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Abstract

Humans solving algorithmic (or) reasoning problems typically exhibit solution
times that grow as a function of problem difficulty. Adaptive recurrent neural
networks have been shown to exhibit this property for various language-processing
tasks. However, little work has been performed to assess whether such adaptive
computation can also enable vision models to extrapolate solutions beyond their
training distribution’s difficulty level, with prior work focusing on very simple tasks.
In this study, we investigate a critical functional role of such adaptive processing
using recurrent neural networks: to dynamically scale computational resources
conditional on input requirements that allow for zero-shot generalization to novel
difficulty levels not seen during training using two challenging visual reasoning
tasks: PathFinder and Mazes. We combine convolutional recurrent neural networks
(ConvRNNs) with a learnable halting mechanism based on (Graves, 2016). We
explore various implementations of such adaptive ConvRNNs (AdRNNs) rang-
ing from tying weights across layers to more sophisticated biologically inspired
recurrent networks that possess lateral connections and gating. We show that 1)
AdRNNs learn to dynamically halt processing early (or late) to solve easier (or
harder) problems, 2) these RNNs zero-shot generalize to more difficult problem
settings not shown during training by dynamically increasing the number of recur-
rent iterations at test time. Our study provides modeling evidence supporting the
hypothesis that recurrent processing enables the functional advantage of adaptively
allocating compute resources conditional on input requirements and hence allowing
generalization to harder difficulty levels of a visual reasoning problem without
training.

1 Introduction

Recurrent Neural Networks (RNNs) have emerged as a powerful tool for solving machine reasoning
tasks, demonstrating impressive performance across a variety of tasks that require processing of
sequential inputs. While recurrent processing is valuable for time-varying inputs, it can also be useful
for static inputs as recurrent networks have the ability to scale computation to varying difficulty levels
by varying the number of recurrent iterations. This can be helpful when different problems from the
same task family exhibit significant variations in complexity (consider mazes, for example). However,
conventional RNNs typically struggle to automatically generalize across different difficulty levels,
requiring retraining, fine-tuning, or human intervention to pick the number of recurrent iterations
needed. This limitation hampers their practical utility in real-world scenarios, since the span of
difficulty levels seen during training is finite.
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Human reasoning, in contrast, is characterized by a highly adaptible use of computation - arbitrarily
more computation can be used for more difficult tasks. Despite the evidence for such scaling in
human computing there is limited work in the literature analyzing Adaptive RNNs (AdRNNs) that,
on a sample-by-sample basis, automatically decide when to stop. Graves introduced Adaptive
Computation Time (ACT), a mechanism to automatically stop computation, by learning to generate
a scalar halting probability (Graves, 2016). However, similar to subsequent work (Banino et al.,
2021), it was evaluated on either simple tasks such as parity checking, or language tasks. Few
studies examine the training and evaluation of these AdRNNs on visual reasoning tasks, which pose
unique challenges due to the redundant and high-dimensional nature of visual data. Furthermore,
extrapolating to harder instances within-task has not been sufficiently studied, with Banino et al.
(2021) evaluating such zero-shot performance only on the simple parity task.

In this paper, we study the problem of computation scaling in recurrent vision RNNs, with an
emphasis on zero-shot extrapolation to harder/larger problems within the same task. The ability to
handle unseen difficulty levels without fine-tuning, or human intervention, enables more robust and
adaptable computer vision systems, which are crucial for real-world applications. We investigate the
effectiveness of AdRNNs on two challenging, publically available, visual reasoning tasks based on
curve tracing and route segmentation, namely PathFinder (introduced by Linsley et al. (2018)) and
Mazes (introduced by Schwarzschild et al. (2021)).

The contributions of this work are as follows:

• We combine Convolutional RNNs with an adaptive computation method of Graves (2016)
producing Adaptive ConvRNNs (AdRNNs) that are capable of learning a downstream task
simultaneously while also learning to scale their computational steps as per input image/task
requirements.

• We introduce LocRNN, a high performing recurrent architecture inspired by prior computa-
tional models of recurrence in biological vision.

• We show that AdRNNs learn to dynamically halt processing early (or late) to solve easier (or
harder) problems when the train- and test-difficulty levels are matched on complex visual
reasoning problems inspired by stimuli used in prior cognitive science research.

• During test time we introduce a previously unseen harder difficulty level. We evaluate
AdRNNs on these new difficulty levels and show that they zero-shot generalize to more
difficult problem settings not shown during training by dynamically increasing the number
of recurrent iterations at test time well beyond the number of recurrent steps used during
training.

2 Related Work

Our work is relevant to the visual routines literature introduced by Ullman (1984) and further reviewed
elaborately by Roelfsema et al. (2000). The core idea of visual routines that make it relevant to our
studied question of task extrapolation is the flexible sequencing of elemental operations resulting in a
dynamic computational graph, which make RNNs a natural approach to solve such tasks.

Prior research has proposed mechanisms for RNNs that learn the amount of recurrent computational
steps required. Following are two particularly relevant attempts in prior literature in this area: Graves
(2016) developed the Adaptive Computation Time (ACT) method to train RNNs on Natural Language
Processing tasks with a sigmoidal halting unit that determines when to halt recurrent processing,
and Banino et al. (2021) extend upon this pioneering work by taking a probabilistic approach to
halting and introducing a geometric prior-based specification of computational budget. However,
neither of these studies applied adaptive computation to vision RNNs (that are significantly trickier to
optimize). Also the prior studies did not attempt to examine computation scaling under zero-shot
generalization to harder difficulty levels. Additionally, Eyzaguirre and Soto (2020) developed a
version of ACT applied to visual reasoning problems, however, their observations on the CLEVR
dataset (in which the issues related to object diversity are highlighted by Kim et al. (2018)) do not
explore generalization to new difficulty levels which is central to our results.

In terms of generalization from easy to hard vision problems, our work is relevant to (Schwarzschild
et al., 2021) and (Bansal et al., 2022) where the authors evaluate the application of recurrent neural
networks to generalize from easier to harder problems. Our work extends and differs from their
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intriguing study of recurrence in task extrapolation in the following ways: 1) For recurrent networks
used in their study, human intervention is required to specify the number of recurrent computational
steps during the testing phase. 2) Their work explores sequential task extrapolation in general
with abstract problems such as Prefix Sum and solving Chess Puzzles while our work extends it to
particularly focus on extrapolation in visual task learning. 3) We present evaluation on the Pathfinder
challenge (Linsley et al., 2018), a relatively more large-scale visual reasoning task shown to be
very challenging (Tay et al., 2020), the design of which dates back to (Jolicoeur et al., 1986).
4) Schwarzschild et al. (2021) and Bansal et al. (2022) implement only the most straightforward
form of recurrence realized by weight-tying, i.e., they only evaluate ResNets with weight sharing
across residual blocks (albeit with a novel training scheme in the follow up study (Bansal et al.,
2022)). In addition to such recurrent ResNets, we present analyses with highly sophisticated recurrent
architectures specialized for recurrent image processing. 5) We introduce LocRNN, a high performing
recurrent architecture based on prior computational models of cortical recurrence.

On the design of recurrent architectures, our work is loosely related to (Eigen et al., 2013), (Pinheiro
and Collobert, 2014), (Veerabadran and de Sa, 2020) and (Liao and Poggio, 2016) which discuss the
role of weight sharing in feedforward networks to produce recurrent processing. We are interested,
however, in designing new specialized recurrent architectures that play a role both in human and
machine vision. While there exist more such recurrent architectures informed by neuroscience such as
Linsley et al. (2018); Nayebi et al. (2022), we find these architectures to be quite difficult to interpret
and unstable to train (based on in-difficulty performance evaluation included in the Supplementary).
Our proposed LocRNN architecture in comparison is an elegant and easy-to-interpret implementation
of recurrence that is stable to train. Our work is also relevant to prior work on modeling speed-
accuracy tradeoffs observed during visual perception (Spoerer et al., 2020).

3 Datasets

For evaluating the ability of various models in exhibiting task extrapolation, we curate two challenging
visual reasoning tasks, Mazes and PathFinder, with instances at multiple parametric difficulty levels.
Both tasks involve the visual routines of marking and curve tracing (Ullman, 1984). These datasets
are inspired by prior visual psychophysics research where such tasks were used abundantly to estimate
the cognitive and neural underpinnings of sequential visual processing, such as incremental grouping,
structure and preference of lateral connections, etc. (Jolicoeur and Ingleton, 1991; Ullman, 1984; Li
et al., 2006; Roelfsema, 2006). In the following subsections we describe the specifics of our tasks.

3.1 PathFinder challenge – curve tracing

Figure 1: Representative examples from PathFinder and Mazes datasets. Left: (a) Positive PathFinder-
9 (b) Negative PathFinder-18 (c) Positive PathFinder-24; Right: (a) 9×9 mazes, (b) 15×15 mazes,
(a) 19×19 mazes, (a) 25×25 mazes

Task description: In the PathFinder task introduced by Linsley et al. (2018), models are trained to
identify whether two circular disks in an input stimulus form the two ends of a locally connected path
made up of small “segments”. Each image consists of two main long connected paths P0 and P1

made up of locally aligned segments as well as shorter distractor paths. Each image also contains two
circular disks which are placed at two of the 4 possible endpoints of P0 and P1. Images that contain a
disk on both ends of the same path are classified as positive, and those containing a disk on endpoints
of different paths are classified as negative. Examples are shown in Figure 1.

Difficulty levels: Pathfinder is designed at different difficulty levels parameterized by the length
(number of segments) of the paths P0 and P1 mentioned above. The easiest version uses paths that
are 9 segments long (PathFinder-9), while the medium and hard versions contain paths that are
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14 (PathFinder-14) and 18 (PathFinder-18) segments long respectively (see example images in the
Appendix). This dataset consists of a total of 800,000 RGB images at each difficulty level, each
with a spatial resolution of 160 × 160 pixels. There are an equal number of positive and negative
instances at each difficulty level. We use 700,000 images for training and 100,000 images as the
test set from each difficulty level. We combined these datasets to create a more challenging dataset
with varying levels of difficulty, which we refer to as PathFinder-Mixed. To evaluate the zero-shot
difficulty extrapolation on PathFinder in Sec. 5.2 we generated 100,000 images each with contour
lengths 21 and 24 respectively; we call these PathFinder-21 and PathFinder-24.

Evaluation criteria: Since this is a classification challenge, we use accuracy, i.e. % correct on
test-images as the evaluation metric to rank model performance on PathFinder. Model architectures
receive an input image and process it via a stack of standard convolution/recurrent-convolution layers
followed by a classification two-class readout. Since this is a binary classification challenge with
balanced classes, chance performance is 50% for random predictions.

3.2 Mazes challenge - route segmentation

Task description: Human beings are adept at solving mazes, a task that requires application of a
similar serial grouping operation like PathFinder in order to discover connectivity from a starting
point to the final destination of the maze amidst blocking walls. For evaluating model performance
on solving mazes of varying difficulty, we use the publicly available version of the Mazes challenge
developed by Schwarzschild et al. (2021). They implemented this Mazes challenge as a binary
segmentation problem where models take N ×N images of square-shaped mazes as input with three
channels (RGB) with the start position, end position, permissible regions and impermissible regions
marked in the image. The output produced by models is a binary segmentation of the route discovered
by the model from the start to the end position.

Difficulty levels: The Mazes challenge has been designed at several difficulty levels, each difficulty
level is parameterized by the size of the square grid that the maze is designed into. We use maze
datasets of grid sizes 9×9 and 15×15 for training. Each dataset consists of 50,000 training images
and 10,000 test images that are guaranteed to not overlap. The spatial resolution of 9×9 maze images
is 24× 24 pixels and that of 15×15 maze images is 36× 36 pixels. Similar to PathFinder-Mixed,
we combine 9×9 and 15×15 grid sizes to form Mazes-Mixed. We also constructed larger mazes
with grid sizes 19× 19 (with spatial resolution 44× 44 pixels) and 25× 25 (with spatial resolution
56× 56 pixels) to evaluate a model’s ability to extrapolate to difficulties not seen during training. As
above with PathFinder’s extrapolation evaluation, these novel difficulty mazes were only used during
testing and were not in any form used in the training or hyperparameter optimization process.

Evaluation criteria: Mazes is a segmentation challenge and hence, one could potentially consider
partially correct routes during evaluation (for example with average of per-pixel accuracy). However
this is less strict than giving each image a single binary score reflecting if all pixels are labeled
correctly. Evaluation criteria for mazes is hence the total % of test-set mazes completely accurately
solved at a given difficulty level.

4 Model architectures and training

4.1 Implementations of adaptive computations evaluated on task extrapolation

In this section, we describe our choice of recurrent architecture designs that we use to study the
behavior of adaptive computation and task extrapolation in deep learning. We process images
(denoted as X ∈ Rc,h,w) in three stages that are common to all models we evaluate in this study.
These three stages are as follows: (1) an input convolution layer (denoted as input(.)) that operates
on the image directly.

h0 = ReLU(input(X)) (1)

The output from this stage h0 ∈ Rd,h,w is fed as input to the following recurrent block in (2).

ht = r(ht−1,h0), t ∈ [1, ttrain] (2)

where r(.) is the recurrent block. ttrain is a training hyperparameter indicating the maximum number
of timesteps for unrolling r(.) during training. This block consists of a sequence of convolution

4



layers applied in an iterative manner for any arbitrary number of timesteps. This is the sub-part of
our model that is capable of performing adaptive computations. (The specific architecture of these
convolution blocks constitute different implementations of recurrent operations described further
below.) (3) a readout layer containing a block of convolution and pooling operations that produce the
desired output from our network.

ŷt = readout(ht), t ∈ [1, ttrain] (3)

While we keep the input and readout layer architectures the same for all models we evaluate, their
intermediate recurrent blocks have different architectures (corresponding to their respective recurrent
cells). We explore three different implementations of recurrent computations which are used in the
second, recurrent block of models. Our first choice as the intermediate feature processing block
consists of a residual network with weight tying across all layers; we refer to this model as R-ResNet-
30. Next, we study the performance of the following specialized convolutional recurrent units from
prior work: horizontal convolutional GRU (hConvGRU) and its stable variant (Linsley et al., 2018,
2020) and a convolutional Gated Recurrent Unit (ConvGRU) (Ballas et al., 2015) with LayerNorm
(ConvGRU does not converge in the absence of LayerNorm). Third, we design a novel recurrent
cell based on prior computational models of cortical recurrent processing (Li et al., 2006); this
model equips the biologically inspired design choices of long-range lateral interactions, gating, and a
separate population of interneurons. This model is referred to as LocRNN and is described in the
following Sec. 4.3. Importantly all models are matched for trainable parameters.

4.2 Combining ConvRNNs with Adaptive Computation Time (ACT)

The central theme of our work is to show that RNNs can flexibly adapt (or scale) their computation
according to input requirements. We achieve this ability by combining ConvRNNs with an adaptive
computation mechanism based on Graves (2016) called Adaptive Computation Time (ACT). A
difference between our work and ACT is that our visual reasoning task involves static inputs (i.e.
sequence of length 1) whereas Graves (2016) deals with variable-length sequences and learns adaptive
processing of each token. Owing to this difference, our halting mechanism is similar to ACT applied
to a 1-token input sequence.

The key idea of ACT is to introduce a separate “halting mechanism” that learns to control the
number of recurrent computation steps dynamically, conditioned on each input example’s processing.
In addition to producing the next recurrent state, an RNN equipped with ACT also produces a
scalar value called the “halting score” for each computation step. In addition to the next hidden
state computed using Equation 2, we generate a scalar halting score pt at each step using a learnt
convolution layer (halt_conv(.)) that is shared across timesteps:

pt = σ(max_pool(halt_conv(ht−1))) (4)

The RNN treats the cumulative sum of the halting scores up to timestep t (Pt described below) as a
quantity used to determine whether processing is terminated at that timestep.

Pt =

t∑
t′=1

pt′

The RNN keeps track of the accumulated halting scores and checks if the cumulative sum of the
halting scores at each step reaches a predefined threshold (1 − ϵ). If the threshold is reached, the
computation stops (i.e., pt = 0 ∀t > thalt) where the cumulative halting score threshold is reached at
timestep thalt = min{t : Pt >= (1− ϵ)}. The adaptive hidden state is then computed as a weighted
average of the hidden states up to thalt, scaled by the halting scores at each time step. The readout is
then applied to this final adaptive hidden state to produce the ACT task prediction, ŷact:

hact =

thalt∑
t=1

pt · ht (5)

ŷact = readout(hact) (6)

The abovementioned ConvRNN combined with ACT is trained to optimize both the downstream
task loss (||y − ŷact||p) and an auxiliary ‘ponder cost’ corresponding to the halting mechanism
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that encourages models to use the fewest number of recurrent step to process an input example.
Ponder cost is computed as the cumulative halting score until timestep thalt − 1, maximizing this
term encourages (or minimizing its negative as shown below) completing the task as quickly (with as
few recurrent steps) as possible. The following final objective function is optimized to train the full
model containing ConvRNNs with ACT where τ is a hyperparameter.

L =

i=||D||∑
i=0

1

||D||
||yi − ŷi

act||p − τ

tihalt−1∑
t=1

pit (7)

4.3 Formulation of LocRNN

We note that prior work has explored the development of recurrent architectures tailored for vision.
Here, we introduce a similar but highly expressive recurrent architecture designed based on a
computational model of iterative contour processing in primate vision from Li (1998). This model
is an ODE-based computational model of interactions between cortical columns in primate area V1
mediated by “lateral connections” local to a cortical area.

Figure 2: Contrasting the architectures of LocRNN (left) and ConvGRU (bottom-right). h0 is shown
as a magenta arrow and does not change across timesteps. As illustrated also in this figure, LocRNN’s
interneuron activations (St) are not passed to the next layer. ConvGRU on the other hand uses a
single uniform neural population. (Top-right) shows a visualization of LocRNN’s Lt activations as
they perform contour tracing to solve an input image from PathFinder-14 (PF-14) (visualization of all
timesteps available in Supplementary Fig. 8).

By discretizing the continuous-form ODE dynamics of processing units from Li (1998), we arrived at
an interpretable and powerful set of dynamics for “LocRNN”. As in ConvGRU, the effective receptive
field of LocRNN output neurons increases linearly with recurrent timesteps.

Unlike ConvGRU, the LocRNN’s hidden state is composed of two neural populations, L and S;
the activity in these populations are referred to as Lt and St at timestep t respectively. These two
populations are motivated by the x (excitatory) and y (inhibitory) neurons in Li (1998). However
we found that restricting the signs of their weights (to reflect exclusively excitatory and inhibitory
connections) led to less stable behavior. On the other hand, retaining the interneuron property (local
computation not projecting out for downstream processing) of the S population performed better than
using a single uniform population. The following equations illustrate the working of ACT and how
the readout is applied in LocRNN.

pt = σ(max_pool(halt_conv(Lt−1))) (8)

ŷact = readout

(
thalt∑
t=1

pt · Lt

)
(9)

Initially, both L0 and S0 populations are set to a tensor of zeros with the same shape as h0, a 4d
tensor of shape (batch_size×channels×height×width).
L and S update gates GL

t and GS
t (same shape as L and S) are computed as functions of the input

and current hidden states Lt−1 and St−1 using 1x1 convolutions U∗.

GL
t = σ(LN(UL ∗ h0) + LN(UL→L ∗ Lt−1)) (10)
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GS
t = σ(LN(US ∗ h0) + LN(US→S ∗ St−1)) (11)

Each of the 4 types of lateral connections are modeled by convolution kernels
WL→L,WL→S,WS→S, and WS→L respectively of shape d × d × k × k where d is the
dimensionality of the hidden state and k represents the kernel spatial size.

L̃t = γ(WL ∗ h0 +WL→L ∗ Lt−1 +WS→L ∗ St−1) (12)

S̃t = γ(WS ∗ h0 +WL→S ∗ Lt−1 +WS→S ∗ St−1) (13)

Once the long-range lateral influences are computed and stored in L̃t and S̃t, these are mixed with
the previous hidden states using the gates computed in Eq. 10 and 11. These hidden states are then
passed on to subsequent recurrent iterations where even longer-range interactions occur (as time
increases).

Lt = κ(LN(GL
t ⊙ L̃t + (1−GL

t )⊙ Lt−1)) (14)

St = κ(LN(GS
t ⊙ S̃t + (1−GS

t )⊙ St−1)) (15)
In the above equations, LN() stands for Layer Normalization (Ba et al., 2016), and the nonlinearities
γ and κ are both set to ReLU. One of the differences between LocRNN and ConvGRU (which we
also evaluate) is the presence of the interneuron S population in the former.

5 Results

5.1 Adaptive RNNs scale their computation as a function of input difficulty

In this section, we report our observations from training AdRNNs on a mixture of difficulty levels
from PathFinder and Mazes & evaluating them on a held-out set of images from the same mixture of
difficulty levels of PathFinder and Mazes. We created one training dataset for each of these challenges
by combining input samples from multiple “easy” difficulty levels. Combining input samples from
multiple difficulty levels increases the diversity of computational requirements during training and
helps in developing models that do not degenerate to using the same computational steps for all input
samples.

As described in Section 3, we created a PathFinder training set of images and corresponding labels by
sampling an equal number of images from three difficulty levels: PathFinder-9, PathFinder-14, and
PathFinder-18. Similarly, we created a Mazes training set of images and ground-truth segmentation
labels by sampling an equal number of images from two difficulty levels: 9x9 mazes and 15x15
mazes.

On held-out test sets that matched the difficulty level of the above-described training data, we tested
whether models were able to scale their recurrent computational steps as a function of the input
difficulty level. We show the results from this evaluation in Table. 1. We observed that both the
sophisticated AdRNNs tested (ConvGRU and LocRNN) were able to generalize to the held-out
set. We also observed that variants of horizontal GRU (Linsley et al., 2018) and Linsley et al. (2020)
models generalized to the (within-difficulty) held-out set without using ACT. The simpler recurrent
network without gating, weight-tied R-ResNet-30, was unable to learn on PathFinder and on Mazes
highlighting the importance of specialized operations such as gating and backpropagation through
time. The presence of skip connections between R-ResNet-30’s recurrent blocks could still not match
the expressivity of the specialized RNNs.

If ACT is working as expected, we must observe that AdRNNs that learn the task dynamically use
less compute to solve easy examples and more compute (more recurrent iterations) to solve harder
examples. To check for this trend, we analyzed the number of steps chosen by the model before
halting for each example from the validation sets of PathFinder and Mazes; with varying contour
lengths and maze sizes respectively. These results are shown by the cool colors in Figure 3 for
PathFinder and in the Supplementary for Mazes. As is clearly observable from the trend in these
Figures, examples that we consider as harder (longer contours in PathFinder and larger mazes)
are assigned a higher number of recurrent computation steps by ACT than easy examples.
Hence we show that AdRNNs obtained by combining ConvRNNs with ACT training are capable of
learning both PathFinder and Mazes in addition to learning to adapt their recurrent computational
steps as a function of input example difficulty. To the best of our knowledge, we are the first to show
the above result for visual tasks inspired by stimuli used in prior cognitive science research.
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PathFinder-Mixed (%) Mazes-Mixed (%)

ResNet-30 50.41 0.0
R-ResNet-30 (ACT) 49.37 0.0
Linsley et al. (2020) 50.0 78.33
hConvGRU tinference = ttrain 89.66 99.69
hConvGRU (stable halting) 89.65 99.54
ConvGRU (ACT) 95.26 98.4
LocRNN (ACT) (ours) 97.13 98.4

Table 1: Accuracies (%) ↑ of models on the two visual reasoning tasks. Chance performance is 50%
for pathfinder and 0% for Mazes.

Figure 3: Distributions of halting steps across samples in each validation set of PathFinder. Compu-
tation appears to scale to match difficulties of the datasets for both LocRNN (left) and ConvGRU
(right) models. 9-length contours typically halt after 4-6 steps, while 24-length contours can take up
to 9 steps. The red bars show the distribution in the extrapolation datasets.

Figure 4: Vanilla RNNs (solid lines) and AdRNNs (dashed) trained on 12 iterations (a) within-
difficulty (b) extrapolating to PathFinder-21 (c) extrapolating to PathFinder-24

5.2 Adaptive RNNs generalize to novel difficulty levels by scaling their computation

In typical circumstances where RNNs are expected to solve instances that are more difficult, human
intervention in the form of specification of the number of recurrent iterations is commonplace
(Schwarzschild et al., 2022). This approach is both laborious and expensive to perform as it requires
training and/or evaluation on new test sets with various settings of the number of recurrent timesteps.
Additionally, this process needs to be repeated at every occasion of new incoming test data that
is potentially of increased difficulty. In the previous section, we showed the ability of AdRNNs
in learning to solve PathFinder and Mazes while also demonstrating that they assign computation
as a function of input difficulty on a test-set with matched task difficulty level as the training set.
Here we are interested in testing whether AdRNNs are able to extrapolate (by using more recurrent
computational steps compared to training) in complex reasoning tasks. We constructed two additional
datasets each in the PathFinder and Mazes families to test these adaptive models’ ability to extrapolate,
as mentioned in Section 3. While AdRNNs are trained on the training difficulty levels for a maximum
of ttrain iterations, we evaluated them on these new (more difficult) datasets at inference with a
maximum of tinference ≥ ttrain recurrent iterations where we refer to AdRNNs as operating in
their extrapolation phase. We report the results from this evaluation in Table. 2 and in Fig. 4.
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PathFinder-21
(%)

PathFinder-24
(%)

Mazes-19 (%) Mazes-25 (%)

ResNet-30 50.0 50.0 0. 0.
R-ResNet-30 (ACT) 50.0 50.0 0. 0.
Linsley et al. (2020) 50.0 50.0 2.93 0.01
hConvGRU tinference = ttrain

∗ 64.21 58.35 16.2 ± 2.66 5.29 ± 0.26
hConvGRU (stable halting) 50.0 50.0 50.26 ± 6.04 21.36 ± 2.82
ConvGRU (ACT) 82.63 ± 4.84 74.14 ± 6.52 75.1 ± 11.96 46.93 ± 4.2
LocRNN (ACT) (ours) 92.89 ± 0.9 85.81 ± 5.57 86.83 ± 2.94 49.99 ± 4.48

Table 2: Accuracies (Mean % ± SEM) ↑ on extrapolation datasets. Chance performance is 50% for
pathfinder and 0% for Mazes.
∗hConvGRU training converged only on 1 out of 3 seeds (which were chosen randomly for all models
here) on PathFinder, corresponding results above show this converged model’s performance.

Adaptive RNNs generalize to novel difficulty levels by scaling their computation Our evaluation
of AdRNNs trained with ACT on novel harder difficulty levels shows that as expected, AdRNNs have
learned to use the optimal number of recurrent computational steps required for achieving strong
generalization to the novel difficulty levels on a per-image level. On PathFinder, as seen in Figure
3, most instances from PathFinder-21 and PathFinder-24 take 9 steps in LocRNN and up to 7 steps
in ConvGRU, higher than the number of steps used for easy training difficulty examples. In Fig 5
we visualize the relationship between mazes’ difficulty and the number of recurrent iterations used
by ACT (on a per-instance level). We observe that maze difficulty (length of the ground-truth route
in pixels) and the number of ACT iterations are strongly positively correlated. Notably, AdRNNs
trained with ACT choose to make thalt during inference on longer mazes greater than thalt used on the
shorter training mazes.

Figure 5: Relationship between halting step and difficulty level of Mazes for the extrapolation
evaluation . Here we visualize the relationship between the halting step and solution length of mazes
at a per-instance level. We note a strong positive correlation between the difficulty level (length of
maze solution segmentation) and halting step used by LocRNN (left) and ConvGRU (right) AdRNNs.

5.3 AdRNNs outperform halting in hConvGRU based on stability of hidden-state dynamics

Using stability in hidden-state space as an alternative way to perform halting during extrapolation,
we evaluate hConvGRU on extrapolation. For this method, we halted processing in hConvGRU when
the mean absolute difference between two subsequent states (||ht − ht−1||) reduced to less than a
tenth of the difference between the first two states (heuristic for stability). This method referred as
hConvGRU (stable halting) in Tables 1 and 2 shows differences in generalization across our datasets.
AdRNNs perform better than hConvGRU (stable halting) on both datasets; especially, stable
halting completely fails to show generalization to PathFinder-21 and -24. We hypothesize this method
to work suboptimally for the following reasons:

• Stability-based halting requires defining a hand-engineered heuristic on how much change
in the output is considered small enough to halt. In typical segmentation tasks like Mazes,
the network output for the initial few timesteps is highly stable in making nonsensical
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predictions (predicting all pixels as the negative class) and thus, heuristics need to identify
an inflection point in the output trajectory where meaningful predictions start to emerge
and stabilize. In the absence of ground truth information, one cannot pick a heuristic that
generalizes to unseen data.

• Learnable halting makes less assumptions about the hidden state’s properties, and hence
doesn’t enforce hard constraints such as stability to be satisfied by training. Some, but not
all RNNs, have stable hidden states wherein the network response stops changing after
reaching an attractor. Linsley et al. (2020) argue that RNNs that are expressive have an
intrinsic inability to learn stable hidden states. For RNNs to be stable, their hidden state
transformation needs to model a contractive mapping (Miller and Hardt, 2018; Pascanu
et al., 2013). That is, the recurrent transition function F satisfies the following inequality:
||F (ht)− F (ht−1)||p < λ||ht − ht−1||p. RNNs with stable hidden states that satisfy the
above inequality are quite difficult to train on challenging problems in practice. Even
when stable models perform comparably to unstable models as in (Miller and Hardt, 2018),
the authors show unstable models’ advantages such as performance improvements in the
short-time horizon and lesser vanishing gradient issues.

6 Conclusion

The advantage of using recurrent networks for processing static inputs adaptively, particularly in
order to zero-shot generalize to new difficulty levels is understudied. In this work, we show that deep
convolutional networks with intermediate recurrent blocks (ConvRNNs operating on image features)
can be combined with an adaptive computation technique to learn to dynamically process different
input examples based on a per-instance difficulty level. We combine ConvRNNs with a learnable
halting mechanism that is based on Graves (2016) to produce AdRNNs. We evaluated diverse
implementations of recurrence in increasing level of sophistication/complexity, R-ResNet-30 with
weight-tying, ConvGRU and hConvGRU with gating, and LocRNN with two separate populations of
horizontally connected units (one of which are interneurons) and gating on two challenging visual
reasoning problems, PathFinder and Mazes, which are generated at various levels of difficulty. First,
we showed that only the specialized RNNs (hConvGRU) and AdRNNs (LocRNN and ConvGRU) are
capable of learning PathFinder and Mazes. Second, these AdRNNs trained with ACT are learning to
dynamically use less (or more) recurrent computational steps for easy (or hard) PathFinder and Maze
problems respectively as discussed in Section. 5.1. More interestingly when the difficulty level of
the test set was increased relative to training difficulty levels, AdRNNs generalized to these harder
instances in a zero-shot manner by allocating more recurrent computation than was ever used during
training. They also outperform stability heuristics-based adaptive recurrent networks. Our work
empirically shows this hypothesized advantage of using adaptive recurrent processing on static-image
tasks for the first time to the best of our knowledge.

In addition to adaptively scaling computation according to the need, the AdRNNs can also solve the
problems more efficiently, choosing to stop at earlier times than the non-adaptively trained RNNs
(compare halting times in Fig 3 with performance curves in Fig 4) with human arbitrarily chosen
training iterations. Thus, just as computation can be scaled to unseen problem difficulties without
human intervention, the training iterations required can be (better) discovered automatically.

7 Limitations and Future Work

The current work has been only applied to static images, but recurrent networks are able to process
time-varying input; future work will explore our models on video input. In addition, there appears
to be a benefit of the LocRNN model over ConvGRU that deserves further study to determine the
mechanism behind the benefit of the interneuron population.

For future work, we would like to further explore the benefits of training only on very small problem
instances with the ACT mechanism automatically allowing for harder instances. This could greatly
reduce latency and energy consumption both during training and inference, an increasingly relevant
concern as the size, memory footprint, training time and inference latency of models grow drastically.
Finally, we wish to explore how this approach might link to the human developmental literature,
similar to earlier work by Elman (1993).
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Supplementary

A Training and implementation details

All architectures we evaluated within a task were matched in terms of the number of parameters. The
input convolutional layer’s kernel size is 7 × 7. Number of channels used by the model remains
unchanged across layers and is determined per-model for matching overall number of trainable
parameters across models. For PathFinder, we fix the number of channels to be 32 for LocRNN, 21
for hConvGRU and ConvGRU, and 64 for ResNet-30 with a filter size of 9x9 in the intermediate
recurrent layers. For Mazes, we fix the number of kernels (d) to be 128 for LocRNN, ConvGRU,
hConvGRU, and 100 for ResNet-30 & R-ResNet-30 and the kernel size is fixed to be 5x5. Our
readout layers for classification (PathFinder) contain a global average pooling layer followed by a
fully-connected layer with output dimensionality of 1 producing the classification logit. We apply
binary cross-entropy loss on the logit to train models on PathFinder. On Mazes, we use a 1 × 1
convolution with 1 output channel to produce a binary segmentation map. We use pixel-wise binary
cross-entropy to train models on Mazes. These readout layers are used uniformly for all architectures
evaluated.

On Mazes training minibatch size is set to 64 images (and inference batch size of 50 images) and
a learning rate schedule starting with warmup followed by step learning rate decay as indicated
in Schwarzschild et al. (2021) for 50 total epochs of training. On PathFinder, we set the training
minibatch size to 256 images and a constant learning rate of 1e-4 for all models for a total of 20
epochs of training. All models were trained on NVIDIA RTX A6000 GPUs and implemented using
PyTorch.(Paszke et al., 2017).

B Instability of other baseline ConvRNNs

ConvRNN training is often faced with instability issues that lead to sensitivity with respect to random
seeds or lack of convergence of models on downstream tasks. We tested a suite of ConvRNNs
previously introduced that are similar to LocRNN on three difficulty levels of PathFinder (in-difficulty
evaluation, i.e., training and testing on each difficulty level independently). This evaluation high-
lighted the above issue especially on the difficult levels of PathFinder where LocRNN was the
only model which could converge to stable solutions across different random seeds unlike the other
networks which performed at chance as shown below in Fig. 6.

Figure 6: Performance of various ConvRNN models on PathFinder-9, PathFinder-14, and PathFinder-
18.

C Input and output format for PathFinder and Mazes

Each example maze is an n× n RGB matrix, with colored squares indicating the start (green) and
end (red) positions in the maze. The output is a binary matrix of size n× n with the segmented path
indicating the maze solution. An example is shown in Figure 7 (top).

Each PathFinder example is an n× n binary matrix as shown in Figure 7 (bottom). The output for
one sample is a pair of probabilities denoting which class the sample belongs to (negative, meaning
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the disks are at the end of disconnected paths, or positive, meaning the disks are connected through
the contour).

Figure 7: (Top) Example images from 11×11 Mazes processed by a model to produce the solution
as a segmentation prediction. (Bottom) Example input images from PathFinder-14 processed by a
classifier to produce binary classification output.

Figure 8: State activations Lt of LocRNN for a PathFinder-14 example, clearly displaying the contour
integration strategy used by LocRNN. The activation maps suggest that the contours are integrated
from both endpoints, and a decision is taken based on whether they meet or not.
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