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Abstract

Traditional views of visual processing suggest that early visual neurons are static spatiotemporal filters that extract local features by

feedforward computation. The extracted information is then fed forward through a chain of modules to successively higher visual areas for

further analysis. Recording from early visual neurons in awake behaving monkeys, we revealed there are many levels of complexity in the

information processing of the early visual cortex. We found that the early visual neurons not only are sensitive to features within their

receptive fields (RFs) but also to the global context of a visual scene, the behavioral relevance of the stimuli and the experience of the

animals. These findings suggest that the early visual cortex (V1 and V2) is tightly coupled to and highly interactive with the rest of the visual

system. The top-down interaction, mediated by recurrent feedback connections, introduces contextual information to influence the perceptual

inference in the early visual cortex.

D 2002 Elsevier Science Inc. All rights reserved.
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1. Early visual cortex

Neurons in the primary visual cortex are known to be

tuned to specific elementary local features in the visual

scenes. These features include location, line orientation,

stereo disparity, movement direction, color and spatial fre-

quency [1,2]. It is also known that V1 neurons are also

influenced by the surrounding context of the stimuli [3–6].

The interpretations of the contextual modulations in these

studies have been mostly limited to low-level mechanistic

description in terms of facilitation and inhibition, or to

subjective perceptual interpretations such as the neural

correlate of contour processing, pop-out or figure-ground

saliency [4,5,7,8]. Some of the observed contextual modu-

lations likely arise from the feedback mediated by the

massive amount of recurrent connections from the extras-

triate areas to V1. A plausible role of feedback is that of

attentional selection based on the mechanisms of biased

competition [9]. The idea of biased competition is that when

multiple stimuli are presented in a visual field, the different

neuronal populations activated by these stimuli will engage

in competitive interaction. Attending to a stimulus at a

particular spatial location or to a particular object feature,

however, could bias the competition in favor of the neurons

representing the attended features or locations, enhancing

their responses and suppressing the responses of the other

neurons. However, the intracortical interaction in biased

competition models (e.g., Ref. [10]) is limited to lateral

inhibition—a rather impoverished view on the computations

being performed by the sophisticated machinery in the

different visual areas.

2. Hierarchical Bayesian inference

Based on recent findings on top-down effect in V1 [5,7],

Mumford and I have suggested that V1 can serve as a high-

resolution buffer [7] that participates in many levels of visual

computations through the recurrent feedback (see also

Bullier’s blackboard hypothesis [11]). In this context, we

think that Bayesian inference can provide a more appropriate

theoretical framework for reasoning about top-down visual

processing in the brain [12–15]. This idea is not new, and

can be traced back to the unconscious inference theory of

perception by Helmholtz [16]. From the Bayesian perspect-
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ive, the visual system arrives at the most probable interpreta-

tion of the visual scene by finding the a posteriori estimate Si
of the scene that maximizes P(SijE,H), the conditional

probability of a scene hypothesis Si given a particular

sensory evidence (E), and the information already known

(H), which, by Bayes’ theorem, is given by,

PðSi j E;HÞ ¼ PðE j Si;HÞPðSi j HÞ
PðE j HÞ

where P(EjSi,H) is the conditional probability of the

evidence given a particular scene hypothesis Si and the prior

or contextual knowledge about the scene H, based on either

the viewer’s prior assumption, information from the

surrounding space or immediate past. P(SijH) is the condi-

tional probability of the scene hypothesis given H. P(EjSi,H)
is the conditional probability of the evidence E given H and

Si, which can be factored into P(EjSi)P(H) if the influence of
H is exerted directly only on Si but not on E.

This basic formulation might allow us to conceptualize

the interaction between two cortical areas, for example, V1

and V2, mathematically. Let E be the evidence furnished to

V1 by the retina and the lateral geniculate nucleus (LGN);

scene estimates Si are the output of V1 neurons. H is a

distribution of hypotheses generated by V2 based on its

input from V1 as well as feedback from other higher order

areas. The feedback from V2 to V1 is given by the

distribution of H weighted by its prior P(H), with P(SijH)
specifying the feedback connections. These are what we

called contextual priors—the prior knowledge the system

already has about the scene based on what has been

observed in the past and in the surrounding. V1 tries to

find the Si that maximises P(EjSi)P(SijH)P(H), i.e., explain-
ing E as well as being predicted by H optimally. This

scheme can be applied again to higher areas recursively to

form the whole hierarchy of inference. In this framework,

each cortical area is an expert for inferring certain aspects of

the visual scene, but its inference is made in consultation

with the other brain areas, constrained by both incoming data

and the top-down contextual priors. Unless the input image is

simple and clear, each area normally cannot be sure of its

inference and has to entertain a number of hypotheses

simultaneously. The feed-forward input drives the generation

of the hypotheses, the feedback from higher inference areas

provides the contextual information (or priors) to shape the

inference at the earlier levels. Hierarchical Bayesian infer-

ence is concurrent across multiple areas. Information does

not flow back and forth between V1 and inferotemporal

cortex (IT) in a big loop. Such a large loop requires a lot of

time per iteration and is infeasible for real time inference.

Rather, successive cortical areas in the visual hierarchy can

constrain each other’s inference in small loops instantane-

ously and continuously. Such a system, as a whole, might

converge rapidly to an interpretation of the visual scene.

We carried out a series of neurophysiological experiments

on awake behaving monkeys to test these possibilities. The

first experiment examined the neural representation of the

famous Kanizsa illusion (as shown in Fig. 1b) that illustrates

how a strong prior assumption about occlusion relationship

between surfaces at different depths could make us see things

that actually do not exist. The second experiment examined a

saliency effect that emerged from the interaction of the

Fig. 1. Selected stimuli in the subjective contour experiment. (a) An example sequence of stimulus presentation in a single trial. (b) Receptive field of the tested

neuron was ‘placed’ at 10 different positions across the illusory contour, one per trial. (c) Amodal contour—the subjective contour was interrupted by

intersecting lines. (d) One of the several rotated corner disc stimuli. The surround stimulus was roughly the same, but there was no illusory contour. (e) One of

the several types of real squares defined by luminance contrast. (f) Square defined by lines.
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brain’s inference of three-dimensional (3D) surface shapes

based on shading information (Fig. 3a,b). Both are wonder-

ful examples that illustrate the influence of higher order

contextual information on early visual inference.

3. Evidence I: construction of subjective contours

When viewing the display of stimulus sequence shown in

Fig. 1a, we perceive an illusory square that abruptly appears

in front of four circular discs with vivid subjective borders

even in regions of the image where there is no direct visual

evidence for the borders. Could we see evidence of this

illusory contour in the early visual cortex? Is there any

evidence that this illusion is generated by feedback from

higher areas?

We [17] recorded the responses of over 200 V1 and V2

neurons of awake behaving monkeys to an illusory contour

in contrast to their responses to real contours or to conditions

where there are no contours. Among the stimuli tested in

each recording session (Fig. 1), the most important stimulus

is the illusory square (Fig. 1b). Other stimuli were also tested

as control. These include the amodal figure (Fig. 1c), the

stimuli with rotated corner discs (Fig. 1d) and a variety of

real squares defined by contrast and lines (Fig. 1e and f).

Each stimulus was presented for 120 trials (10 conditions

and 12 trials per condition). The monkey’s task was to fixate

a spot on the screen during stimulus presentation. In each

trial, a sequence of four stimuli, 400 ms each, was presented.

Fig. 1a illustrates the presentation of the subjective square

stimuli. First, four circular discs were presented. Then, they

were turned into corner discs, creating an illusion that a white

square had abruptly appeared in front of the discs, partially

occluding them. Over successive trials, the receptive field

(RF) of the cell being recorded was placed at 10 different

locations relative to the center of each stimulus, 0.25� apart,
spanning a range of 2.25� (across the illusory contour in the

case of illusory square) as shown in Fig. 1b. The RFs of the

neurons, elucidated using a small oriented bar, were typically

less than 0.8� at that eccentricity (about 2–3� away from the

fovea). The gap between the corner discs was 2� wide. The
neurons were considered to be sensitive to illusory contour if

their responses to the illusory contour, at the precise location

of that contour, were significantly larger than their responses

to the amodal contour (Fig. 1c) and the conditions in which

the corner discs were rotated (e.g., Fig. 1d).

We found that 26% of the V1 neurons in the superficial

layer of V1 exhibited sensitivity to the illusory contour

under our experimental paradigm. The neural correlate of

the illusory contour signal, defined as the extra response

above the response to the amodal contour, emerged in a V1

neuron at precisely the same location where a line or

luminance contrast elicited the maximum response from

the cell (Fig. 2a). The response to the illusory contour was

Fig. 2. (a) The spatial profile of a V1 neuron’s response to the contours of both real and illusory squares, in a temporal window 100–150 ms after stimulus onset.

The real or illusory square was placed at different spatial locations relative to the receptive field of the cell. This cell responded to the illusory contour when it was

at precisely the same location where a real contour evoked the maximal response from the neuron. This cell also responded significantly better to the illusory

contour than to the amodal contour (t-test, P< .003) and did not respond much when the corner discs were rotated. (b) Temporal evolution of the cell’s response to

the illusory contour compared to its response to the real contours of a line square, a white square and to the amodal contour. The onset of the response to the real

contours was at 45 ms, about 55 ms ahead the illusory contour response. (c) Population averaged temporal response of 49 V1 neurons in the superficial layer to

the real and illusory contours. (d) Population averaged temporal response of 39 V2 neurons in the superficial layer to the real and illusory contours.
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delayed relative to the response to the real contours by 55

ms (Fig. 2b), emerging about 100 ms after stimulus onset.

The response to the illusory contour was significantly

greater than the response to the controls, including the

amodal contour or when the corner discs were rotated. At

the population level, we found that sensitivity to illusory

contours emerged at 65 ms in V2 and 100 ms in the

superficial layer of V1 (Fig. 2c and d). Our interpretation is

that V2 detects the existence of an illusory contour by

integrating information from a more global spatial context,

and then generates top-down feedback signal to constrain

the more precise contour inference in V1. Since the

feedback connection is known to be rather diffuse spatially,

feedback likely provides only a general guidance that is

specific in feature domain, but nonspecific in spatial

domain, helping the V1 circuitry construct and complete

a precise representation of the subjective contour.

4. Evidence II: modulation by shape from shading

In the second experiment [8], we asked two questions.

First, does 3D shape from shading information, presumably

computed in the higher visual areas, influence the processing

in V1? Second, when we bias the monkey to look for a certain

object, does this top-down bias have an impact on V1

inference?

We first trained monkeys to perform an odd-ball detec-

tion task. In this task, the monkey was presented with a

stimulus in which one element (odd-ball) is different from

the others, as in Fig. 3a, and the monkey was required to

make a saccadic eye movement to the oddball to get juice

reward. Then we recorded from 550 V1 and V2 neurons,

while the monkeys were performing the fixation task. In the

fixation task, the monkey was required to fixate at the black

dot on the screen during stimulus presentation. No saccadic

eye movement to the odd-ball was required. Shape from

shading oddballs (Fig. 3a) is known to pop out, or readily

segregate into different groups, while the 2D contrast

patterns (WA, Fig. 3e; WB, Fig. 3h) do not. The main

difference between the two types of patterns is that the

shading stimuli afford a 3D shape interpretation. Our task is

to examine whether V1 neurons are modulated by shape

from shading information.

We studied the response of V1 and V2 neurons to a

variety of stimuli. For each stimulus type, we compared the

response of the neuron to four different conditions. The most

important comparison is the response to the odd-ball con-

dition and the uniform condition. In these two conditions, the

RF of the tested neuron was covered by an identical stimulus

element. An increase in neural responses to the odd-ball

condition relative (e.g., Fig. 3a) to the uniform condition

(e.g., Fig. 3b) can be considered a neural correlate of pop-out

or perceptual saliency.

For each stimulus type, four conditions (singleton, odd-

ball, uniform and hole) were tested. In the singleton stimulus,

there was only one stimulus element, covering the RF. It was

used to measure the neuronal response to direct stimulation

of the RF alone, without any surround stimulus. The hole

stimulus was the same as the uniform condition except the

stimulus element on the RF was absent. It was used to

measure the response to direct stimulation of only the

extra-RF surround. In each trial, one of the conditions was

displayed on the screen for 350 ms, while the monkey fixated

at a red dot (shown as black dot in Fig. 3a and b).

We found that, after the monkeys were trained to perform

the odd-ball detection task, V1 and V2 neurons responded

better to the odd-ball condition than the uniform condition for

the lighting from above (LA) or the lighting from below (LB)

stimuli (Fig. 4a), but the difference in their responses to the

two conditions of the white-above (WA) type or the white-

below (WB) type was weaker or absent (Fig. 4b). These

response differences, or the pop-out signals, were found to be

inversely correlated with the reaction time of the monkeys in

detecting the odd-ball of the various types of stimuli (Fig.

4c,d), and hence could be considered a neural correlate of

Fig. 3. Higher order perceptual pop-out. We compared two conditions from

each stimulus set: an odd-ball condition where the receptive field element is

an odd-ball and a uniform condition where the RF element is one of the

elements of the background. Lighting from above (LA) oddball (a) and LA

uniform (b) conditions are shown for illustration. The black dot was the

fixation dot for the monkey to stare at during stimulus presentation. Six sets

of stimuli were tested (c–h), i.e., lighting from above (LA), below (LB), left

(LL) right (LR) and white above (WA) and white below (WB). In the actual

experiment, a singleton stimulus (only the RF element) and a hole stimulus

(background only, without the RF element) were also tested for each

stimulus set for comparisons (see Ref. [8]).
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perceptual saliency of the odd-ball stimulus. Interestingly,

before the odd-ball detection training, V2 but not V1 neurons

exhibit sensitivity to shape from shading pop-out. This

suggests that V2 may be the first cortical area where 3D

shape inference is made about object surface. The shape

information was fed back to V1 after the monkeys used the

stimuli in their behavior. Another interesting observation is

that when we changed the relative presentation frequency of

the stimuli to bias the monkeys’ preference to a specific

stimulus, for example, the LB odd-ball, the neural pop-out

response became much stronger for LB at the expense of LA.

When we reversed the relative frequency, the pop-out

response reversed correspondingly. Our interpretation is that

when the monkey developed a preference of looking for a

certain stimulus as a result of the training, the extrastriate

ventral stream might provide a top-down feature (object)

expectation (or in Bayesian term, feature prior) to facilitate

the processing or detection of that particular stimulus in V1.

5. A new perspective

The findings of these two experiments are consistent

with the concept that visual processing in the brain can be

conceptualized in terms of hierarchical Bayesian infer-

ence. Feedback from a higher order area to an earlier area

can be conceptualized as providing top-down priors to

bias the early inference. The impact of feedback is often

subtle and becomes evident only when there is ambiguity

in the visual stimuli, which is true in both of our

experiments.

From this perspective, attention should not be concep-

tualized in terms of biased competition, but maybe more

appropriately in terms of biased inference, or providing top-

down priors in a hierarchical Bayesian inference framework.

This conceptualization casts attention in a more mathemat-

ically tractable light. Feedback from the posterior parietal

cortex could provide a spatial prior, i.e., prior expectation of

how informative or interesting a particular visual location is.

The influence of this spatial prior is called spatial attention.

On the other hand, feedback from the ventral stream areas

would provide a top-down object or feature prior, telling the

early visual area what object the system is looking for, or

what features we are expected to see when we are inferring

the existence of a particular object. This manifests as object

attention or feature attention. The forms of attention depend

on the task at hand, as different classes of priors would be

required for different occasions. Theoretically speaking,

priors can be derived from the statistics of stimuli and the

processing constraints imposed by the computational tasks.

Fig. 4. Temporal evolution of the normalized population average response of 30 V1 units from a monkey to the LA set (a) and the WA set (b) in a stage after the

monkey had utilized the stimuli in its behavior. Each unit’s response was first smoothed by a running average within a 15-ms window and then averaged across

the population. A significant difference (pop-out response) was observed between the population average response to the odd-ball condition and that to the

uniform condition in the LA set. No pop-out response was observed in the WA set. (c, d) The monkeys’ behaviors and neural responses adapted after each stage

of training. Here, behavior performance measurements (percent correct and reaction time) in three different training stages, each to the six types of stimuli, were

regressed against the pop-out response. The significant correlation between the neural pop-out responses and the behavioral performance, suggesting the neural

response is a correlate of subjective perceptual saliency of an object (see Ref. [8] for details).
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Priors thus provide a potential bridge between behaviors,

environments and perceptual inference. Understanding them

should therefore be a central question in the study of

biological vision.
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