the causes of war in terms of motive (also referred to as willingness, resolve, preferences, interest or utility) and opportunity (power, capabilities or probability). The former describes factors that animate agency, making actors strive for certain outcomes, while the latter encapsulates structure, capacity or other variables that make competition more or less successful and outcomes harder or easier to achieve.

Theory and intuition encourage observers to treat these dual determinants of conflict as substitutes. A deficit in capabilities, say, can be made up with an excess of interest, just as more moderate motivation can be compensated for by greater material power. The most transparent example of substitution comes from expected utility theories, such as that offered by Bueno de Mesquita (1981), in which the product of “probability” and “utility” is used to predict the likelihood of war.

Other scholars recognize that the ability to fight and the willingness to do so may not be pure substitutes. Most & Starr (1989) outline a framework where states must possess some capabilities and a modicum of interest in disputed issues before a contest can occur. At very low values, opportunity and willingness are complements. No amount of willingness compensates for impotence, just as power in the absence of interest does not presage aggression. Once a threshold has been reached, however, nations with some convex mix of power and preference are more likely to fight.

Thus, most theories of international relations treat the nation that is highly motivated and one that is particularly powerful as basically equally likely to experience war, provided that there is enough of the other causal factor to make a contest possible or worthwhile. Certainly, there is no reason to expect one or the other element to predominate. Nations of unequal capabilities and/or unmatched resolve have often fought one another, if not as often as those possessing power parity (Kugler & Lemke 1996, Moul 2003), then certainly often enough to make the debate over parity and war less than transparent (c.f., Bueno de Mesquita & Lalman 1988, Bueno de Mesquita 2003). If
indeed capabilities and interests serve as substitutes, then these two models of disparity should lead
to roughly equivalent predictions of conflict. Yet, this framework glosses over how capabilities and
interests actually interact. In a world where proximity is as important as power or preferences, it
should prove useful to explore whether geography affects the substitutability of motive and resolve.

It seems obvious that capabilities increase the risk of war. One can think of arms races,
for example (Richardson 1960a, Wallace 1979, Intriligator & Brito 1984, Sample 1997). Other
approaches to international security are less unequivocal, however. Increasing national capabil-
ities might be perceived as invoking the security dilemma (Herz 1950, Jervis 1978), increasing
instability and the risk of war. In contrast, greater capabilities could also increase deterrence
firepower. The difference in outcomes seems in particular to hinge on the intentions of actors. Put
differently, capabilities by themselves are neither harmless nor harmful, but have an ambiguous
impact on the probability of contests. What matters much more for whether states fight is whether
they have reasons to exercise force against a particular opponent, for a particular purpose.

Material capabilities suggest what can happen, but do not indicate what states want. Argentina
and the Netherlands were roughly equally capable in 1982 according to figures from the Correlates
of War, but the United Kingdom fought with one and maintained an alliance with the other. The
critical difference seems to have been how each state viewed its interests in relation to other nations,
not capabilities. If states share common goals or interests, then no quantity of capabilities will make
them likely to fight. The United States and Canada could easily engage one another in conflict, but
have found no reason to do so for well over 100 years. For the many nations that lack an interest in
direct confrontation, capabilities and power relations are not generally salient as a cause of warfare.

If instead nations find in one another reasons for antipathy, then the distribution of capabilities
could conceivably contribute to conflict. Yet, the effect of material power on dispute initiation or
onset is still mitigated by several factors. While inadequate capabilities could cause states to refrain
from initiating contests, it does not follow that these states cannot become targets. The weak are
more appealing subjects of aggression precisely because they are less able to resist. At the same
time, while a total lack of capabilities axiomatically prevents one from fighting, sovereignty generally
coincides with at least a modicum of power, certainly enough to allow a response to aggression if an opponent is accommodating enough to bring war to the weaker nation’s borders. Conversely, while predominant power would appear to predestine victory, recognition of the lopsided nature of a contest will often lead the opponent to accommodate the demands of its more capable counterpart. The weak may not fight, but they seldom remain unmolested long enough to cause capabilities to account for much variation in an already rare event. The strong can fight whomever they choose, but this disparity in power makes it expedient for other nations to accommodate rather than fight.

Distance constitutes yet another diminution of the impact of power on conflict. States with substantial capabilities get their way close to home. They can also project power farther afield, influencing politics in distant places. However, power projection also tends to mitigate capabilities (Boulding 1962). If the most capable states fight far from home while the weak stay close to their own borders, this will tend to reduce effective variation in the capabilities of countries (Gartzke 2009). Being powerful is necessary to pursue a distant contest, but most states can fight somewhere. The question is then whether enough variation remains in the impact of capabilities to account for interstate conflict, or whether much of this effect is experienced in terms of where nations fight.

Differences in the impact of capabilities and interests can be seen in how each enters the war calculation in a rational model of conflict. Capabilities affect the probability of victory, and possibly the cost term. Interests affect valuations for outcomes, thus determining payoffs. The appeal of fighting increases in the payoffs for winning the contest. Increasing the probability of victory can make war more appealing, but only if the valuation for the stakes is sufficiently positive to overcome any increase in costs associated with fighting, or with fighting harder. Given that all nations possess some capabilities, there should exist some level of interest divergence that would motivate conflict between any pair of states. Incompatible interests are thus necessary to fight. Capabilities would seem to be necessary, but are in fact only a constraint in some circumstances. The vast majority of nations possess enough power that they can fight low level disputes. The greater impact of capabilities should thus be in determining where nations fight, when they do decide to go to war.2

In realist theory, states are said variously to want security or power. Presumably, this means

security in some space and influence over some territory. Control over physical space is integral to the concept of sovereignty. By extension, the politics of nations involves securing populations or influencing places by dominating, or at least contesting, space. Variation in capabilities should have a tremendous effect on which parts of the world nations secure, and where countries can contest influence. Imbalances of power are bound to be played out in terms of where nations are able to hold sway and where their preferences are of little import. This tendency of power relations to create “shatterbelts” or “spheres of influence” (Diehl 1991, Hensel 2000) reflects the effect of space in diminishing the putative relationship between capabilities and the likelihood of war. In contrast, interests have at best a convoluted connection with the location of contests. Nations may well project power differently based on the affinity or incompatibility of their preferences, but this requires new theory and a more detailed mapping of these patterns than is possible here.

The simplest interpretation of the effects of capabilities and interests is thus that capabilities primarily influence opportunity, while interests matter most for willingness. Put another way, national interests should have the greatest effect on whether states fight, while capabilities matter most for the ability of states to overcome obstacles to conflict, represented as contiguity or distance.

3.2 Unraveling Contiguity

Contiguity is at once empirically potent and clouded conceptually. Researchers cannot say whether neighbors fight more often because it is less difficult to do so (opportunity), or because neighboring polities develop additional reasons to fight one another (willingness). Unraveling opportunity and willingness has proven difficult in no small part because predictions from each are observationally equivalent. Opportunity and willingness are also treated as theoretical substitutes; neighbors could fight more because conflict is more convenient or because neighbors evolve significant differences.

The current “state of the art” in accounting for loss-of-strength effects is to measure geographic proximity. States are assumed to vary in their conflict propensity with the distance between national capitals or other prominent locations. A weakness in this approach is that it assumes that fighting between states takes place at one or both capitals (Correlates of War Project 2005b), or alternately at the closest point on two nations’ borders (Gleditsch & Ward 1999). Countries that are far apart
may fight somewhere in between. Conversely, states that are close may fight at a considerable distance from either power. The effects of distance on power are thus only crudely approximated by capital-to-capital distance, or indeed by other measures such as minimum border distance.

To see why, it will make sense to take a step back and examine an empirical riddle of considerable interest to students of international relations. Looking at where states fight does more than simply supplant dichotomous contiguity with a continuous measure. In fact, distance already offers a metric indicator of proximity. As has been documented in numerous other studies, however, distance fails to capture all of the impact of contiguity (c.f., Diehl 1985, Senese 2005). Neighbors fight more than one would expect given the impact of proximity on capabilities alone. Researchers have naturally inferred that contiguity is itself responsible for affecting the interests (willingness) of nations in going to war (Reed & Chiba 2010). Yet, conflating distance with where states fight, and failing to capture variation in state preferences leaves open the possibility that the effects of contiguity can still be explained with observable, rather than behavioral, attributes of adjoining nations. If instead the independent effects of contiguity remain after other factors have been considered, then this would further bolster the growing suspicion that contiguity is more than opportunity. If in addition, it can be shown that contiguity follows similar empirical patterns to interests, rather than capabilities, this would further bolster the case for behavioral correlates of contiguity.

I next lay out a simple bargaining model of war intended to represent the processes just discussed and demonstrate relationships more rigorously. The model confirms that interest variability predominates in determining conflict, while capabilities matter more for the location of contests.

4 Bargaining Over Influence

The basic insight of bargaining theories is that there need be no direct relationship between motives to compete and the probability of a contest. Obvious incentives to fight lead opponents to accommodating bargains, which then encourage actors with less ability or willingness to fight to pretend to have high resolve, capabilities, or low costs for war, in turn forcing states to doubt one another’s resolve/capabilities/costs because of ecological bluffing. Warfare sometimes follows as much (or more) from what we do not know, as from what we can do, or want to achieve (Fearon 1995).
If bargaining has broken the neat causal chain between abilities or interests and contests, it does not follow that we no longer have need of such connections, or indeed that we lack the ability to identify them (Gartzke 1999). Researchers and practitioners still want to be able to explain why and when war will happen. One such opportunity involves geography, whose effects on power are not themselves subject to negotiation. It is possible to illustrate the impact of location on the means of conflict more so than the motive with a simple two player take-it-or-leave-it bargaining model. Suppose that two states \((i,j)\) possess interests that can be represented on an issue space of unit length. For simplicity, let State \(i\) possess an ideal point at zero, while State \(j\)’s ideal point is at \(x, 0 \leq x \leq 1\). \(x\) thus represents the compatibility of state interests, with larger intervals reflecting more considerable incompatibilities. Suppose further that the status quo fully favors \(j\), \((sq = x)\).

Politics involves place as well as preferences. Imagine that in addition to the issue space \((x\) dimension), there is also a chord representing geographic distance between national capitals \((y\) dimension). The use of national capitals is not accidental. Influence consists of the combination of a state getting its way \((x\) dimension) over a certain portion of territory \((y\) dimension). Power, or the effects of capabilities, is observed when a state pulls policies closer to it’s ideal point. This can be realized to a greater or lesser extent at different places on the globe. In other words, there is some tradeoff between movement along either dimension. A nation can move issues slightly closer to its ideal point along the entire range of the chord between its own and the foreign capital, or it can move issues \((dis)proportionately\) closer to its ideal point over some portion of the chord.

This approach has a number of empirically plausible and theoretically useful implications. For example, national borders are, in effect, a stable point along the \(y\) dimension where power and interests are deemed to be in rough equilibrium for both nations. The approach thus conforms to existing insights about the relationship between power and satisfaction (Lemke 2002, Powell 1999), while incorporating a very simple, but general, conception of geography. While not explored here, borders can be further reinforced as focal points, particularly if the frequent re-assessment of the balance of power and interests is costly (Goemans 2006). Tying together interests and space also helps to account for the apparent compactness of political geography. If power is attenuated by distance, then it is easy to see why pulling harder on \(x\) over a more limited domain could be
more efficient than attempts at partial influence over a wider geographical area. By extension, sovereignty is a coordination mechanism (in effect, a log-roll among states) that limits competition and conflict along the x dimension by segmenting the y dimension between domestic and foreign.

The compactness of political geography is particularly relevant in assessing the impact on conflict of capability and interest. The attenuation of power that results from distance (i.e. the loss-of-strength gradient) tends to make states prefer getting more on the x dimension and less on the y dimension. This in turn increases the salience of interests, while doing the opposite to capabilities. More attention is paid to maximizing the tug-of-war over policies than over place. It is important to note as well that this effect is not achieved by assuming that there is any “stock” in territory ex ante. Since potential initiators are assumed to have none of the y dimension to themselves at the outset, power is called on to assert its maximum effect. If instead the distribution of territory (y) were to carry over to subsequent rounds of a multi-round game, the effect of capabilities would tend to become "built in" to the status quo, as the discussion of borders as focal points implies. Thus, the model probably exaggerates the actual salience of capabilities for conflict.

Returning to the game, payoffs are linear in the distance of points from each state’s ideal point, and in the portion of the y space that is controlled by each state.\(^3\) Utilities result from a combination of outcomes and the costs involved in taking various actions in the game. The sequence of play is as follows. State i first makes a proposal for the division d of the x*y space. To simplify, i’s proposal is only denominated in x, so that if accepted, j receives d*y, while i obtains (x − d)*y. State j can reject (r = 1), or accept (r = 0) i’s proposal. If its offer is rejected, i must choose between fighting (f = 1) and backing down (f = 0). If i backs down, j retains all of the stakes (i.e. all of the disputed x dimension and all of y). I further assume a non-negative cost (i.e. an “audience cost”) for making a demand and not carrying through with force, if necessary (a, a ≥ 0). If instead i fights, then i wins with probability p and loses with probability 1 − p, where j’s probabilities of victory and defeat are just the converse. Each state pays a cost for fighting equal to c, n ∈ (i, j).

War in bargaining models is closely tied to uncertainty. States could be uncertain about several factors in the model. However, selecting either capabilities or interests as the basis for uncertainty

\(^3\)One could vary payoffs by distance (states may care more about proximate issues/interests than distant ones). I intend to explore this further in subsequent research. For now, monotonicity implies the generality of these results.
would bias assessment of their respective contributions to whether and where states fight. I therefore use a neutral third component, assuming that states have private information about their own costs for fighting \((c_{\text{min}} \leq c_{(i,j)} \leq c_{\text{max}})\). Finally, if \(i\) and \(j\) fight, the initiator \((i)\) chooses the portion \((z, z \leq y)\) over which it attempts to project power. To keep things simple, if \(i\) wins \((j\) loses), \(i\) obtains all of dimension \(x\) and as much of \(y\) as it chose to compete over in the contest. If \(i\) loses \((j\) wins), \(j\) receives all of both dimensions (i.e. \(x \cdot y\)). Utility functions for each player are detailed below:

\[
\pi_i = (1 - r) * ((x - d) * y) + r * ((1 - f) * (-a) + f * (p * (x \cdot z) - c_i)) \quad (1)
\]

\[
\pi_j = (1 - r) * (d \cdot y) + r * ((1 - f) * (x \cdot y) + f * (p * (x \cdot (y - z)) + (1 - p) * (x \cdot y) - c_j)) \quad (2)
\]

where \(r\) is \(j\)'s decision to accept \((r = 0)\) or reject \((r = 1)\) \(i\)'s offer, and \(f\) is \(i\)'s fight decision.

Capabilities enter the model by means of their effect on the probability of victory, through what is called a contest success function \((\text{Skaperdas 1996})\). This relationship could take several forms, but useful attributes of contest success functions include monotonicity between probabilities and capabilities, probabilities bounded by zero and one, and differentiability. I adopt an approach from Rohner \((2006)\). Let \(p\) equal the probability that \(i\) wins against a contiguous opponent \(j\), \((y = 0)\):

\[
p = \frac{1}{2} + \theta \cdot (\rho_i \cdot \text{cap}_i + \rho_j \cdot \text{cap}_j) \quad (3)
\]

where \(0 \leq \text{cap} \leq 1\) are the capabilities of each state, \(\rho\) characterizes the fighting technology for each country \((0 < \rho < 1)\), and \(0 < \theta < 0.5\) is a parameter representing the decisiveness of a contest.

The probability \(p\), \((0 \leq p_0 \leq 1)\), is differentiable, increasing in \(\text{cap}_i\) and decreasing in \(\text{cap}_j\). Interpretation is also relatively simple. Nations begin with a nominal 50/50 probability of victory. The extent to which \(p\) increases in \(\text{cap}_i\) or decreases in \(\text{cap}_j\) depends on each nation’s level of military technology \(\rho\), \((0 \leq \rho \leq 1)\), and on the decisiveness of military engagements \(\theta\), \((0 \leq \theta \leq \frac{1}{2})\).

Unless states possess adjacent national capitals, there is some price to be paid in simply moving

\(^4\text{The Appendix relaxes this assumption, allowing capabilities also to affect states’ war costs.}\)

\(^5\text{Eq. 1 is similar to a difference-form contest success function, as detailed in Hirshleifer (1989).}\)

\(^6\text{One might use a ratio, such as } \frac{\text{cap}_i}{\text{cap}_i + \text{cap}_j}, \text{ to represent contest success. Yet, such a function is not twice differentiable, while Eq. 1 actually closely conforms to the approach adopted in the empirical portion of this study.}\)
capabilities to the location of a contest. Asserting influence over a territory also attenuates capabilities, as local interests seldom perfectly conform to national objectives. Boulding (1962) pioneered the analytical study of what he called the loss-of-strength gradient. Effective capabilities decline in distance. I assume that the loss-of-strength takes the following functional form:

\[
\text{cap}_i = \text{cap}_{i0} - \alpha \left(\frac{z}{y_{\text{max}}} \right) - \beta \left(\text{cap}_{i0} \cdot \frac{z}{y_{\text{max}}} \right)
\]

\[
\text{cap}_j = \text{cap}_{j0} - \alpha \left(\frac{y - z}{y_{\text{max}}} \right) - \beta \left(\text{cap}_{j0} \cdot \frac{y - z}{y_{\text{max}}} \right)
\]

where \(\text{cap}_{i0}\) and \(\text{cap}_{j0}\) represent states’ capabilities under contiguity, \(y_{\text{max}}\) is the largest distance between any two national capitals, and where \(\alpha\) and \(\beta\) are exogenous parameters s.t. \(\alpha + \beta = 1\).

It is not clear precisely what effect distance has in attenuating power, but the two basic alternatives operate roughly like fixed and variable costs in a supply function. It could take states a fixed quantity \(\alpha\) to move capabilities a given distance \(z\). Alternately, it might be that the loss of strength is proportional to nominal capabilities \(\text{cap}_{0} \cdot z\), subject to some conversion factor \(\beta\).

Equations 4 and 5 also contemplate that the two processes of attenuation operate simultaneously. Substituting Eqs 3, 4, and 5 into Eqs 1 and 2 and simplifying yields revised utility functions:

\[
\pi_i = (1 - r) \cdot ((x - d) \cdot y) + \frac{r}{2y_{\text{max}}} \cdot ((f - 1) \cdot (2a \cdot y_{\text{max}}) + f \cdot (x \cdot z \cdot y_{\text{max}} - (1 + 2\cdot \text{cap}_{i0} \cdot \rho_i \cdot \theta - 2\cdot \text{cap}_{j0} \cdot \rho_j \cdot \theta) + 2\alpha \cdot \theta \cdot (\rho_j (y - z) - \rho_i \cdot z)) + 2\beta \cdot \theta \cdot (\text{cap}_{j0} \cdot \rho_j \cdot (y - z) - \text{cap}_{i0} \cdot \rho_i \cdot z)) - 2c_i)
\]

\[
\pi_j = \frac{1}{2y_{\text{max}}} \cdot (r \cdot x \cdot (2y \cdot (y_{\text{max}} - (\alpha + \beta \cdot \text{cap}_{j0}) \cdot f \cdot \rho_j \cdot \theta \cdot z) + f \cdot z \cdot (y_{\text{max}} \cdot (-1 - 2\cdot \text{cap}_{i0} \cdot \rho_i \theta + 2\cdot \text{cap}_{j0} \cdot \rho_j \cdot \theta) + 2z \cdot \theta \cdot (\alpha \cdot (\rho_i + \rho_j) + \beta \cdot (\text{cap}_{i0} \cdot \rho_i + \text{cap}_{j0} \cdot \rho_j)))) - 2y_{\text{max}} \cdot (d \cdot y \cdot (r - 1) + c_j \cdot f \cdot r))
\]

The game can now be solved using Bayesian Perfect Equilibrium as the solution concept. Backward inducting beginning with the “bottom” of the game tree, \(i\) first decides on the optimal distance
to project power \((z)\), assuming that \(j\) rejects the offer \((r = 1)\) and \(i\) is willing to fight if necessary \((f = 1)\). Taking the derivative of Eq. 6 with respect to \(i\)’s choice variable, \(z\), then setting the resulting equation \(\frac{\partial \pi_i}{\partial z} = 0\) and solving, again in terms of \(z\), yields the optimal power projection:

\[
z^* = \frac{(2\alpha \cdot \rho_j \cdot \theta \cdot y + 2\beta \cdot \text{cap}_{j0} \cdot \rho_j \cdot \theta \cdot y + 2\text{cap}_{i0} \cdot \rho_i \cdot \theta \cdot y_{\text{max}} + 2\text{cap}_{j0} \cdot \rho_j \cdot \theta \cdot y_{\text{max}} - 2\text{cap}_{j0} \cdot \rho_j \cdot \theta \cdot y_{\text{max}})}{(4\theta \cdot (\alpha \cdot (\rho_i \cdot \rho_j) + \beta \cdot (\text{cap}_{i0} \cdot \rho_i + \text{cap}_{j0} \cdot \rho_j))}\] (8)

Interestingly, \(\frac{\partial z^*}{\partial x} = 0\). Interests do not appear in the optimizing equation for where \(i\) chooses to fight \(j\). The non-relationship between interests and distance implies the following hypothesis:

Hypothesis 1 Interests can be expected to have little or no influence on where states fight.

In contrast, generally \(\frac{\partial z^*}{\partial \text{cap}_{i0}} > 0\) and \(\frac{\partial z^*}{\partial \text{cap}_{j0}} < 0\). For reasonable values of the relevant parameters and variables, \(z\) is increasing in the capabilities of the initiator \((i)\) and decreasing in the capabilities of the target. A second hypothesis relating capabilities and the location of a dispute appears below:

Hypothesis 2 The distance from a nation’s capital (or other location) to the location of a dispute is expected to increase in the state’s capabilities, and decrease in the capabilities of the opponent.

Figure 1 plots the effects of varying \(i\) and \(j\)’s capabilities on \(i\)’s optimal distance for a dispute \((z^*)\).\(^7\) The left-pointing \(x\) axis represents changes in the capabilities of the initiating state \((i)\). Values of \(\text{cap}_{i0}\) range between zero and 0.4, approximating the range of values for the CINC scores used to measure capabilities in the empirical section (the scores are discussed later). The capabilities of the target state are measured on the right-oriented \(y\) axis. Note that values of \(\text{cap}_{j0}\) run in the opposite direction of those for \(\text{cap}_{i0}\), so that large target capabilities (associated with smaller optimal distances for \(z^*\) appear nearest to the reader. The vertical, \(z\) (fittingly), axis plots the optimal distance to conflicts in values that amount to ten thousands of kilometers or miles.

Once State \(i\) has selected an optimal distance to project power, payoffs for this best distance are compared to the payoff for not fighting. Let \(c'_i\) be defined as the cost, \(c_i\), such that \(\pi_i^{f=0,r=1} = \)

\(^7\)Figure 1 is plotted based on the following variable and parameter values: \(r = 1, f = 1, \alpha = 0.75, \beta = 0.25, \theta = 0.5, \rho_i = \rho_j = 1, y = 0.6250, y_{\text{max}} = 1.25.\)
\(\pi_i^{f=1,r=1} \). Suppose that the non-strategic actor Nature \((N)\) makes a random draw from a uniform distribution \(c_i \in U[c_{i\text{min}}, c_{i\text{max}}]\). If \(c_i < c'_i\), then \(i\) fights \((f = 1)\). Else, if \(c_i \geq c'_i\), then \(i\) does not fight \((f = 0)\), accepting instead audience costs. Setting \(r = 1\) and solving \(i\)'s fight decision for \(c'_i\):

\[
c'_i = \left(4\alpha^2 \cdot \rho_i^2 \cdot \theta^2 \cdot x \cdot y^2 + 4\beta^2 \cdot \text{cap}_i^2 \cdot \rho_i^2 \cdot \theta^2 \cdot x \cdot y^2 + 4\beta \cdot \theta \cdot (4a \cdot (\text{cap}_i \cdot \rho_i + \text{cap}_j \cdot \rho_j)
\]

\[
+ \text{cap}_j \cdot \rho_j \cdot (1 + 2\text{cap}_i \cdot \rho_i \cdot \theta - 2\text{cap}_j \cdot \rho_j \cdot \theta \cdot (x \cdot y)) \cdot y_{\text{max}}
\]

\[
+ (1 + 2\text{cap}_j \cdot \rho_i \cdot \theta - 2\text{cap}_j \cdot \rho_j \cdot \theta) \cdot x \cdot y^2 + 4\alpha \cdot \theta \cdot (2\beta \cdot \text{cap}_j \cdot \rho_j^2 \cdot \theta \cdot x \cdot y^2
\]

\[
+ (4a \cdot (\rho_i + \rho_j) + \rho_j \cdot (1 + 2\text{cap}_i \cdot \rho_i \cdot \theta - 2\text{cap}_j \cdot \rho_j \cdot \theta \cdot x \cdot y) \cdot y_{\text{max}}) \right) / (16 \cdot (\alpha + \rho_i + \rho_j))
\]

\[
\beta \cdot (\text{cap}_i \cdot \rho_i + \text{cap}_j \cdot \rho_j)) \cdot \theta \cdot y_{\text{max}} \right)
\]

Once \(i\) has made its fight decision, \(j\) determines whether it will reject \(i\)'s offer \((d)\). Given that war costs are private information, \(j\) must have beliefs about \(i\)'s type. In equilibrium, these beliefs map onto the probability distribution of \(c_i\), so that \(E(f = 1|c_i) = \text{Prob}(f = 1) = \frac{c_i - c'_i}{c_{i\text{max}} - c_{i\text{min}}}\), where \(c'_i\) is as in Eq. 9. Substituting \(\text{Prob}(f = 1)\) for \(f\) and \(z^*\) for \(z\) in \(j\)'s utility function (Eq 7), it is possible to solve for \(j\)'s decision. As with State \(i\), \(j\) has private information about its own war costs. Nature \((N)\) again makes a random draw, \(c_j \in U[c_{j\text{min}}, c_{j\text{max}}]\). If \(c_j < c'_j\), then \(j\) rejects \(i\)'s offer \((r = 1)\). Else, if \(c_j \geq c'_j\), \(j\) accepts \(d\), \((r = 0)\). Solving \(j\)'s choice for \(c'_j\) is done in the same way.

Figure 1: Relationship between Power, Proximity, and the Location of Conflict
as previously. However, the resulting equation is cumbersome, and so is not reported here.\footnote{Complete results of the model are available from the author.}

State i must formulate an optimal offer before j can determine whether to accept d or risk a costly contest. As i does not know j’s costs, it must have beliefs about the actions of each type j. Again, $E(r = 1| c_j) = Prob(r = 1) = \frac{c_{j\text{max}} - c_j^{'}}{c_{j\text{max}} - c_{j\text{min}}}$.

Substituting $Prob(r = 1)$ for r and z^* for z in i’s utility function (Eq 6), taking the partial derivative with respect to d, and solving produces d^*, i’s best offer to j. As with $c_j^{'}, d^*$ is extremely cumbersome. The function is generally increasing in cap_j and x. The effect of cap_i on d^* is slightly more complex. When states possess strong policy differences (i.e. x is relatively large), increasing cap_{i0} reduces d^*, as a stronger i makes more extractive demands. When x is small, however, the policy space is bounded. Increasing capabilities for State i may not matter if i and j want similar things. Additional details of the model, including formal statements of players’ optimal strategies and equilibria in the game appear in an appendix.

Finally, it is possible to calculate the probability of war in the game as the probability that j first rejects i’s equilibrium offer, times the probability that i chooses to fight rather than back down. Let $Prob(\text{war}) = Prob(r = 1) \times Prob(f = 1) = \frac{c_{i\text{max}} - c_i^{'}}{c_{i\text{max}} - c_{i\text{min}}} \times \frac{c_{j\text{max}} - c_j^{'}}{c_{j\text{max}} - c_{j\text{min}}}$. The product of two very long equations is very, very long, so I again omit the explicit form of this probability.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{Relationship between Power, Proximity, and the Probability of Conflict}
\end{figure}
Figure 2 plots $\text{Prob}(\text{war})$ for values of x and cap_{i0}.\footnote{Figure 2 is plotted based on the following variable and parameter values: $f = 1$, $\alpha = 0.5$, $\beta = 0.5$, $\theta = 0.5$, $\rho_i = \rho_j = 1$, $y = 0.6250$, $y_{max} = 1.25$, $c_{i, max} = c_{j, max} = 0.5$, $c_{i, min} = c_{j, min} = 0.00001$, $e_i = 0.1$, $\text{cap}_{i0} = 0.01$.} One of the first things that is apparent from the figure is that $\text{Prob}(\text{war})$ is increasing in x. Interests matter for whether states fight in a way that was far from apparent when modeling the location of contests.

Hypothesis 3 State interest affinity can be expected to significantly influence whether states fight.

The impact of capabilities and interests on dispute onset is just the converse of that for dispute location. The effect of cap_{i0} on conflict in Figure 2 is considerably more modest than the relationship between interests and conflict. While the impact of material capabilities on contests depends on parameter values, the relationship is generally modest. A final hypothesis appears below:

Hypothesis 4 The probability of a dispute is not expected to increase (or decrease) in the state’s capabilities, or in the capabilities of the opponent.

5 Research Design and Data

The formal model discussed above helps to identify a number of novel relationships between capabilities, interests, contiguity and interstate conflict. I test the hypotheses developed from the model below. In particular, estimating the determinants of the location of MIDs frees up these data to reveal information about relationships that have previously been obscured or ignored. In the sections below, I check to see whether capabilities and interests act as substitutes empirically.

If the location of disputes is largely a function of geography, then a measure of distance should suffice to account for variation in this dependent variable. The model suggests instead that where states fight depends on a more complex set of variables. Strong states are able to project power farther from home, and by extension closer to the capital of an enemy. Conversely, capable targets should be able to resist such pressure, pushing disputes to more distant places. However, contiguity may or may not be more important than metric distance. Directly evaluating where states fight makes it possible to identify whether contiguity is simply a less informative measure of distance, or whether contiguity contains separate information relevant to dispute location, onset, or both.
5.1 Data

This study relies on data from several sources to operationalize the hypotheses and to address a variety of possible confounding variables. I discuss the sources and coding of relevant data below.

Dependent Variables: Braithwaite (2009) identifies the latitude and longitude of each militarized interstate dispute (MID) in the Correlates of War (COW) dataset (Gochman and Maoz 1984; Jones, et al. 1996). We use these data to assess hypotheses about the effects of capabilities and interests on the distance of disputes from national capitals. In addition, Maoz offers a version of COW MIDs (DYMID) that codes for the initiation or onset of dyadic MIDs. These data are used separately and in conjunction with the location data in a two-stage regression to identify whether states fight.

Capabilities: COW offers the Composite Index of National Capabilities (CINC) based on six components: military spending and personnel, total and urban population, and iron & steel production and energy consumption (Singer, et al. 1972, Singer 1987). While these data are certainly not perfect (Leng 2002), they are the most widely used measure of capabilities in quantitative studies (c.f. Bueno de Mesquita & Lalman 1988, Bremer 1992, Maoz & Russett 1993). Data coverage extends from 1816 to 2000 (Correlates of War Project 2005a). Controversy continues about how best to measure power (c.f. Organski 1958, Schweller 1998), but there is no reason to believe that these data necessarily bias in favor of the hypotheses here (Singer 1963; Wayman et al. 1983). I include variables for each state’s CINC score and for the dyadic interaction between CINC scores.

Affinity: It is difficult to operationalize state interests. I use an index based on annual voting patterns in the United Nations General Assembly (Gartzke & Jo 2002). The index reports the similarity of votes for pairs of states, using the “S” coding (Signorino & Ritter 2001). Values in these data range from one (“most similar”), to negative one (“least similar”). In order to conform as closely as possible to the theoretical model, I rescale these data by adding one, dividing by two and subtracting the result from one. This produces a measure of policy (dis)similarity over the unit interval (x in the theoretical model), where zero is most similar and one is most different.

Geographic Contiguity and Distance: States that are far apart are generally less likely to fight each other (Bremer 1992, Maoz & Russett 1992, Buhaug & Gleditsch 2006). Rather than conflate

10The DYMID codebook is available at: http://psfaculty.ucdavis.edu/zmaoz/. We use data from EUGene.
the effect of geographic distance with where states fight, I add a standard measure of distance between capitals to the regressions. Capital-to-capital distance is naturally correlated with the distance between either capital and the location of a MID. To the degree that my argument is weak or invalid, the distance variable will tend to mitigate against the significance of relevant hypotheses.

I also include a measure of contiguity that codes the proximity of land borders and the distance separating countries by bodies of water. The contiguity variable is expected to increase MID likelihood while distance should decrease militarized disputes and wars (Diehl 1985, Senese 2005). Including both contiguity and distance makes it possible to distinguish the effects of contiguity from distance or MID location. Results for other variables do not depend on the presence of contiguity.

Military Alliances: Alliances are formal agreements intended to affect conflict. Alliances also overcome distance by creating opportunities for security partners to share territory. For these reasons and others, I include a measure of the presence of an alliance in a given dyad year based on the COW alliance data (Singer and Small 1966; Small and Singer 1990; Gibler and Sarkees 2004).

Major Power Status: Powerful countries are more active internationally, leading to more conflict. The major power variable is a dummy coded “1” if at least one state in a dyad is a major power according to the COW list. Since the variable confounds some of the distinctions the study makes between interests, power and distance, I exclude major power in some of the econometric models.

Democracy: I construct annual democracy scores for each state as the difference between the Polity IV project’s DEMOC and AUTOC variables (Jaggers & Gurr. 1995). I also include an interaction between monadic regime scores to capture non-linearities, such as the democratic peace.

Temporal Splines: A well-established problem in Time-Series–Cross-Section Analysis (TSCS) is the non-independence of observations. Beck et al. (1998) recommend the use of a matrix of lagged dependent variables to control for temporal dependence. This approach has become the standard in the literature. In addition to peace years, I use four “spline” variables for each dependent variable.\footnote{Coefficients and standard errors for spline variables are not reported since they lack a substantive interpretation.}
6 Results

The effects of capabilities, interests and contiguity on the advent and location of contests vary depending on model specification and other factors. In general, however, the results below are indicative of findings using a wide variety of alternative model specifications and variable constructions. Capabilities are most salient for determining the location of contests, while interests and contiguity independently influence whether states fight. Results are arranged in three tables. The first table addresses location, while Table 2 models causes. Table 3 combines the two stages.

The first regression in Table 1, labeled “Initiator,” predicts the distance from the location of a MID to the capital of the initiating state. The statistical model is intentionally a very simple specification. Only the CINC capability scores of the two states in the dyad and the distance between capitals are included. All three independent variables are highly significant in appropriate directions. As predicted by hypothesis 2, the more capable the initiating state (State A), the farther is the location of the MID from the initiator’s capital. Conversely, the more capable the target (State B), the closer the MID occurs to the initiator’s capital city. While the distance between the capitals of the disputants is quite reasonably a significant determinant of the distance from the initiator to the MID, distance does not explain away the effects of capabilities on dispute location.

The second column of coefficients and standard errors, labeled “Target,” reflects three changes. First, the distance measured is from the target capital to the location of the MID. As expected, the signs on CINC score coefficients reverse themselves when using the target-to-MID location as the dependent variable. As again expected by hypothesis 2, capable initiators generate MIDs that occur closer to the target, while capable targets force the fight farther from their own capital. Second, the “Target” regression adds an interaction term between monadic CINC scores. Examination of the cross-partial derivatives of \(cap_i\) and \(cap_j\) from the theoretical model suggests the possibility of non-linear interactions, though it is difficult from the model to determine the likely magnitude of any effect. Care should be taken in interpreting interaction terms (Braumoeller 2004). The goal here is simply to assess the robustness of the basic findings. The effect of capabilities on location is generally monotonic; there is no significant interaction between monadic capabilities variables.

The third change to the second regression model in Table 1 is the addition of Contiguity. MIDs
Table 1: Effect of Opportunity and Willingness on Where States Fight (OLS, MID Locations)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Initiator</th>
<th>Target</th>
<th>Affinity</th>
<th>Democracy</th>
<th>Kitchen Sink</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance to MID</td>
<td>Coeff</td>
<td>Coeff</td>
<td>Coeff</td>
<td>Coeff</td>
<td>Coeff</td>
</tr>
<tr>
<td></td>
<td>(S.E.)</td>
<td>(S.E.)</td>
<td>(S.E.)</td>
<td>(S.E.)</td>
<td>(S.E.)</td>
</tr>
<tr>
<td>CINC_A</td>
<td>16349.6</td>
<td>-6976.5</td>
<td>21080.3</td>
<td>19961.4</td>
<td>-12683.7</td>
</tr>
<tr>
<td></td>
<td>(1592.9)</td>
<td>(1481.5)</td>
<td>(2752.0)</td>
<td>(3042.8)</td>
<td>(2392.3)</td>
</tr>
<tr>
<td>CINC_B</td>
<td>-6107.4</td>
<td>16041.6</td>
<td>-9669.0</td>
<td>-8252.4</td>
<td>20479.4</td>
</tr>
<tr>
<td></td>
<td>(1443.9)</td>
<td>(1721.0)</td>
<td>(2090.3)</td>
<td>(1819.6)</td>
<td>(3809.8)</td>
</tr>
<tr>
<td>CINC_A × CINC_B</td>
<td>12726.4</td>
<td>-2560.5</td>
<td>-4295.0</td>
<td>-10886.2</td>
<td>22852.0</td>
</tr>
<tr>
<td></td>
<td>(24715.1)</td>
<td>(31372.4)</td>
<td>(23573.6)</td>
<td>(230.9)</td>
<td>(230.9)</td>
</tr>
<tr>
<td>Affinity</td>
<td>-457.6</td>
<td>-377.7</td>
<td>-140.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(578.7)</td>
<td>(563.4)</td>
<td>(594.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contiguity</td>
<td>269.5</td>
<td>351.6</td>
<td>383.7</td>
<td>232.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(192.1)</td>
<td>(214.8)</td>
<td>(220.3)</td>
<td>(230.9)</td>
<td></td>
</tr>
<tr>
<td>Distance</td>
<td>0.705</td>
<td>0.720</td>
<td>0.793</td>
<td>0.813</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0594)</td>
<td>(0.0687)</td>
<td>(0.0944)</td>
<td>(0.0931)</td>
<td></td>
</tr>
<tr>
<td>Democracy_A</td>
<td>80.95</td>
<td>-62.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(25.75)</td>
<td>(28.02)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Democracy_B</td>
<td>-3.00</td>
<td>67.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(30.40)</td>
<td>(24.85)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dem_A × Dem_B</td>
<td>0.460</td>
<td>1.051</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.248)</td>
<td>(4.103)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy/Pop._A</td>
<td></td>
<td></td>
<td>-30.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(14.29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy/Pop._B</td>
<td></td>
<td></td>
<td>-0.827</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(13.75)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E/P_A × E/P_B</td>
<td></td>
<td></td>
<td>124.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(88.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population_A</td>
<td></td>
<td></td>
<td>0.0013</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.0005)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population_B</td>
<td></td>
<td></td>
<td>-0.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.0005)</td>
<td></td>
<td></td>
</tr>
<tr>
<td># Neighbors_A</td>
<td></td>
<td></td>
<td>58.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(21.94)</td>
<td></td>
<td></td>
</tr>
<tr>
<td># Neighbors_B</td>
<td></td>
<td></td>
<td>-21.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(27.96)</td>
<td></td>
<td></td>
</tr>
<tr>
<td># Great Powers</td>
<td></td>
<td></td>
<td>-123.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(75.64)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Con.</td>
<td></td>
<td></td>
<td>-4462.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4735.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td># Countries</td>
<td></td>
<td></td>
<td>-2.451</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4.959)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>595.2</td>
<td>385.9</td>
<td>273.6</td>
<td>236.1</td>
<td>2300.2</td>
</tr>
<tr>
<td></td>
<td>(60.73)</td>
<td>(166.1)</td>
<td>(200.5)</td>
<td>(272.2)</td>
<td>(2010.2)</td>
</tr>
<tr>
<td>N</td>
<td>5081</td>
<td>5081</td>
<td>2848</td>
<td>2775</td>
<td>2758</td>
</tr>
<tr>
<td>R²</td>
<td>0.4684</td>
<td>0.4584</td>
<td>0.5383</td>
<td>0.5638</td>
<td>0.5791</td>
</tr>
<tr>
<td>F</td>
<td>138.72</td>
<td>83.75</td>
<td>56.26</td>
<td>58.15</td>
<td>44.49</td>
</tr>
</tbody>
</table>

Significance levels: †: 5% *: 1% **: 0.5% ***: 0.1%
between contiguous states are not statistically closer or farther away by location than MIDs between non-contiguous states. This pattern continues throughout the analysis. This non-relationship suggests that the effects of contiguity in increasing conflict are not a product of opportunity. Contiguity may capture some of the effects of distance, but in regressions specifically designed to predict dispute proximity, contiguity provides significantly less information than simple distance.12

The middle regression in Table 1 adds the affinity measure of national interest similarity. As anticipated by hypothesis 1, this variable is not remotely statistically significant in anticipating the location of militarized disputes. Similarity of national interests has no effect on where states fight.

The final two columns in Table 1 offer additional insights and robustness checks. Democracies appear to fight farther from home in both regressions if they initiate a dispute. In an interesting confirmation of the basic claim, the opposite relationship obtains for democratic targets, which apparently succeed in forcing opponents to fight farther from the democratic target (and closer to the capital of the initiator). There is no indication of an interaction effect; when it comes to the location of contests, democratic dyads are about the same as dyads containing only one democracy.

Table 1 finishes with a “Kitchen Sink” regression designed to address a variety of possible confounding causal factors. Included variable bias is no better than omitted variable bias (Clarke 2005), but the objective here is simply to confirm previous results. Only a few of the new independent variables are statistically significant. It is surprising that only attributes of the initiator matter, given that the dependent variable measures distance from the target. Energy/Pop\textsubscript{A} decreases the distance between the target and MID location, while Population\textsubscript{A} increases this distance (at the minimal 10% threshold). # Neighbors\textsubscript{A} increases the target-to-MID distance (5% threshold).

I next plot the effects of capabilities and affinity on the location of contests based on the “kitchen sink” regression in Table 1 (there is no point in plotting dichotomous contiguity). Figure 3 reports marginal effects for CINC variables. Values of CINC\textsubscript{B} are adjusted from minimum to maximum, while CINC\textsubscript{A} \times CINC\textsubscript{B} varies accordingly. All other variables are held at their median values.

While average distance increases throughout the range of values, states with the highest capabilities tend to fight much farther from home. Results from the theoretical model pictured in Figure

12 Regressions that do not include distance confirm this, reporting a positive and significant effect for contiguity.
1 appeared to anticipate a more steady monotonic increase in MID location resulting from rising capabilities. The discrepancy can be explained by the fact that the theory does not anticipate the distribution of capabilities in the population of countries. The horizontal axis in Figure 3 sorts capabilities by percentiles. Since the distribution of CINC scores is skewed (many weak states and far fewer very powerful states), the effect of plotting by percentiles is to compress values at the top end, exaggerating the slope of the function relating highly capable states to MID location.

A similar effect occurs in plotting policy affinity. For this reason, I log values of the affinity variable plotted in Figure 4. As anticipated by hypothesis 1, there is essentially no effect of preference variation on where states fight. However, the confidence intervals surrounding the estimated relationship for high values of the interest variable, where dyadic interests are most dissimilar, are much larger, due again to percentiles compressing values in regions with fewer observations.

Table 2 addresses the conventional question of what leads states to fight. The sample initially involves all directed dyad years from 1816 to 2000, but later drops to the post-war period due to data availability.13 Five regressions are reported, distinguished by model specification and whether the

13For obvious reasons, United Nations voting data are only available for the post-World War II period. Results for
dependent variable involves the initiation or onset of a MID. The first model (“Basic”) includes just monadic CINC scores and distance, plus the peaceyear and spline variables (not reported) and the intercept. As conventional wisdom would predict, the capabilities of initiators and targets appear to significantly increase MID initiation. Distance is also negatively associated with behavioral conflict.

The “Controls” regression in Table 2 adds additional variables, including an interaction term between monadic capabilities variables, Contiguity, and security variables (Alliance, major power status). Monadic capabilities variables are positive and significant, while the interaction term is insignificant. Contiguity has a separate, positive and significant effect on whether states fight. Paired with the results in Table 1, this suggests that contiguity involves more than ease of access (opportunity), but instead captures a change in the willingness of states to interact through force.

The third (“Affinity”) model in Table 2 is the first to include a measure of interstate interests. Adding Affinity to the “Controls” regression leads the respective capabilities variables to reverse their significance. Monadic CINC variables are no longer statistically significant in this or subsequent regressions. Instead, \(CINC_A \times CINC_B\) becomes significant, while remaining positive. Affinity the first two regressions in Table 2 (“Basic” and “Controls”) are similar when the sample is restricted to 1945-2000.
Table 2: Effect of Opportunity and Willingness on Whether States Fight (Probit, MIDs)

<table>
<thead>
<tr>
<th>MID Initiation</th>
<th>Basic</th>
<th>Controls</th>
<th>Affinity</th>
<th>Democracy</th>
<th>Onset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Coeff</td>
<td>Coeff</td>
<td>Coeff</td>
<td>Coeff</td>
<td>Coeff</td>
</tr>
<tr>
<td></td>
<td>(S.E.)</td>
<td>(S.E.)</td>
<td>(S.E.)</td>
<td>(S.E.)</td>
<td>(S.E.)</td>
</tr>
<tr>
<td>CINC_A</td>
<td>4.649</td>
<td>2.335***</td>
<td>0.491</td>
<td>0.412</td>
<td>0.762</td>
</tr>
<tr>
<td></td>
<td>(0.227)</td>
<td>(0.368)</td>
<td>(0.666)</td>
<td>(0.686)</td>
<td>(0.638)</td>
</tr>
<tr>
<td>CINC_B</td>
<td>3.593</td>
<td>2.477***</td>
<td>0.924</td>
<td>0.991</td>
<td>0.762</td>
</tr>
<tr>
<td></td>
<td>(0.284)</td>
<td>(0.537)</td>
<td>(0.886)</td>
<td>(0.841)</td>
<td>(0.638)</td>
</tr>
<tr>
<td>CINC_A × CINC_B</td>
<td>4.459</td>
<td>21.29***</td>
<td>20.64***</td>
<td>23.26***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.058)</td>
<td>(4.868)</td>
<td>(4.803)</td>
<td>(5.493)</td>
<td></td>
</tr>
<tr>
<td>Affinity</td>
<td>1.207</td>
<td>1.023***</td>
<td>1.153***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.130)</td>
<td>(0.131)</td>
<td>(0.118)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contiguity</td>
<td>0.764</td>
<td>0.793***</td>
<td>0.796***</td>
<td>0.622***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0971)</td>
<td>(0.117)</td>
<td>(0.116)</td>
<td>(0.102)</td>
<td></td>
</tr>
<tr>
<td>Distance</td>
<td>-0.155</td>
<td>-0.0643***</td>
<td>-0.103***</td>
<td>-0.106***</td>
<td>-0.132***</td>
</tr>
<tr>
<td></td>
<td>(0.00428)</td>
<td>(0.0124)</td>
<td>(0.0148)</td>
<td>(0.0149)</td>
<td>(0.0133)</td>
</tr>
<tr>
<td>Democracy_A</td>
<td>0.0322</td>
<td>0.0376***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0072)</td>
<td>(0.0058)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Democracy_B</td>
<td>0.0483</td>
<td>0.0376***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0076)</td>
<td>(0.0058)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dem_A × Dem_B</td>
<td>-0.0070</td>
<td>-0.0079***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0011)</td>
<td>(0.0009)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alliance</td>
<td>-0.0651</td>
<td>-0.0511</td>
<td>-0.0240</td>
<td>0.0616</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0406)</td>
<td>(0.0539)</td>
<td>(0.0528)</td>
<td>(0.0420)</td>
<td></td>
</tr>
<tr>
<td>Major Power_A</td>
<td>0.414</td>
<td>0.458***</td>
<td>0.479***</td>
<td>0.467***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0608)</td>
<td>(0.0849)</td>
<td>(0.0872)</td>
<td>(0.0835)</td>
<td></td>
</tr>
<tr>
<td>Major Power_B</td>
<td>0.138</td>
<td>0.335**</td>
<td>0.304**</td>
<td>0.467***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0792)</td>
<td>(0.105)</td>
<td>(0.0981)</td>
<td>(0.0835)</td>
<td></td>
</tr>
<tr>
<td>Major_A × Major_B</td>
<td>-0.0201</td>
<td></td>
<td></td>
<td></td>
<td>-0.0201</td>
</tr>
<tr>
<td></td>
<td>(0.151)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>-1.409</td>
<td>-2.191***</td>
<td>-2.070***</td>
<td>-2.273***</td>
<td>-1.291***</td>
</tr>
<tr>
<td></td>
<td>(0.0482)</td>
<td>(0.108)</td>
<td>(0.130)</td>
<td>(0.123)</td>
<td>(0.111)</td>
</tr>
</tbody>
</table>

N | 1313582 | 1313582 | 968488 | 958023 | 958023 |
Log-likelihood | -15631.26 | -15251.20 | -7843.28 | -7757.40 | -16001.68 |
\(\chi^2\) \((8,13,14,17,18)\) | 2530.89 | 2508.70 | 2355.85 | 2633.42 | 3518.40 |
Pseudo \(R^2\) | 0.2654 | 0.2833 | 0.3447 | 0.3496 | 0.4268 |

Significance levels: *: 5% **: 1% ***: 0.1%
itself is positive and highly statistically significant, indicating that differences of interests among states is associated with a significant increase in dispute initiation. Other variables remain largely unaltered, although major power status for the target state is now statistically significant.

The fourth regression in Table 2 adds measures of monadic and dyadic regime type. All three variables are statistically significant, with monadic democracy appearing to increase dispute initiation, while democratic dyads are less dispute prone. While having significant (if contrasting) effects on whether states fight, the regime type variables do not alter the effects of other variables.

The final regression in Table 2 estimates the probability that State A and State B experience a MID onset. Use of the non-directed onset variable does not alter any of the key results, suggesting that directionality (i.e. identifying and differentiating the initiator from the target) is not as critical in studying causation as it is for location. Again, neither monadic capabilities variable is statistically significant, while the interaction between monadic CINC scores shows a significant increase in the risk of a MID. Affinity continues to have a negative and highly significant effect. Potential initiators and targets with similar interests are much less likely to fight. Contiguity increases dispute initiation or onset. The final regression in Table 2 also introduces the interaction term between the monadic major power dummies, with results for other variables largely unaltered.

Figures 3 and 4 follow the pattern of the previous pair of graphs, plotting the relationship between capabilities or interests and the dependent variable (this time dispute onset). The results, based on the final regression in Table 2, are the converse of those reported for location. Varying capabilities does not significantly change the probability of experiencing a MID. While nations with the highest material capabilities (above the 95%ile) appear more dispute prone, the effect is not statistically significant. In contrast, the effect of U.N. voting is monotonically increasing as states exhibit larger policy differences, with tight confidence intervals around the estimated relationship.

The location of a contest may not be independent of whether a contest occurs. The distinctive findings for capabilities and affinity or contiguity could potentially result from unobserved interactions between the “whether” and “where” portions of the analysis. Table 3 addresses this possibility. The objective is to determine whether to accept the claim that capabilities largely determine where states fight, while interests substantially only influence whether disputes occur.
Contiguity diverges from distance in influencing states’ motivation for war. To assess potential errors due to selection and other processes, I next evaluate both stages of conflict together using the Heckman two-stage estimator, which allows for the possibility that the “whether” stage is biasing the estimation of “where” results. An initial check of this possibility suggests that this it is not the case. The ρ parameter estimating the link between the two stages is small and not significant.

Though it cannot be ruled out that the two models are independent, it is still possible for the results of separate stages are affected in other ways. Table 3 offers four Heckman regressions that combine the one-stage regressions featured in Table 1 and Table 2. The first set of coefficients and standard errors, labeled the “Basic Model,” combine Equation 1 “Distance to Initiator,” with Equation 2 “MID Initiation.” Results for the “where” portion (Equation 1) are largely unchanged from Table 1. National capabilities strongly influence the location of contests, while national interests and contiguity have no significant effect on where states fight. In Equation 2, however, the insignificance of capabilities on the decision to fight is now even more striking. Because the two-stage model requires equivalent variables to compete directly to affect either location or initiation/onset, or both, the CINC interaction term is now statistically insignificant throughout Equation 2.
Table 3: Two-Stage Models of Dispute Initiation or Onset and Location (Heckman, Directed Dyads)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Initiator — Basic Model — Target</th>
<th>Democracy</th>
<th>Kitchen Sink</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Distance to Initiator</td>
<td>Distance to Target</td>
<td>Distance to Initiator</td>
</tr>
<tr>
<td>CINC_A</td>
<td>32988.6 *** (4828.3)</td>
<td>-11249.3 *** (3218.9)</td>
<td>31539.7 *** (5519.3)</td>
</tr>
<tr>
<td>CINC_B</td>
<td>-10568.6 ** (3370.8)</td>
<td>28566.8 *** (4762.2)</td>
<td>-8960.1 ** (2906.9)</td>
</tr>
<tr>
<td>CINC_A × CINC_B</td>
<td>-25111.9 (33303.4)</td>
<td>-27356.0 (34744.1)</td>
<td>-32265.1 (32582.0)</td>
</tr>
<tr>
<td>Affinity</td>
<td>593.8 (1014.6)</td>
<td>-230.7 (839.6)</td>
<td>1022.1 (1096.1)</td>
</tr>
<tr>
<td>Contiguity</td>
<td>39.32 (514.9)</td>
<td>584.6 (496.1)</td>
<td>-5.403 (461.6)</td>
</tr>
<tr>
<td>Distance</td>
<td>0.468 *** (0.136)</td>
<td>0.743 *** (0.145)</td>
<td>0.457 *** (0.132)</td>
</tr>
<tr>
<td>Democracy_A</td>
<td>23.33 (50.90)</td>
<td>-58.72 (33.69)</td>
<td></td>
</tr>
<tr>
<td>Democracy_B</td>
<td>-89.89 (47.53)</td>
<td>47.18 (34.90)</td>
<td></td>
</tr>
<tr>
<td>Dem_A × Dem_B</td>
<td>3.336 (7.164)</td>
<td>1.562 (5.535)</td>
<td></td>
</tr>
<tr>
<td>Energy/Pop._A</td>
<td>-28.35 (20.89)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy/Pop._B</td>
<td>15.28 (23.14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E/P_A × E/P_B</td>
<td>28.07 (133.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population_A</td>
<td>0.0020 * (0.0007)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population_B</td>
<td>-0.0014 * (0.0007)</td>
<td></td>
<td></td>
</tr>
<tr>
<td># Neighbors_A</td>
<td>31.51 (33.41)</td>
<td></td>
<td></td>
</tr>
<tr>
<td># Neighbors_B</td>
<td>-6.996 (34.37)</td>
<td></td>
<td></td>
</tr>
<tr>
<td># Great Powers</td>
<td>-126.9 (105.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Con.</td>
<td>-6916.1 (7667.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td># Countries</td>
<td>-5.815 (9.490)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cons</td>
<td>31.72 (844.5)</td>
<td>-249.3 (691.0)</td>
<td>566.2 (812.6)</td>
</tr>
</tbody>
</table>

Equation 2:

<table>
<thead>
<tr>
<th>Variable</th>
<th>MID Initiation</th>
<th>MID Target</th>
<th>MID Initiation</th>
<th>MID Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>CINC_A</td>
<td>1.941 (1.841)</td>
<td>-0.0897 (1.216)</td>
<td>1.748 (1.794)</td>
<td>-0.0145 (1.239)</td>
</tr>
<tr>
<td>CINC_B</td>
<td>-0.477 (2.088)</td>
<td>0.795 (1.103)</td>
<td>-0.424 (1.985)</td>
<td>0.828 (1.120)</td>
</tr>
<tr>
<td>CINC_A × CINC_B</td>
<td>1.896 *** (0.272)</td>
<td>1.734 *** (0.200)</td>
<td>1.724 *** (0.254)</td>
<td>1.544 *** (0.194)</td>
</tr>
<tr>
<td>Affinity</td>
<td>1.230 *** (0.176)</td>
<td>0.786 *** (0.159)</td>
<td>1.225 *** (0.183)</td>
<td>0.808 *** (0.158)</td>
</tr>
<tr>
<td>Contiguity</td>
<td>-0.0817 *** (0.0231)</td>
<td>-0.118 *** (0.0206)</td>
<td>-0.0852 *** (0.0245)</td>
<td>-0.120 *** (0.0210)</td>
</tr>
<tr>
<td>Distance</td>
<td>0.0304 * (0.0146)</td>
<td>0.0391 *** (0.0117)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Democracy_A</td>
<td>0.0387 * (0.0175)</td>
<td>0.0327 *** (0.0097)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Democracy_B</td>
<td>-0.0055 * (0.0022)</td>
<td>-0.0072 *** (0.0016)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dem_A × Dem_B</td>
<td>-0.169 (0.205)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alliance</td>
<td>0.159 (0.266)</td>
<td>0.485 *** (0.144)</td>
<td>0.183 (0.258)</td>
<td>0.470 ** (0.156)</td>
</tr>
<tr>
<td>Major Power_A</td>
<td>0.522 * (0.253)</td>
<td>0.346 * (0.141)</td>
<td>0.494 * (0.241)</td>
<td>0.344 * (0.155)</td>
</tr>
<tr>
<td>Major Power_B</td>
<td>0.0931 (0.0983)</td>
<td>0.0616 (0.0689)</td>
<td>-0.0666 (0.0967)</td>
<td>0.0697 (0.0682)</td>
</tr>
<tr>
<td>Major_A × Major_B</td>
<td>-2.511 *** (0.194)</td>
<td>-1.892 *** (0.166)</td>
<td>-2.679 *** (0.175)</td>
<td>-2.065 *** (0.155)</td>
</tr>
</tbody>
</table>

athρ	0.108 (0.136)	0.0543 (0.0845)	0.0331 (0.130)	0.0267 (0.0854)
ln(σ)	7.291 *** (0.109)	7.375 *** (0.0833)	7.259 *** (0.0988)	7.310 *** (0.0899)
N	967338	966881	956876	956441
Log-likelihood	-5865.75	-10735.51	-5831.06	-10537.24
χ² (6,6,9,19)	171.43 ***	253.47 ***	318.04 ***	581.79 ***

Significance levels: * : 5% ** : 1% *** : 0.1%
Interest affinity, on the other hand, performs much as it has in the previous two tables. States with similar interests are considerably less likely to experience a MID, but interest affinity has no significant effect on where states fight. Contiguity follows the same pattern as the interest variable, suggesting that it is measuring the (unique) contribution of proximity for willingness, rather than opportunity. Other variables perform largely as anticipated by the discussion of Tables 1 and 2.

7 Conclusion

This study has sought to disentangle the relationship between contiguity, capabilities and national interests. Material capabilities affect where nations must vie for influence or security with other nations, and where this is not possible or unnecessary. Capabilities do not have a significant effect on the onset or initiation of militarized violence. State interests matter much more for whether nations fight, but they in turn do not make much difference in terms of the location of contests. The study also casts some additional light on contiguity. Neighbors interact in ways that make them more prone to fight, independent of capabilities, interests, or other determinants of conflict.
References

Braithwaite, Alex. 2009. “Codebook for the Militarized Interstate Dispute Location (MIDLOC) Data, v 1.0.” University College London.

